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Preface

These lecture notes are a work-in-progress for DSA5102: Foundations of Machine Learning that I
am teaching at National University of Singapore in Semester 1 of AY 2020-2021. This document
will be progressively updated throughout the semester.

The notes are meant to be a gentle introduction to the theory and algorithms of machine
learning. We emphasize on simplicity and breadth, and so depth is necessarily compromised for
certain topics. Interested students may consult the many textbooks and papers on the subject
referenced throughout the notes for further study.

This document is typeset using LATEXwith a modi�ed theme based on

https://www.overleaf.com/latex/templates/lecture-note-template/dwyrjrnthdcz

If you see any mistakes or typos in the notes, please send me an email at qianxiao@nus.edu.sg
so that I can incorporate the relevant corrections.
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1 Introduction

1 Introduction

1.1 Overview

In 1950, English mathematician Alan Turing proposed to consider the following question [Tur50]

Can machines think?

In the paper’s subsequent discussions it becomes apparent that the question Turing is really
asking is

Can machines do what thinking beings do?

He goes on the introduce the idea of the imitation game, in which the goal of the machine is to
fool a human being into thinking that it is in fact a human – giving rise to the so-called Turing
test for the arti�cial intelligence.

Machine learning is the study of methodologies that may lead to an answer of the second
question. In machine learning we pose a much more conservative version of question 2: How
can machines learn to do some things that thinking beings do? The learning process can be
formalized as [Mit97]: “ A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance at tasks in T , as measured
by P , improves with experience E. ” In this sense, machine learning is the study of algorithmic
approaches to learning, and is in general a subset of the broad �eld of arti�cial intelligence.

These notes serve as an introduction to the theory and algorithms in modern machine learning.
The various material are organized into three components, supervised learning, unsupervised
learning and reinforcement learning. These represent major topics in modern machine learning,
although in reality their intersections are non-empty and their union is not exhaustive. Never-
theless, for the purpose of introduction, they do represent a su�cient variety of problems to
base discussions on.

The viewpoint adopted in these notes is not limited to a statistical one. Instead, an attempt is
made to also discuss some related lines of work that is seeing growing importance in the study
of machine learning today. These include approximation theory in high dimensions, dynamical
systems, stochastic processes and so on. To keep the scope su�ciently broad and the material
su�ciently accessible, some very interesting machine learning topics have to be omitted. For
example, the statistical treatment of various topics are quite limited – little is covered in terms
of Bayesian statistics, Gaussian processes and Bayesian optimization, to name a few. Moreover,
rigorous proofs of theoretical results are kept at a minimum. However, appropriate references
will be given and the interested readers can dive deeper into the relevant results. One can also
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1 Introduction

consult more comprehensive textbooks on the subject, e.g. [BO06, FHT01, MRT18]. Lastly, what
is also missing is extensive case studies on modern datasets and problems – this is intentional
as the goal of this course is to develop foundations of machine learning methodologies, on top
of which the readers can explore further into the exciting world of machine learning and data
science.

1.2 Data

Contrary to traditional programming, the output of machine learning is typically a program –
or called a model with which inference about a new data point can be made. This is di�erent
from traditional programming, in the sense that we wish to infer a “program” from its inputs
and outputs. Therefore, data is one of the most important aspects of machine learning (this is
the experience E in Mitchell’s de�nition of machine learning). In fact, the growing rate of data
collection is one of key enabling factors of modern machine learning applications. Data comes
in many forms, such as images, text, and time-series etc., see Figure 1.1. Invariably, for machine
learning they will have to be represented on a computer and thus we will need some mapping
scheme into �oating numbers (Euclidean space). This is natural for images (using RGB values)
and many other numerical data, but for more discrete ones such as text data, this is less obvious.
In fact, some work must be done to map words into vectors in Euclidean spaces [MCCD13].

(a) Image (b) Text (c) Time-series

Figure 1.1: Di�erent types of data. (a) Images of handwritten digits from the MNIST
dataset [LCB10]. (b) Word cloud generated from this document. (c) Time-series
using FMRI dataset from http://seaborn.pydata.org/.

An important consideration when embedding discrete data into Euclidean spaces is the following
distinction between data types: ordinal vs nominal data. Ordinal data, as the root word “order”
suggests, describe data with a natural sequence. For example, the ratings of a E-commerce
product may be discrete (1 to 5 stars), but they are have a natural order. On the other hand,
the category of images, e.g. “cats, dogs, rats”, have no natural order to them for most purposes.
Such discrete data are called nominal, or categorical data. One important remark is that order
is not an intrinsic property of data, but relies on the application use-case. For example, the
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1 Introduction

numbers 1 − 5 obviously have an order to them, but when they are interpreted as the labels of
images of hand-written digits, it is more appropriate to treat them as distinct nominal objects.

To embed ordinal data, we usually do so by mapping the data into a subset of the real numbers
that preserve such order. For example, 1-5 as number of stars in product ratings can be embedded
as

{F,FF,FFF,FFFF,FFFFF} → {1, 2, 3, 4, 5} , (1.1)

whereas the same numbers when represented as labels of hand-written digits can be represented
as the one-hot encoding

{ 1, 2, 3, 4, 5 } →


©«
1
0
0
0
0

ª®®®®®¬
,

©«
0
1
0
0
0

ª®®®®®¬
,

©«
0
0
1
0
0

ª®®®®®¬
,

©«
0
0
0
1
0

ª®®®®®¬
,

©«
0
0
0
0
1

ª®®®®®¬

. (1.2)

This encoding has the advantage that the “nominality” is preserved in some sense. For example,
when treated as categorical variables, the vector representation of 1 and 2 are no closer or
further than that of 1 and 5 , as should be the case. This is not so for the naive embedding
into the numbers 1-5. Throughout the examples in these notes, we will encounter the usage of
such embeddings.

1.3 Classes of Machine Learning Problems

There are many types of machine learning problems, and in these notes we categorize them
broadly into three categories: supervised learning, unsupervised learning and reinforcement
learning. In supervised learning, we are given dataset comprising inputs and outputs (or labels)
of a particular predictive process, from which our goal is to infer the predictive relationship and
to make good predictions on new data. In unsupervised learning, we are only given inputs but
not outputs, so our goals are typically di�erent in that we are trying to infer something about
the distribution of the underlying input data. Finally, reinforcement learning involves training
an agent to navigate an environment through performing some actions. Here, a direct output
(e.g. the optimal action) is not given. Rather, we are given reward/penalty signals for each action
we take, and from these signals our goal is to optimize our action or plan. In Table 1.1, we list
some representative topics in each of these domains. Note that these categories are not disjoint
and their intersections represent important areas of modern machine learning research. For
example, semi-supervised learning (supervised∩unsupervised) has important applications in
datasets that are expensive to label; Large-scale reinforcement learning draws heavily on value
function approximations using supervised learning (reinforcement∩supervised). There are
many more such examples. Our main rationale for such a classi�cation is to organize groups of
theoretical and practical questions that apply generally to some class of problems. For example,
approximation theory generally apply to supervised learning problems.
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1 Introduction

Supervised Learning Unsupervised Learning Reinforcement Learning

Regression Clustering Value iteration methods
Classi�cation Dimensional reduction Policy gradient methods
Function approximation Generative models Actor-critique methods
Inverse problems/design Anomaly detection Exploration
. . . . . . . . .

Table 1.1: A highly non-exhaustive list of topics of study in each class of machine learning
problems.

1.4 Evaluating Machine Learning Model Performance

Recall in the de�nition of machine learning, there is a performance metric P that measures our
learning process. This is of fundamental importance in guiding the optimization process of
machine learning models. How is P computed? To do so, we typically de�ne some loss function
(resp. performance metric) that we can compute with data, given the model at hand. Our goal is
train our model so as to minimize the loss (resp. maximize the performance metric). However,
we must be careful what data we use to achieve this.

