Strong vertex-magic and super edge-magic total labelings of the disjoint union of a cycle with 3 -cycles
Dan McQuillan, ${ }^{1, *}$ James M. McQuillan, ${ }^{2}$
${ }^{1}$ Department of Mathematics, Norwich University, Northfield, VT 05663 dmcquill@norwich.edu; ${ }^{2}$ School of Computer Sciences, Western Illinois University, Macomb, IL 61455, jm-mcquillan@wiu.edu

The disjoint union $C_{m} \cup(2 t) C_{3}$ is constructively shown to have a strong vertex-magic total labeling (SVMTL) for $m=9$ and $m=11$ and for all $t \geq 1$. Furthermore, $C_{m} \cup(2 t-1) C_{3}$ is constructively shown to have a SVMTL for $m=6,8,10$, for all $t \geq 1$. The approach is to construct a specialized Kotzig array and use it in different ways for different graphs. Since, for any 2-regular graph, a SVMTL can be transformed into a super edge-magic total labeling of the same graph, it follows that each of the graphs mentioned also has a super edge-magic total labeling.
contact info:
DMCQUILL@NORWICH.EDU
JM-MCQUILLAN@wIU.EDU

Dan's TwITter
(a) NORMAL SUBGROUP

Note: Preprint available UPON REQUEST

Vertex-magic/Edge-magic

- SVMTL (Duality for regular)
- odd-order 2-regular
- triangles are hard

$$
\begin{aligned}
& C_{m} \cup s C_{3} \quad \text { (odd order) } \\
& 3 \leq m \leq 11
\end{aligned}
$$

work with I. MCQuillan

STRONG VMTL for C_{7}

$$
\text { Kotzig }+ \text { Rosa }
$$

Which regular graphs ($\operatorname{deg} 2,3,4$) have M-valuation?

Gray: Ge odd-order
with spanning subgraph H (with SVMTL) $G-E(H)$ even regular $\rightarrow G$ has SUMTL

Motivating Conjecture (Gray)

A 2 -regular graph of odd order has a SUMTL

$$
\begin{aligned}
& \text { iff it isn't } \\
& (2 t-1) C_{3} \cup C_{4} \text { or } 2 t C_{3} \cup C_{5}
\end{aligned}
$$

Mac Dougall's Conjecture:
G regular $\operatorname{dej} G \geq 2$
Then G is vertex -magic unless $G \cong \Omega$

weight of x

$$
\geqslant 1+2+3+4
$$

J. Holden et al.

$$
(2 t-1) C_{3} \cup C_{4} \text { OR } \quad 2 t C_{3} \cup C_{5}
$$

always has a SVMTL provided the order is at least 17 .

$$
2 t C_{3} \cup C_{7} \quad t \geqslant 1
$$

done at the same time.
Kimberley + Mac Dougall

All 2 -regular graphs of odd order (<30) have SVMTL except $\square \Delta$

ㅁ $\triangle A \Delta$
$\Delta \Delta \Delta$
\therefore all odd <30 reg. graphs are vertex-magic
$C_{23} \quad 2.6 \times 10^{10}$ Sumils
$6 C_{3} \cup C_{5} \quad 1191$ SUMTLS

New work:

$$
C_{m} \operatorname{sic}_{3}(\text { odd order })
$$

has a SVMTL

$$
\begin{aligned}
& m=5,6, \quad 8,9,10,11 \\
& 3 \leq m \leq 11 \text { settled. }
\end{aligned}
$$

shifted Kotzig array
each Row a permutation of

$$
\begin{array}{ll}
-r, & -(r-1), \cdots 0,1,2, \cdots, r-1, r \\
& k_{0} t z i g: \\
-r, & -(r-1), \cdots, 0 \\
r, & r-2,
\end{array},-r \mid r-1, r-3, \cdots,-(r-1) .
$$