Our ultimate goal is to build machine learning models that perform well on unseen data. There-
fore, our loss functions should be computed on unseen data. Since by de�nition this is not
available, given a dataset D we usually split it into a training set Dtrain and a testing set Dtest.
Our training algorithms shall only use information fromDtrain where as the model performance
will be evaluated on the unseen Dtest, which the model would not have seen. Often, but not
always, we will split the dataset randomly. Exceptions may arise depending on the application.
For example, if we would like to predict the future price of a stock given some past information
(say the previous months), we should probably use data in the later years as test sets so that we
are less likely to learn confounding factors such as speci�c temporal trends. When our dataset
labels are highly imbalanced, we should also consider other splitting schemes.

Sometimes, we need a further splitting D = Dtrain ∪ Dvalid ∪ Dtest. The set Dvalid is called
the validation set. As before, only Dtrain participates in the optimization of models. On the
other hand, Dvalid can be used to tune hyper-parameters (e.g. depth of decision trees, number
of layers in a neural network) and in general perform model selection. Note that this can be
improved using cross-validation, which we will brie�y touch upon later. One can understand
validation set as a proxy of the testing set, which we should always pretend is unavailable to us
at any time other than the �nal evaluation of our model’s performance.

Finally, we note that not all model evaluations need to be based on test data collected a priori.
For example, when applying machine learning techniques to solve di�erential equations, the
solution quality can be directly checked without resorting to a hold-out set by appealing to the
equations that are available to us.
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1 Introduction

1.5 Notation

Finally, we outline some notation conventions throughout the notes. We will follow usual
notations used in calculus and probability, e.g. ∇ for the gradient operator, E for expectation and
so on. It is assumed that the reader is familiar with such basic notation. Speci�c to these notes,
we will use lower-case symbols to represent scalars and vectors (i.e. vectors are not bold-faced).
Matrices will be represented by capital letters and sets are generally given script capital letters
(e.g. D,H ). The usual Euclidean norm is denoted as ‖ · ‖ and | · | is the absolute value. For
consistency, we will use N to denote the number of samples, and M to denote complexity
measures of hypothesis spaces (e.g. in linear basis models, M is the number of basis functions).
The identity matrix of d dimensions will be denoted by Id , and we will drop the subscript when
the context is clear and there is no need to explicitly mention the dimension. For any vector v ,
we write v ≥ 0 to indicate that vj ≥ 0 for every coordinate j. Vectors are usually interpreted as
column vectors, with (x ,y, z) denoting a column vector with entries x , y and z. The composition
of two functions is denoted by ◦, e.g. (f ◦ д)(x) = f [д(x)]. Other speci�c notation will be
de�ned in context.
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2 Supervised Learning

2 Supervised Learning

2.1 Overview

Supervised learning is perhaps the most basic class of machine learning problems. Here, we
are given a dataset D = {xi ,yi }Ni=1 consisting of inputs xi with their corresponding labels yi
and N is the size of the data. The underlying assumption is that each yi is determined by xi
through some mapping f ∗, i.e. yi = f ∗(xi ). The function f ∗ is sometimes called the oracle,
carrying the meaning that it can determine perfectly the label of any sample presented to it.
More generally, one can take into account of noise and uncertainties by assuming that given
xi , yi is a sample from some “oracle” conditional distribution yi ∼ p∗(·|xi ). The most common
model for this case is when yi = f ∗(xi ) + ϵi with ϵi representing some random noise term. For
the sake of simplicity, for now we shall discuss supervised learning in the deterministic context.
When the labels yi take values in a continuum, say in R, we say that this is a regression problem.
Otherwise, if yi take discrete values, we say that this is a classi�cation problem. For example, in
a digits recognition problem using the MNIST dataset [Figure 1.1(a)], each xi correspond to a
28 × 28 gray-scale image of a number from 0 to 9 and the label yi is the identity of this number.
This is a classi�cation problem and the oracle f ∗ is a perfect classi�er for these types digits that
maps each image to its corresponding number.

Unfortunately, the oracle f ∗ is unknown to us except from the information contained in the
dataset D = {xi ,yi = f ∗(xi )}

N
i=1. As such, the over-arching goal of supervised learning is to

construct, using D, a good approximation of the oracle. Going back to the digit recognition
example, the supervised learning task is to come up with a predictive model that tells us the
number an image represents, using only the information given in the set of image-number pairs.
The word supervised means that in our dataset D, the correct label is provided to us as a form
of supervision by f ∗ in our learning process.

So, how can we go about constructing such a predictive model? Notice that without explicit
knowledge of f ∗ and from mere observations ofD, it is not clear how we can even represent f ∗,
say on a computer. Consequently, this motivates the following approach: we take a collection of
functions that we can represent on a computer or even a piece of paper; From this collection we
pick one f that “best approximates” f ∗ in some sense – f is then taken as our learned predictive
model. This collection of functions, which is our job to decide, is called the hypothesis space
and we will denote it byH . In the following lectures, we will see many examples of di�erent
hypothesis spaces giving rise to di�erent machine learning models with many interesting
properties.

What is missing from the above discussion is how we pick a particular function f to approximate
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2 Supervised Learning

f ∗. Clearly, it relies on a precise de�nition of “best approximation”. This is where the concept of
loss functions comes in. In abstract terms, we want to have a notion of how close any classi�er
f is to the oracle f ∗. Let us again consider the digit recognition problem. Here f ∗ is a perfect
classi�er of digits, and so a reasonable measure of the closeness of another classi�er f to the
oracle is

R(f ) =
1
N

N∑
i=1

1f (xi ),f ∗(xi ), (2.1)

where 1c is the indicator function which equals 1 if condition c is true and 0 otherwise. Thus,
the right-hand-side is the proportion of digit images from D that are correctly matched to their
labels by f , i.e. the accuracy of f on the training dataset D. In statistical language, R(f ) is also
called the risk associated with the predictor f .

More generally, the closeness of f to f ∗ can be de�ned by a suitable loss function L, so that

R(f ) =
1
N

N∑
i=1

L(f (xi ), f
∗(xi )) =

1
N

N∑
i=1

L(f (xi ),yi ) (2.2)

and we want L(y ′,y) to decrease as y and y ′ becomes closer. For the example given in (2.1),
we have L(y ′,y) = 1y,y′ and this is known as the zero-one loss. For various reasons which will
become clear, the zero-one loss is not often used, and we will consider a variety of other loss
functions in both classi�cation and regression problems.

Once a suitable loss function (and hence a notion of distance) is de�ned, the supervised learning
problem can now be formalized as an optimization problem

min
f ∈H

R(f ), (2.3)

and if we can solve this problem (we will discuss various methods to do so in later chapters), a
(approximate) minimizer f̂ ∈ H of (2.3) is then our obtained predictive model. The process of
�nding f̂ by minimizing R(f ) (which depends on the data D) is called training, and f̂ is called
a trained model. Hopefully, f̂ performs our task of predicting label from inputs adequately, in
which case we have succeeded at this supervised learning task.

Empirical Risk Minimization vs Population Risk Minimization

The preceding discussion, in particular Eq. (2.3) appears to suggest that machine learning is in
some sense equivalent to an optimization problem. However, this is not so. In fact, Eq. (2.3) is
not the actual problem we want to solve. To see this, simply observe that we can easily come
up with a f̂ that minimizes the zero-one loss in the digit recognition problem – we simply
memorize the label associated with each image xi , i = 1, 2, . . . ,N found in the training data, i.e.

f̂ (x) =

{
yi x = xi for some i = 1, 2, . . . ,N
anything otherwise

. (2.4)
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2 Supervised Learning

Obviously, R( f̂ ) = 0 but f̂ is not what we want. What we really want is f̂ to perform well
on new examples not found in, but distributed identically as, the original training dataset. In
mathematical terms, what we really want to solve is the population risk minimization problem

min
f ∈H

Rpop(f ) = Ex∼µL(f (x), f
∗(x)), (2.5)

where µ denotes the probability distribution from which the samples {xi }Ni=1 are sampled from.
In contrast, (2.3) is an empirical risk minimization problem, which we can rewrite as

min
f ∈H

Remp(f ) =
1
N

N∑
i=1

L(f (xi ), f
∗(xi )) xi

i.i.d.
∼ µ . (2.6)

However, in practice we cannot represent the sample distribution µ, and hence we often resort
to solving (2.6) in place of (2.5). Nevertheless, it must be stressed that a good solution of (2.5) is
what we are really after. The di�erence between the solutions of these problems is the study of
generalization, which sets learning problems apart from pure optimization problems. We will
come back to this point when we venture into the basics of statistical learning theory.

Three Paradigms of Supervised Learning

Now that we have formalized the basic problem of supervised learning, it is natural to dis-
cuss what sort of questions can we ask in machine learning theory and practice. In a sense,
these questions can be grouped into three large categories: approximation, optimization and
generalization. Below we list some central questions in each of these aspects.

1. Approximation – How large is our hypothesis spaceH?. In particular, does it include, or
at least contain functions that are very close to our oracle f ∗? This is in fact the study of
approximation theory and some of harmonic analysis [DP07, Mal09], although there are
also many modern developments, particularly in the area of deep learning.

2. Optimization –How canwe �nd or get close to an approximation f̂ of f ∗?. This is indeed the
empirical risk minimization problem, and questions include the design of large-scale opti-
mization algorithms, their convergence analysis and their e�cient implementation. Many
methods are extensions of classical methods in convex optimization [Nes04]. See [BCN18]
for a modern review. We will cover some basics later in the course.

3. Generalization – Can the f̂ found generalize to unseen examples? This concerns the
fundamental interaction between the size of the data and the complexity of our hypothesis
space. In fact, this question is the focus of classical statistical learning theory [FHT01]. We
will discuss the basics later in this course, although there are many modern developments
as well that we cannot cover in this course.

Figure 2.1 gives an illustration of these questions. Of course, some of these concepts also apply
beyond supervised learning framework.
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Figure 2.1: A schematic showing the three theoretical paradigms of supervised learning. Ap-
proximation studies the distance between the best approximator f̃ in our hypothesis
spaceH and the oracle f ∗. Optimization studies the process at which you arrive at
or close to f̃ , by using the training datasetD and starting from some initial guess f0.
Generalization problems arise because the dataset is �nite and so the optimization
on training set �nds not f̃ but some other f̂ , and we must quantify the distance
between them. In fact, what we are really interested in is the distance between f̂
and f ∗ (or f̃ ) when it comes to generalization.

2.2 Linear Models

A linear model is perhaps the most basic choice of hypothesis space in machine learning. In
this section, we introduce basic linear models for regression and classi�cation problems, with
the goal of illustrating the key concepts, questions and approaches in supervised learning that
we discussed previously in more abstract terms. This should set a simple but useful baseline as
many central issues in supervised learning can be very much understood using examples in
linear models.

13



2 Supervised Learning

2.2.1 Simple Linear Regression

We begin with a review of simple linear regression in one dimension – an example we have
probably all seen in school. However, we have mostly seen it in a statistical context. Here,
our goal is to perceive various phenomenon encountered in linear regression in the machine
learning view point (approximation, optimization and generalization), serving as a concrete
preparation as we deal with more complex machine learning models in the subsequent chapters.

Now, suppose that we are given a bunch of points D = {xi ,yi }Ni=1 (with xi ,yi real numbers)
and our goal is to �t a line to them – with the goal that if some new point x ′ arrives, we will
be able to predict its corresponding y ′. Importantly, note that we are not assuming that each
(xi ,yi ) follow a linear relationship, but rather, we choose a linear hypothesis space and try to
�nd the best function in this hypothesis space to approximate the relationship between (xi ,yi ),
which may be due to an unknown oracle f ∗ so that yi = f ∗(xi ) – and f ∗ need not be linear!
In the language of supervised learning introduced earlier, the hypothesis space we choose in
simple linear regression is the space of linear functions1 in one variable, i.e.

H = { f : f (x) = w0 +w1x ,w0 ∈ R,w1 ∈ R}. (2.7)

How do we determine the best approximator fromH? Following the approach in 2.1, we �rst
de�ne an appropriate loss function. One of the most commonly used loss functions in linear
regression is the mean-squared loss L(y ′,y) = 1

2 (y − y
′)2, in which case we obtain the empirical

risk minimization problem

min
f ∈H

Remp(f ) =
1
2N

N∑
i=1
(f (xi ) − yi )

2 (2.8)

which we can write in explicit parametric form

min
(w0,w1)∈R2

Remp(w0,w1) =
1
2N

N∑
i=1
(w0 +w1xi − yi )

2. (2.9)

The minimization problem (2.9) can be solved by simple calculus, setting ∂Remp
∂w0

= 0 and ∂Remp
∂w1

= 0,
which yields the solution f̂ (x) = ŵ0 + ŵ1x with

ŵ0 = y − ŵ1x , ŵ1 =

∑N
i=1(xi − x)(yi − y)∑N

i=1(xi − x)
2
, x =

1
N

N∑
i=1

xi , y =
1
N

N∑
i=1

yi . (2.10)

This is also called ordinary least squares solution, owing to the fact that we have used the mean
square error as the loss function. Now, let us discuss some of the aforementioned issues in
Section 2.1 in the concrete context of linear regression.

1Strictly speaking, these functions are a�ne in x , but are linear in (1,x). f
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2 Supervised Learning

Exercise 2.1

Derive the ordinary least squares formula (2.10). This is a special case of a general least
squares formula to be derived in Proposition 2.7.

Approximation. We �rst illustrate the approximation problem. Recall that this deals with the
size of our hypothesis space – is it big enough to approximate the function f ∗ we are interested
in? We will illustrate this with a simple yet instructive example below.

15



2 Supervised Learning

Example 2.2: The Approximation Problem

Let us consider inputs sampled from a grid on the interval [0, 1], i.e. xi = i/N , for
i = 1, 2, . . . ,N . Here the xi ’s are chosen deterministically so there are no issues with
generalization – we simply want to �t {xi ,yi }Ni=1 where the labels yi are produced by some
target oracle function f ∗, i.e. yi = f ∗(xi ).

(a) First, consider the case where f ∗ is itself linear, e.g. f ∗(x) = 1 + 2x , so that yi =
1 + 2i/N . Verify that the least squares formula (2.10) indeed gives ŵ0 = 1, ŵ1 = 2,
i.e. our hypothesis space is large enough that f ∗ ∈ H and minf ∈H Remp(f ) = 0. In
this case we say that there is no approximation error.

(b) Now, consider the case where f ∗ is nonlinear, e.g. f ∗(x) = x2, in which case
yi = i

2/N 2. Verify that the least squares formula (2.10) gives

ŵ0 = −
(N + 1)(N + 2)

6N 2 , ŵ1 =
1
N
+ 1. (2.11)

For large N this is approximately ŵ0 ≈ −1/6, ŵ1 ≈ 1. In this case, we have an
approximation error since the linear function f̂ (x) = ŵ0 + ŵ1x is not a perfect �t
for the data. In particular, minf ∈H Remp(f ) > 0, meaning that our linear hypothesis
space is not big enough to approximate f ∗.

In the following, we plot the performance of linear regression for the two cases above.
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Optimization. There is not much to say about optimization since the least squares for-
mula (2.10) is actually explicitly derived from calculus. In general cases (say, with di�erent loss
functions), the empirical risk minimization problem cannot be solved explicitly, and usually we
use some iterative method. The simplest of which is gradient descent, where we perform the
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following updates

wk+1
0 = wk

0 − η
∂Remp(w

k
0 ,w

k
1 )

∂w0

wk+1
1 = wk

1 − η
∂Remp(w

k
0 ,w

k
1 )

∂w1

. (2.12)

In fact, for on-line least squares problems we also often resort to iterative updates simply
because not all data is available to us at the same time (See Chapter 3.1.3 of [BO06]). We will
discuss the basic properties of optimization problems in machine learning later.

Generalization. The simple linear regression problem can also demonstrate the problem of
generalization. Let us now assume that the xi ’s are actually random variables independently
and identically distributed (i.i.d.) according to some probability density µ on R. That is to say,

P[a ≤ xi ≤ b] =

∫ b

a
µ(x)dx , a ∈ R,b ∈ R. (2.13)

Then, the population risk minimization problem with mean square loss (recall (2.5)) is

min
(w0,w1)∈R2

Rpop(w0,w1) = Ex∼µ
1
2 (w0 +w1x − f ∗(x))2

=
1
2

∫
R
(w0 +w1x − f ∗(x))2µ(x)dx

(2.14)

This is evidently di�erent from the empirical risk minimization problem (2.9). So, how close are
their solutions? We explore this in the following example.