Our techical breakthrough
Different, special, Kotzig arrays
eq

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{gathered}
a_{3} \overbrace{b_{1}}^{b_{2}} \overbrace{\text { same }}^{\text {column }} a_{2} \\
b_{1}-a_{1}=b_{2}-a_{2}=b_{3}-a_{3} \\
\text { use } b_{i}-a_{i}=\text { order of } G .
\end{gathered}
$$

$$
a_{i} \neq 0, i=1,2,3
$$

Lemma 9 For each positive integer $s \geq 3$, there is a $3 \times(2 s+1)$ shifted Kotzig array (using the integers $-s$ to s) such that three of the columns are as shown:

$$
\begin{array}{ccc}
-1 & 0 & 1 \\
-(s-1) & 0 & s-1 \\
s & 0 & -s
\end{array}
$$

Proof. We will omit the three columns in the statement of the lemma. We will distinguish four cases. In case 1 and case 2 , the arrays are of the form $[A,-A]$, with the second half of the matrix being the negative of the first half. As a result we will only provide the first half of each matrix for these cases.

Case 1: $s=4 r, r \geq 1$
If $r=1$

$$
\begin{array}{ccc}
2 & 3 & 4 \\
1 & -4 & -2 \\
-3 & 1 & -2
\end{array}
$$

If $r>1$

$$
\begin{array}{cccc|cc}
2 & 3 & \cdots & 2 r & 3 r & 4 r \\
4 r-3 & 4 r-5 & \cdots & 1 & -4 r & -2 r \\
-4 r+1 & -4 r+2 & \cdots & -2 r-1 & r & -2 r
\end{array}
$$

$$
\begin{array}{cccc|cccc}
2 r+1 & 2 r+2 & \cdots & 3 r-1 & 3 r+1 & 3 r+2 & \cdots & 4 r-1 \\
-2 & -4 & \cdots & -2 r+2 & -2 r-2 & -2 r-4 & \cdots & -4 r+2 \\
-2 r+1 & -2 r+2 & \cdots & -r-1 & -r+1 & -r+2 & \cdots & -1
\end{array}
$$

Case 2: $s=4 r-1, r \geq 1$
If $r=1$:

$$
\begin{array}{cc}
2 & 3 \\
-3 & -1 \\
1 & -2
\end{array}
$$

If $r>1$:

$$
\begin{array}{cccc|cc}
2 & 3 & \cdots & 2 r-1 & 3 r-1 & 4 r-1 \\
4 r-4 & 4 r-6 & \cdots & 2 & -4 r+1 & -2 r+1 \\
-4 r+2 & -4 r+3 & \cdots & -2 r-1 & r & -2 r
\end{array}
$$

$$
\begin{array}{cccc|cccc}
2 r & 2 r+1 & \cdots & 3 r-2 & 3 r & 3 r+1 & \cdots & 4 r-2 \\
-1 & -3 & \cdots & -2 r+3 & -2 r-1 & -2 r-3 & \cdots & -4 r+3 \\
-2 r+1 & -2 r+2 & \cdots & -r-1 & -r+1 & -r+2 & \cdots & -1
\end{array}
$$

Case 3: $s=4 r-2, r \geq 2$.
If $r=2$:

$$
\begin{array}{cccccccccc}
-6 & -5 & -4 & -3 & -2 & 2 & 3 & 4 & 5 & 6 \\
4 & 2 & -1 & 6 & 3 & -6 & -4 & 1 & -3 & -2 \\
2 & 3 & 5 & -3 & -1 & 4 & 1 & -5 & -2 & -4
\end{array}
$$

If $r>2$:

$$
\begin{array}{cccc|c}
-4 r+2 & -4 r+3 & \cdots & -2 r-1 & -2 r \\
4 r-4 & 4 r-6 & \cdots & 2 & 4 r-2 \\
2 & 3 & \cdots & 2 r-1 & -2 r+2
\end{array}
$$

$$
\begin{array}{ccc|cccc}
-2 r+1 & -2 r+2 & -2 r+3 & -2 r+4 & -2 r+5 & \cdots & -2 \\
-2 & -4 & -3 & -7 & -9 & \cdots & -4 r+5 \\
2 r+1 & 2 r+2 & 2 r & 2 r+3 & 2 r+4 & \cdots & 4 r-3
\end{array}
$$

$$
\begin{array}{cccc|cccc}
2 & 3 & \cdots & 2 r & 2 r+1 & 2 r+3 & \cdots & 4 r-3 \\
4 r-5 & 4 r-7 & \cdots & -1 & -6 & -10 & \cdots & -4 r+2 \\
-4 r+3 & -4 r+4 & \cdots & -2 r+1 & -2 r+5 & -2 r+7 & \cdots & 1 \\
2 r+2 & 2 r+4 & 2 r+6 & \cdots & 4 r-2 & \\
& -5 & -8 & -12 & \cdots & -4 r+4 \\
& -2 r+3 & -2 r+4 & -2 r+6 & \cdots & -2 &
\end{array}
$$