Example 2.3: Population Risk Minimization

Let us take µ to be the uniform density on [0, 1], i.e. µ(x) = 1 for all x ∈ [0, 1] and 0
otherwise. Take f ∗(x) = x2 as in case (b) in Example 2.2. Computing the integral in (2.14),
we have

Rpop(w0,w1) =
w2

0
2 +

w0w1
2 −

w0
3 +

w2
1
6 −

w1
4 +

1
10 , (2.15)

whose minimizer is w̃0 = −
1
6 and w̃1 = 1. Contrast with empirical risk minimization,which

draws N random samples {xi }Ni=1 from µ instead. Do you expect ŵ0 and ŵ1 to be equal or
close to − 1

6 and 1 if N is small? What happens when N is increased?

We have seen from Example 2.2(b) that if our hypothesis space is too small, we cannot �t the
relationship between xi and yi no matter how many data points of we have. This is in fact a
case of under�tting, i.e. the complexity of our hypothesis space is too low. On the other hand,
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the complexity of our hypothesis space can be too high relative to the number of samples, in
this case we would experience over�tting. Below we give some examples of over�tting.

Example 2.4: Over�tting

Let us consider xi ’s a grid in [0, 1] as in Example 2.2, and the following two cases
(a) yi = 1 + 2xi + 0.1ϵi where ϵi are i.i.d. standard normal variables.
(b) yi = x2i .

We know that for (b), a linear hypothesis space is not enough, so we are going to do
something drastic and consider a much larger hypothesis space, consisting of polynomials
up to degree 99.

H =

{
f : f (x) =

99∑
j=0

w jx
j

}
(2.16)

Below we show the result of linear regression with mean square loss (least squares solution)
with N = 10 on the two settings. Are these the �t that we want? This is demonstration of
over�tting, which can occur both with or without noise.

0.0 0.2 0.4 0.6 0.8 1.0
x

1.0

1.5

2.0

2.5

3.0

3.5

y

(a) f * (x) = 1 + 2x (noisy)

f
f *

(xi, yi)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

y

(b) f * (x) = x2

f
f *

(xi, yi)

As a side note, you may wonder if given arbitrarily high order polynomials, can we �t any
function we want? The answer is yes if we consider a closed and bounded domain. This is
the content of a classical result in approximation theory, called Weierstrass approximation
theorem, which is later generalized by Stone [Sto48].

Exercise 2.5

Investigate the e�ect of over�tting in Example 2.4 by increasing N . We will come back
to the relationship between over�tting and sample size when we introduce statistical
learning theory.
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Loss Functions. So far in our discussion for the simple least squares problem, we have always
used the mean square loss L(y ′,y) = 1

2 (y − y
′)2. This is also sometimes called the `2 loss. The

`2 loss is often used for the simple reason that the ordinary least squares problem (and in fact,
many other problems using the mean square loss) admits explicit solutions that simplify analysis.
Moreover, least squares solution in general linear basis models have a nice interpretation as
orthogonal projections onto the subspace spanned by the basis functions.

However, we can also consider other loss functions. For example, for classi�cation problems we
typically use the cross-entropy loss to be introduced later. Even for regression problems, there
are also other choices. One example is the Huber loss, which combines the mean square `2 loss
and the absolute (`1) loss

L(y ′,y) =

{
1
2 (y − y

′)2 |y − y ′ | ≤ δ

δ |y − y ′ | − 1
2δ

2 otherwise
. (2.17)

Here, δ controls the point of switching between mean square and absolute loss. In the example
below we illustrate the e�ect of the choice of loss functions on linear regression.

Example 2.6: Loss Functions

We apply 1D linear regression to Example 2.4(a), but with some noise and outliers. We use
di�erent loss functions, namely mean-square loss and the Huber loss (δ = 1). The results
are shown below. Observe that the Huber loss is more robust to outliers. Why?
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2.2.2 General Linear Basis Models

Often we want to apply linear regression to more general cases than those considered in
Section 2.2.1. For instance, we want to have more than one input dimension (e.g. each xi ∈ R

d ),
or more complicated hypothesis spaces (e.g. the polynomials considered in Example 2.4). It
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turns out that these cases can all be handled quite easily by formulating a generalization of the
simple linear regression, called linear basis models.

Consider now the dataset D = {xi ,yi }Ni=1 where each input xi ∈ Rd is now a vector in d
dimensions. Instead of simple linear hypothesis space, we consider the more general linear
basis hypothesis space

HM =

{
f : f (x) =

M−1∑
j=0

w jϕ j (x)

}
(2.18)

where each ϕ j is a function from Rd to R. These are called basis functions or sometimes feature
maps, for the reason that their role is to extract some feature from the input data x that is useful
for predicting y. We have freedom to de�ne what functions {ϕ j } we use. The subscript M on
HM emphasizes the fact that the complexity or size of our hypothesis space depends on M and
generally increases as M increases.

Observe that this is in fact a generalization of simple linear regression (d = 1), if we choose
M = 2 and ϕ0(x) = 1, ϕ1(x) = x , but it also includes the polynomial hypothesis space in
Example 2.4. There are many choices of ϕ j ’s, and we give some examples below in the d = 1
case:

Polynomial basis ϕ j (x) = x j (2.19)

Gaussian basis ϕ j (x) = exp
(
−
(x −mj )

2

2s2

)
(2.20)

Sigmoid basis ϕ j (x) = σ
(x −mj

s

)
σ (b) =

1
1 + e−b

(2.21)

There are in fact many more choices, include splines [DBRDB78], fourier basis, wavelet ba-
sis [Mal09] and many more – even neural networks as we will encounter later on.

Ordinary Least Squares. It turns out that the least squares formula (2.10) can be generalized
for linear basis models. Recall that the empirical risk minimization problem we want to solve
here is

min
w0, ...,wM−1

Remp(w0, . . . ,wM−1) =
1
2N

N∑
i=1

(
M−1∑
j=0

w jϕ j (xi ) − yi

)2
. (2.22)

We can write the above much more compactly as

min
w ∈RM

Remp(w) =
1
2N ‖Φw − y‖

2, (2.23)

where we have de�ned

w =

©«
w0
w1
...

wM−1

ª®®®®¬
, y =

©«
y1
y2
...

yN

ª®®®®¬
, Φ =

©«
ϕ0(x1) ϕ1(x1) · · · ϕM−1(x1)
ϕ0(x2) ϕ1(x2) · · · ϕM−1(x2)
...

...
. . .

...

ϕ0(xN ) ϕ1(xN ) · · · ϕM−1(xN )

ª®®®®¬
, (2.24)
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and ‖ · ‖ denotes the usual Euclidean distance. This allows us to derive the ordinary least squares
formula by solving ∇Remp(ŵ) = 0 for ŵ .

Proposition 2.7: Ordinary Least Squares Formula

Suppose Φ>Φ is invertible, then the solution of (2.23) is

ŵ = (Φ>Φ)−1Φ>y. (2.25)

Proof: We have ∇Remp(ŵ) =
1
N Φ>(Φŵ − y). Setting the right hand side to 0 gives

Φ>Φŵ = Φ>y. Solving for ŵ gives the required solution. �

Exercise 2.8

Show that Proposition 2.7 is consistent with the simple linear regression formula (2.10)
when d = 1,M = 2,ϕ0(x) = 1,ϕ1(x) = x .

Singular Case and Regularization. Proposition 2.7 requires Φ>Φ to be invertible, but what
happens if this is not the case? Note that Φ is a N ×M matrix whose rank is at most min(N ,M).
Suppose N ≥ M , which is the case when the number of samples is greater than or equal to the
number of features, or equivalently, the “complexity” of our hypothesis class. Since Φ>Φ is a
M ×M matrix, it is invertible as long as the columns of Φ are linearly independent, which we
should be able to satisfy by appropriate choices of the ϕ j ’s. What happens if N < M? In this
case the rank of Φ>Φ is at most N which is smaller M and so it is non-invertible, or singular.

So, what is the solution of the least squares problem now? It turns out that there is not one, but
an in�nite number of solutions. They are given by

{ŵ(u) : u ∈ RM } where ŵ(u) = Φ†y + (I − Φ†Φ)u . (2.26)

The matrix Φ† denotes the Moore–Penrose pseudoinverse [GVL96] of Φ. Moreover, for any of
these solutions, we have Remp(ŵ(u)) = 0, i.e. our training data is perfectly �t. Recall from
Example 2.4 that this may not be good in machine learning scenarios.

Exercise 2.9

Show that if Φ>Φ is invertible then ŵ(u) from (2.26) reduces to the ordinary least squares
solution (2.25) for any u. (Hint: recall that for a matrix A, if A>A is invertible then
A† = (A>A)−1A>. If you do not remember this, review the basics of pseudoinverse in any
linear algebra reference, e.g. [GVL96]).
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The fact that we have an in�nite number of solutions is often not good as we typically need to
pick one to perform our predictions. Which one do we pick? One choice is to pick one that has
the smallest norm ‖ŵ(u)‖, which is ŵ(0) = Φ†y. More generally, we can consider adding to the
empirical risk minimization problem a regularization term

min
w ∈RM

1
2N ‖Φw − y‖

2 + λC(w) (2.27)

where C : RM → R+ is the regularization function and λ > 0 controls its strength. If we pick
C(w) = ‖w ‖2 (`2 regularization), then we get the unique solution ŵ = Φ†y if Φ>Φ is singular.
This is also known as ridge regression. However, we can also use other types of regularization,
such as C(w) = ‖w ‖1 (`1 regularization). In this case, we actually �nd a sparse solution, i.e.
many of entries ŵ are 0. This is called lasso [FHT01] in the statistics literature and is also related
to the �eld of compressed sensing [Don06], which has many interesting applications, including
fast Magnetic Resonance Imaging (MRI) [LDP07]. Moreover, regularization can also reduce
over�tting, as the following example shows.

Example 2.10: Regularization and Over�tting

We apply the `2 regularization to the two cases in Example 2.4. The results are shown
below. Observe that over�tting is reduced.
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2.2.3 Classification using Linear Models

Thus far we have only discussed regression problems. Classi�cation problems can be similarly
handled by linear basis models. Recall that in classi�cation problems, the labelsyi are categorical
variables, meaning that they take a �nite number of values which have no natural order. As
discussed in Section 1.2, a common way to handle this case is to use the one-hot embedding –
suppose that each label yi can take values in the set of K possible classes {c1, c2, . . . , cK }, we
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can then regard each yi as a one-hot vector of length K , i.e. if the input xi belongs to class ck
then

yi = (0, . . . , 0, 1︸︷︷︸
kth position

, 0, . . . , 0). (2.28)

Note that in this case, the underlying oracle function f ∗ maps each xi to a vertex of the K-
dimensional hypercube. Consequently, we need to form a hypothesis space containing predictors
that outputs a K-dimensional vector from a single input. That is, the range of every f ∈ H
should be K-dimensional. Hence, it is natural to consider linear basis models of the form

H =

{
f : f (x) = д

(
M−1∑
j=0

w jϕ j (x)

)
,w j ∈ R

K

}
. (2.29)

Comparing to (2.18), we see that each weight w j is now a K-dimensional vector instead of a
real number and moreover, we have an additional activation function д : RK → RK after the
linear transformation. This is because we want to compare each f with f ∗ whose output is a
one-hot vector, i.e. a vertex of the K-dimensional hypercube, so we want f to output values
also on the vertex or something similar to enable comparison. The most popular choice of д is
the softmax function, which is given by

дsm(z)k =
exp (zk )∑K
`=1 exp (z`)

. (2.30)

It is called softmax because it is a smooth approximation to the maximum function which
converts each z to an one-hot vector having 1 at the position of the maximal element of z, i.e.

дmax(z)k =

{
1 zk > z` for all ` , k
0 otherwise

. (2.31)

For example, if z = (1.2,−3.5, 2.5) then дmax(z) = (0, 0, 1). The softmax function is an approxi-
mation to this function. One small technicality is that there may be no unique maximal element
in z, in which case we can take the �rst maximal coordinate or a random maximal coordinate
and set it to 1. Alternatively, we can divide 1 evenly over the set of maximal coordinates. In
the following, we will restrict our attention to softmax activation functions. Notice that unlike
regression problems, our functions f ∈ H are no longer linear functions of the weights {w j },
due to the presence of the nonlinear activation function д.

Exercise 2.11

Show that for anyy, дsm(z)k > 0 for all k and
∑K

k=1 дsm(z)k = 1. Thus, the softmax function
is often used to model probabilities. Show also that for any z with a unique maximal
coordinate, дsm(λz) → дmax(z) as λ→∞, which justi�es why the softmax function is an
approximation of the maximal function.
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Following the approach for regression problems, we can cast supervised learning for classi�ca-
tion problems with linear basis models as the following empirical risk minimization problem

min
W ∈RM×K

Remp(W ) =
1
N

N∑
i=1

L(дsm(ΦW )i ,yi ), (2.32)

where now the trainable weights is written as a M × K matrixW , whose jth row is w j . Notice
that we have not speci�ed the loss function L, which is now a function from RK ×RK to R. One
possibility is to take the mean square loss again, but it is often better to take the cross-entropy
loss, given by

L(y ′,y) = −
K∑
k=1

yk logy ′k . (2.33)

Observe that the de�nition of the cross-entropy loss above requires both arguments to be
probability distributions over K elements, i.e. both y and y ′ should have non-negative entries
smaller than or equal to 1, and their entries sum to 1. Moreover, notice that L(y ′,y) , L(y,y ′)
in general, meaning that the loss function is non-symmetric, unlike `p losses.

Exercise 2.12

Show that if y is a one-hot vector, then L(·,y) is minimized at y ′ = y.

Unlike least-squares regression, the empirical risk minimization problem for classi�cation
rarely admits explicit solutions and are often solved by iterative methods, such as (stochastic)
gradient descent. We now illustrate the application of linear models for classi�cation on a digit
recognition problem on the MNIST dataset [LCB10].

Example 2.13: Digit Recognition on MNIST using Linear Models

The MNIST dataset [LCB10] contains 70000 hand-written digits from 0 to 9. The input
images are 28 × 28 gray-scale images (which we �atten into a 784 dimensional vector and
their respective numbers labeled. We will use the simplest linear model with M = 282 + 1,
ϕ0 = 1, ϕ j (x) = x j , together with softmax activation and cross-entropy loss. Note that
this is also called multi-class logistic regression. Training the model gives about 92% test
accuracy on a test set of 10000 samples. Can we do better with di�erent choices of ϕ j ’s?

2.2.4 Further Reading

In this section, we introduced linear models for regression and classi�cation, with particular
emphasis on explicit examples with simple linear regression to demonstrate some key issues
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in machine learning that we will meet again and again later on in the course. These include
approximation errors, optimization algorithms, generalization gaps, regularization, choice of
loss functions etc.

Invariably, with the emphasis on simplicity and the big picture, we miss many interesting issues.
These include but are not limited to, probabilistic and statistical interpretations of linear models
(in particular, with noise and uncertainty), the issue of decision boundaries, and on-line linear
regression and classi�cation. The interested reader is encouraged to browse textbooks on the
subject to explore these topics in greater detail, e.g. [BO06, MRT18]

2.3 Kernel Methods

In Section 2.2.2, we saw that general linear basis models work by transforming the inputs xi ,
which live in Rd , via a class of functions {ϕ j } into R. We called these functions feature maps,
for the simple reason that they extract useful features from the input data and allow us to use a
linear model on the resulting space, which in this case is R. In this section, we will develop this
idea in greater generality in the context of kernel methods.