Case 4: $s=4 r-3, r \geq 2$

$$
\begin{array}{cccccccc}
-4 r+3 & -4 r+5 & \cdots & -2 r-1 & -4 r+4 & -4 r+6 & \cdots & -2 r \\
4 r-5 & 4 r-9 & \cdots & 3 & 4 r-3 & 4 r-7 & \cdots & 5 \\
2 & 4 & \cdots & 2 r-2 & -1 & 1 & \cdots & 2 r-5 \\
& -2 r+1 & -2 r+2 & -2 r+3 & \cdots & -2 & & \\
& 2 & -2 & -4 & \cdots & -4 r+6 & \\
& 2 r-3 & 2 r & 2 r+1 & \cdots & 4 r-4
\end{array}
$$

$$
\begin{array}{cccc|c|cccc}
2 & 3 & \cdots & 2 r-3 & 2 r-2 & 2 r-1 & 2 r & \cdots & 4 r-3 \\
4 r-6 & 4 r-8 & \cdots & 4 & -4 r+3 & 1 & -1 & \cdots & -4 r+5 \\
-4 r+4 & -4 r+5 & \cdots & -2 r-1 & 2 r-1 & -2 r & -2 r+1 & \cdots & -2
\end{array}
$$

$$
\begin{array}{rr|lll|rr}
2 & 3 & -1 & 0 & 1 & -2 & -3 \\
-3 & -1 & -(s-1) & 0 & s-1 & 3 & 1 \\
1 & -2 & s & 0 & -s & -1 & 2
\end{array}
$$

References:
A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
I. Gray, Vertex-magic total labellings of regular graphs, SIAM J. Discrete Math., Vol. 21, Issue 1 (2007), pp. 170-177.
J. Holden, D. McQuillan and J. M. McQuillan, A conjecture on strong magic labelings of 2-regular graphs, Discrete Math. 309 (2009), 4130-4136.
J. S. Kimberley and J. A. MacDougall, All regular graphs of small order are vertex-magic, Australas. J. Combin. 51 (2011) 175-199.
W. D. Wallis, Vertex magic labelings of multiple graphs, Congr. Numer., 152 (2001), pp. 81-83.

$$
\begin{aligned}
& \text { Preprant available upon request. } \\
& \text { Also possibly, of interest: } \\
& \text { Magic Labelings of triangles, } \\
& \text { Dan and Jim, Discrete Mathematics, } \\
& (309) 2009 \text { pp. } 2755-2762 \text {. }
\end{aligned}
$$

Strong vertex-magic and super edge-magic total labelings of the disjoint union of a cycle with 3-cycles

Dan McQuillan,,* James M. McQuillan, ${ }^{2}$
${ }^{1}$ Department of Mathematics, Norwich University, Northfield, VT 05663 dmcquill@norwich.edu; ${ }^{2}$ School of Computer Sciences, Western Illinois University, Macomb, IL 61455, jm-mcquillan@wiu.edu

The disjoint union $C_{m} \cup(2 t) C_{3}$ is constructively shown to have a strong vertex-magic total labeling (SVMTL) for $m=9$ and $m=11$ and for all $t \geq 1$. Furthermore, $C_{m} \cup(2 t-1) C_{3}$ is constructively shown to have a SVMTL for $m=6,8,10$, for all $t \geq 1$. The approach is to construct a specialized Kotzig array and use it in different ways for different graphs. Since, for any 2-regular graph, a SVMTL can be transformed into a super edge-magic total labeling of the same graph, it follows that each of the graphs mentioned also has a super edge-magic total labeling.