2.3.1 Least Squares Revisited

Let us �rst motivate ideas by revisiting the least squares solution of general linear models
presented in Section 2.2.2. We consider the `2-regularized least squares problem (also called
ridge regression) with respect to the feature maps {ϕ j }M−1j=0 , given by

Remp(w) =
1
2N

(
‖Φw − y‖2 + λ‖w ‖2

)
. (2.34)

Recall the de�nitions of the design matrix Φ in (2.24). We assume that the regularization
parameter λ is greater than 0. Following the same approach as in Proposition 2.7, we can show
that the least squares solution is given by

ŵ = (Φ>Φ + λIM )
−1Φ>y, (2.35)

and the predicted outputs is ŷ = Φŵ . More generally, the best approximator function f̂ in our
hypothesis space makes the following prediction on a new sample x ∈ Rd

f̂ (x) = ϕ(x)>ŵ, (2.36)

where ϕ(x) = (ϕ0(x), . . . ,ϕM−1(x)). Notice that unlike in Proposition 2.7, we did not need any
invertibility conditions here because the matrix Φ>Φ + λIM is always positive de�nite for λ > 0,
hence invertible.

Exercise 2.14

Derive the regularized ordinary least squares solution (2.35).
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We now rewrite the regularized least squares solution in another way. First we claim that

ŵ = (Φ>Φ + λIM )
−1Φ>y = Φ>(ΦΦ> + λIN )

−1y. (2.37)

To show this, multiply (Φ>Φ + λIM ) to Φ>(ΦΦ> + λIN )
−1y to give

(Φ>Φ + λIM )Φ
>(ΦΦ> + λIN )

−1y = (Φ>ΦΦ> + λΦ>)(ΦΦ> + λIN )
−1y (2.38)

= Φ>(ΦΦ> + λIN )(ΦΦ
> + λIN )

−1y (2.39)
= Φ>y (2.40)

and hence we can multiply (Φ>Φ + λIM )−1 to both sides to obtain (2.37). Consequently, we can
write f̂ as

f̂ (x) = ϕ(x)>ŵ = ϕ(x)>Φ>(ΦΦ> + λIN )
−1y. (2.41)

By de�ning α = (ΦΦ> + λIN )−1y, we can rewrite the above as

f̂ (x) =
N∑
i=1

αiϕ(x)
>ϕ(xi ). (2.42)

The formulae (2.42) and (2.36) are equivalent representations, so what have we achieved by
going through all these trouble? Observe that the i, j component of the N × N matrix ΦΦ>

can be written as ϕ(xi )>ϕ(x j ). Consequently, unlike (2.36), the formula (2.42) only depends on
our feature map ϕ through the function (x ,x ′) 7→ ϕ(x)>ϕ(x ′). In other words, we may de�ne a
kernel function k : Rd × Rd → R by

k(x ,x ′) = ϕ(x)>ϕ(x ′). (2.43)

Then, f̂ only depends on the feature maps through the kernel k , which once known, allows us
to never compute any feature maps x 7→ ϕ(x) directly in order to make a prediction! To see this
more clearly, we can further rewrite (2.42) as

f̂ (x) =
N∑
i=1
[(G + λIN )

−1y]ik(x ,xi ), Gi j = k(xi ,x j ). (2.44)

The matrix G is called the Gram matrix. What is the advantage that comes with not having
to work with explicit feature maps (ϕ0, . . . ,ϕM−1)? First, if M is very large yet we have some
good way of evaluating k , this would save cost in practice. More importantly, this allows us
to consider perhaps the case M = ∞, as long as we can compute the kernel! This is the key
idea that underlies kernel methods: we can often directly work with the kernel function k and
not explicit feature maps {ϕ j }. This holds true for many cases beyond the regularized ordinary
least squares problem. Now, let us discuss some mathematical basics behind kernel functions.
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2.3.2 Basic Properties of Kernels

Previously, we saw that for any set of feature maps {ϕ j }, we can construct a kernel k given by

k(x ,x ′) = ϕ(x)>ϕ(x ′) =
M−1∑
j=0

ϕ j (x)ϕ j (x
′). (2.45)

What does k look like? Let us show in the example below some correspondences between
feature maps and kernel functions.

Example 2.15: Kernel and Feature Maps

Let d = 1,M = 2 and ϕ0(x) = 1,ϕ1(x) = x , so that we are in the case of 1D simple linear
regression. Then we have

k(x ,x ′) = 1 + xx ′. (2.46)

Let us now take things in reverse. Consider d = 2 and a function de�ned by

k(x ,x ′) = (1 + x>x ′)2. (2.47)

Let us now show that k corresponds to a feature map. Observe that

k(x ,x ′) = (1 + x1x ′1 + x2x ′2)2

= (1,
√
2x1,
√
2x2,
√
2x1x2,x12,x22) · (1,

√
2x ′1,
√
2x ′2,
√
2x ′1x ′2,x ′1

2,x ′2
2
)

(2.48)

Hence, the kernel function (2.47) corresponds to the feature map

ϕ(x) = (1,
√
2x1,
√
2x2,
√
2x1x2,x12,x22). (2.49)

Example 2.15 shows that not only can we derive corresponding kernel functions from feature
maps, we seems to be able to do the reverse – specifying a kernel function implicitly de�nes
a feature map. Now, does this hold for any function k : Rd × Rd → R?. The answer is false.
To see this, observe that for any vector of feature maps ϕ, we have ϕ(x)>ϕ(x) = ‖ϕ(x)‖2 ≥ 0.
Therefore, if k(x ,x) < 0 for some x then it cannot be expressed as k(x ,x ′) = ϕ(x)>ϕ(x ′) for any
ϕ. For example, k(x ,x ′) = x>x ′ − 1 cannot correspond to a feature map since k(0, 0) = −1 < 0.
Moreover, observe that for k to correspond to some ϕ, it must also be symmetric in its arguments,
i.e. k(x ,x ′) = k(x ′,x). Therefore, to discuss kernel methods in general, we should place some
restrictions on what functions we consider to be valid kernels that de�nes feature maps.
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De�nition 2.16: Symmetric Positive De�nite Kernels

A function k : Rd × Rd → R is called a symmetric positive de�nite (SPD) kernel if for any
collection {x1, . . . ,xn} of vectors in Rd , the Gram matrix G with elements Gi j = k(xi ,x j )
is symmetric positive semi-de�nite. Recall that a n × n matrix G is symmetric positive
de�nite if the following are satis�ed

1. (Symmetric) Gi j = G ji for any i, j = 1, . . . ,n.
2. (Positive Semi-de�nite) c>Gc ≥ 0 for any c ∈ Rn .

Observe that any SPD kernel will avoid the obvious issues described before. In fact, if k(x ,x ′) =
ϕ(x)>ϕ(x ′) then one can check that k is a SPD kernel. What is interesting is that the reverse
is also true – for any SPD kernel k , there exists a Hilbert space (called feature space) H and a
mapping ϕ : Rd → H such that k(x ,x ′) = 〈ϕ(x),ϕ(x ′)〉, where 〈z, z ′〉 denotes the inner product
in H. In the second case in Example 2.15, we have H = R6 and 〈z, z ′〉 = z>z ′ is just the usual
dot product. However, in general H may be in�nite-dimensional. This existence result follows
from Mercer’s theorem [Mer09] on representations of symmetric positive de�nite functions. In
fact, SPD kernels give rise to a nice theory on reproducing kernel Hilbert spaces (RKHS) via the
Moore-Aronszajin theorem [Aro50]. These discussions are beyond the scope of these notes.

We now give some simple examples of SPD Kernels.

Example 2.17: SPD Kernels

1. Linear kernel: k(x ,x ′) = x>x ′.
2. Polynomial kernel: k(x ,x ′) = (1 + x>x ′)m ,m > 0.
3. Gaussian (radial basis function) kernel: k(x ,x ′) = exp

(
−
‖x−x ′ ‖2

2s2

)
, s > 0

4. Laplacian kernel: k(x ,x ′) = exp (−λ‖x − y‖), λ > 0.
5. (?) We present a more interesting example. Let Ω be a �nite set and consider the

collection of subsets of Ω. For any A,A′ ⊂ Ω, de�ne the kernel k(A,A′) = 2 |A∩A′ | ,
where ∩ denotes intersection and |A| denotes the number of elements in A. Then,
k : P(Ω) × P(Ω) → R is a SPD kernel. This shows that kernels, and generally
kernel methods can be applied to input spaces other than Rd .

If this is the �rst time you have seen the kernels in Example 2.17, you may wonder how to
show that they in fact satisfy the condition in De�nition 2.16. Indeed, it is not immediately
obvious if any Gram matrix formed by these kernels must be symmetric positive semi-de�nite.
The following proposition is useful in verifying SPD kernels, and in fact is even more useful
in building new kernels from known ones. Such techniques are very frequently employed in
mathematics.
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Proposition 2.18: Closure Properties of SPD Kernels

Suppose k1,k2, . . . is a collection of SPD kernels on Rd × Rd . Then, the following are also
SPD kernels

1. (Scaling) k(x ,x ′) = λk1(x ,x ′) for any λ > 0
2. (Addition) k(x ,x ′) = k1(x ,x ′) + k2(x ,x ′)
3. (Normalization) k(x ,x ′) = д(x)k1(x ,x ′)д(x ′) for any real-valued function д.
4. (Limit) k(x ,x ′) = limn→∞ kn(x ,x

′), provided the limit exists for all x ,x ′.
5. (Product) k(x ,x ′) = k1(x ,x ′)k2(x ,x ′).

Proof 2.18: Closure Properties of SPD Kernels

In each case, the symmetric condition is clear, so we will only prove the positive semi-
de�niteness of the Gram matrices. Let {x1, . . . ,xn} be an arbitrary collection of points in
Rd and let Gm be the Gram matrix associated with the kernel km , i.e. Gm,i j = km(xi ,x j ).
Similarly, we set G and G ′ to be the Gram matrix associated with k and k ′ respectively.
Let c be an arbitrary vector in Rn .

1. c>Gc = c>(λG1)c = λ(c
>G1c) ≥ 0.

2. c>Gc = c>(G1 +G2)c = c
>G1c + c

>G2c ≥ 0.
3. De�ne the vector b to have components bi = ciд(xi ). Then, c>Gc = b>G1b ≥ 0.
4. By assumption c>Gmc ≥ 0 for all m and limm→∞Gm = G, and thus c>Gc =

c>(limm→∞Gm)c = limm→∞ c
>Gmc ≥ 0.

5. Let X1 ∼ N(0,G1) and X2 ∼ N(0,G2) be independent random Gaussian vectors in
Rn . SetY = X1 ◦X2 be their Hadamard product, i.e. Yi = X1,iX2,i for each coordinate
i . Then,

Cov(Yi ,Yj ) = EYiYj = EX1,iX2,iX1, jX2, j

= EX1,iX1, jEX2,iX2, j (By independence)
= Cov(X1,i ,X1, j )Cov(X2,i ,X2, j )

= G1,i jG2,i j

= Gi j .

(2.50)

Since G is the covariance matrix of Y , it must be positive semi-de�nite.
�

Using Proposition 2.18, we can show easily that the polynomial kernel, for example, is SPD.
First, notice that the linear kernel is SPD. We can show this directly by c>Gc =

∑
i, j cic jGi j =∑

i, j cic jx
>
i x j =

∑
i, j,m cic jxi,mx j,m =

∑
m(

∑
i cixi,m)

2 ≥ 0. Moreover, the constant kernel
k(x ,x ′) = 1 is trivially SPD. Hence, using property 2 of Proposition 2.18, the kernel k(x ,x ′) =
1 + x>x ′ is SPD. Finally, using property 5 of Proposition 2.18 consecutively for m − 1 times, we
get k(x ,x ′) = (1 + x>x ′)m = (1 + x>x ′) × · · · × (1 + x>x ′) is SPD.
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Exercise 2.19

Show that the Gaussian or radial basis function (RBF) kernel de�ned in Example 2.17 is
a SPD kernel. (Hint: Observe that ‖x − x ′‖2 = ‖x ‖2 − 2x>x ′ + ‖x ′‖2. Now set д(x) =
exp(−‖x ‖2/2s2) and use property 3 in Proposition 2.18. Finally use the other properties
via a Taylor expansion of the exponential function to deduce the result.)

Now, to highlight the fact using kernels is much more �exible than using explicit feature
maps, we will derive a explicit feature map corresponding to the Gaussian (RBF) kernel in one
dimension (d = 1). Recall that in this case, the Gaussian kernel is given by

k(x ,x ′) = exp
(
−

1
2s2 (x − x

′)2
)

= exp
(
−

1
2s2x

2
)
exp

(
1
s2
xx ′

)
exp

(
−

1
2s2x

′2
)

= exp
(
−

1
2s2x

2
) (

∞∑
m=0

(xx ′)m

s2mm!

)
exp

(
−

1
2s2x

′2
)

= exp
(
−

1
2s2x

2
) (

1 +
√

1
s21!x ·

√
1

s21!x
′ +

√
1

s42!x
2 ·

√
1

s42!x
′2 + . . .

)
exp

(
−

1
2s2x

′2
)

= ϕ(x)>ϕ(x),

(2.51)

where

ϕ(x) = exp
(
−

1
2s2x

2
) (

1,
√

1
s21!x ,

√
1

s42!x
2, . . .

)
(2.52)

Formula (2.52) gives an explicit feature map which corresponds to the Gaussian kernel in 1D.
Notice now that ϕ(x) is an in�nite dimensional feature map! In other words, computing the
explicit features x 7→ ϕ(x) is impossible as there are in�nite number of terms, but the kernel
can be computed easily. This is an instance of the well-known kernel trick that is ubiquitous in
kernel methods.

2.3.3 Kernel Ridge Regression

Having introduced some basic properties of kernels, let us return to the regularized regression
problem motivated in Section 2.3.1. Using formula (2.44), we see that for each SPD kernel k , we
have a corresponding regularized least squares formula corresponding to a general linear basis
model generated by a feature map corresponding to k . More concretely, given any SPD kernel
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k , the hypothesis space we are considering is

H(k) =

{
f : f (x) =

∞∑
j=0

w jϕ j (x), w j ∈ R with k(x ,x ′) =
∞∑
j=0

ϕ j (x)ϕ j (x
′)

}
. (2.53)

In this space, the regularized empirical risk minimization has the solution

f̂ (x) =
N∑
i=1
[(G + λIN )

−1y]ik(x ,xi ), Gi j = k(xi ,x j ), (2.54)

which can be computed without explicit knowledge of {ϕ j }. This is known as kernel ridge
regression, and is one of the most basic applications of kernel methods and in particular, the
kernel trick.

Example 2.20: Kernel Ridge Regression

We apply kernel ridge regression to the examples considered in Example 2.4 with a small
regularization parameter. The results are shown below. We observe that polynomial and
Gaussian/RBF kernels work reasonably well. Note that in the RBF case, the feature space
dimension is in�nite.
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2.3.4 Further Reading

We have only scratched the surface of kernel methods. Although in the next section we will
introduce a well-known application of kernel methods, namely the support vector machine, we
have invariably missed a large chunk of interesting theory and applications of the kernel trick.
For example, Gaussian processes [Ras03] makes great use of kernels. There are also applications
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of kernels to unsupervised learning, e.g. kernel PCA [SSM98] and kernel mean embedding of
distributions [MFSS17], just to name a few. For comprehensive exposition on kernel methods,
the reader is referred to [SC04, HSS08].

2.4 Support Vector Machines

We saw in kernel ridge regression that although the kernel trick allows us to implicitly handle
large or in�nite feature space dimensions, in computing the Gram matrix we have to evaluate
k(xi ,x j ) for all pairs of data points. If we have N data points, there amounts to N 2 number of
operations for each inference. This becomes very expensive when N is large. It is then natural
to ask if there are kernel methods that scale better with large datasets. This is the study of sparse
kernel methods, a prime example of which is the kernel support vector machine (kernel SVM).
To begin with, we �rst introduce the SVM in the linear setting, without reference to kernels.

2.4.1 Linear Support Vector Machines

Consider a binary classi�cation dataset D = {xi ,yi }Ni=1 where each xi ∈ R
d and each yi = 1

(class +) or yi = −1 (class −). An important concept concerning binary classi�cation is that of
linear separability. Let us de�ne and illustrate it below.
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De�nition 2.21: Linear Separability

We say that D is linearly separable if there exists w ∈ Rd and b ∈ R such that

w>xi + b > 0 if yi = +1 and w>xi + b < 0 if yi = −1, (2.55)

for each i = 1, . . . ,N . We can rewrite the above compactly as the following condition

yi (w
>xi + b) > 0. (2.56)

The following �gure illustrates a linearly separable situation versus one that is not linearly
separable. Notice that in the former case, a separating line is not unique.

(a) Linearly Separable

wTx + b = 0
(b) Not Linearly Separable

Margin and Maximum Margin Solution. Let us hereafter assume that our dataset D is
linearly separable. As seen previously, the separating line (or hyperplane in higher dimensions)
need not be unique. Hence, we want to �nd one that has desirable properties, such as having
good generalization. Support vector machines approach this problem via introducing the
concept of margin.

Let w ∈ Rd and b ∈ R de�ne a separating hyperplane

{x ∈ Rd : w>x + b = 0}. (2.57)

This is also called the decision boundary of the associated decision function (approximation of
the oracle)

f (x) =

{
+1 w>x + b > 0,
−1 w>x + b < 0.

(2.58)

We can write this compactly as

f (x) = Sign(w>x + b), (2.59)
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where Sign(z) = +1 if z > 0 and −1 if z < 0. The margin of the decision function is the minimum
distance of points in D to the separating hyperplane w>x + b = 0. In precise terms, the margin
is given by

min
i=1, ...,N

|w>xi + b |

‖w ‖
(2.60)

It turns out that to achieve the best generalization we should look for maximummargin solutions.
This can be formalized in statistical learning theory, but is also intuitively clear: the larger the
margin, the more sampling noise we can accommodate. The maximum margin solution can be
obtained by the following optimization problem

max
w ∈Rd ,b ∈R

{
1
‖w ‖

min
i=1, ...,N

|w>xi + b |

}
subject to yi (w>xi + b) > 0 for all i = 1, . . . ,N . (2.61)

At the moment, (2.61) does not seem easy to handle. Now, we will show via a sequence of
transformations that this problem is in fact a standard constrained convex optimization problem.

First, notice that |w>xi +b | = yi (w>xi +b). Moreover, the margin distance yi (w>xi +b)/‖w ‖ is
invariant with respect to the transformationw 7→ κw , b 7→ κb for any κ > 0. Thus, without loss
of generality we can assume yi (w>xi + b) ≥ 1 for all i by taking κ−1 = mini yi (w>xi + b). Then,
mini |w>xi + b | = mini yi (w>xi + b) = 1 and for the closest points x j to the decision boundary,
we have yj (w>x j + b) = 1. Note that there is at least one such point, but there may be many.
Consequently, the optimization problem reduces to maximizing 1/‖w ‖, which is equivalent to
minimizing ‖w ‖2/2 (factor of 1/2 is for convenience). To summarize, an equivalent formulation
of (2.61) is

min
w ∈Rd ,b ∈R

1
2 ‖w ‖

2 subject to yi (w>xi + b) ≥ 1 for all i = 1, . . . ,N . (2.62)

The optimization problem (2.62) is a constrained optimization problem and an e�ective way to
analyze it is via the method of Lagrange multipliers. Let us brie�y review it in an informal way.

Method of Lagrange Multipliers. Minimizing a di�erentiable function F : Rm → R is
often done by setting its derivative ∇F to 0. This obtains a stationary point, which one can then
check if it is indeed a minimum. To achieve this, we can either use higher order derivatives (e.g.
the Hessian), or deduce minimality from the properties of the function F . For example, if F is
convex, then any stationary point is a (global) minimum.

Let us now consider the constrained optimization problem

min
z∈Rm

F (z) subject to G(z) = 0, (2.63)

for some di�erentiable constraint function G : Rm → R. How do we solve this problem? The
crucial observation is that at an optimal point ẑ, ∇F and ∇G must be parallel, otherwise we can
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move along the curve G(z) = 0 (which is locally perpendicular to ∇G) to decrease the function
value of F . This can be expressed as the condition

∇F (̂z) + µ∇G (̂z) = 0. (2.64)

for some µ , 0. Together with the condition G (̂z) = 0, we see that ẑ must be a stationary point
of

L(z, µ) = F (z) + µG(z). (2.65)

The function L : Rm × R→ R is called the Lagrangian and µ is called a Lagrange multiplier.

What if we replace the equality constraintG(z) = 0 by an inequality constraintG(z) ≤ 0? There
are two cases: if ẑ lies in the interior of the constraint set, i.e. if G (̂z) < 0 then the constraint
is inactive, and so the condition is simply ∇F (̂z) = 0. On the other hand, if ẑ lies on the boundary
of the constraint set, i.e. if G (̂z) = 0, then we are in the equality constraint case considered
previously. The only caveat is that in the inequality case, we need ∇F and ∇G to point in
di�erent directions (See Figure 2.2), otherwise we can move into the interior of the constraint
set and decrease F in the process, contradicting the optimality of ẑ. Thus, we should have µ ≥ 0
and µд(̂z) = 0.

𝐹(𝑧)

𝐺 𝑧 = 0

�̂� ∇𝐹(�̂�)

∇𝐺(�̂�)

𝐹(𝑧)

𝐺 𝑧 ≤ 0

�̂� ∇𝐹(�̂�)

∇𝐺(�̂�)

(a) Equality Constraint (b) Inequality Constraint

Figure 2.2: Illustration of the idea behind Lagrange multipliers.

In general, we can have many equality constraints and inequality constraints. Observe that
each equality constraint G j (x) = 0 can be written as two inequality constraints G j (x) ≤ 0 and
−G j (x) ≤ 0, thus it su�ces to consider only systems of inequality constraints. Therefore, we
have the following constrained optimization problem

min
z∈Rm

F (z) subject to

G j (z) ≤ 0, j = 1, . . . ,n,
(2.66)

Following the approach previously, we introduce a vector of Lagrange multipliers µ = (µ1, . . . , µn),
with the Lagrangian

L(z, µ) = F (z) +
n∑
j=1

µ jG j (z). (2.67)
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Then, following the approach previously for the single-constraint case, we can derive the
following necessary conditions. These conditions are known as the Karush-Kuhn-Tucker (KKT)
conditions [KT51]. They can be proven to be necessary for optimality under some technical
assumptions known as constraints quali�cations.

Theorem 2.22: KKT Conditions (Informal)

Under technical assumptions, for each solution ẑ of (2.66), there exists µ̂ ∈ Rn for which
the following conditions hold:

(Stationarity) ∇zL(̂z, µ̂) = 0
(Primal Feasibility) G j (̂z) ≤ 0, j = 1, . . . ,n

(Dual Feasibility) µ̂ j ≥ 0, j = 1, . . . ,n
(Complementary Slackness) µ̂ jG j (̂z) = 0, j = 1, . . . ,n

(2.68)

Moreover, these conditions are also su�cient for optimality if (2.66) is further assumed to
be convex.

Finally, we may consider the dual of the problem (2.66) as

max
µ ∈Rn

F̃ (µ), where F̃ (µ) = inf
z∈Rm

L(z, µ)

Subject to µ ≥ 0.
(2.69)

Under convexity assumption of (2.66) and constraint quali�cation, strong duality holds in the
sense that the dual and primal problem have same optimal objective values. A solution µ̂ of the
KKT conditions (Theorem 2.22) solves the dual problem (2.69). For more details on constrained
optimization and the KKT conditions, the reader is referred to [KT51, NWNW06] and also
Appendix B.3 of [MRT18].

KKT Conditions for Linear SVM Let us now return the constrained optimization prob-
lem (2.62) for the maximum margin solution of linear SVM. Applying the KKT conditions
(Theorem 2.22) with z = (w,b) and G j (z) = 1 − yj (w>x j + b), we obtain the Lagrangian

L(w,b, µ) =
1
2 ‖w ‖

2 +
N∑
j=1

µ j (1 − yj (w>x j + b)). (2.70)

and stationary conditions

ŵ =
N∑
j=1

µ̂ jyjx j , 0 =
N∑
j=1

µ̂ jyj . (2.71)

Furthermore, the complementary slackness condition implies

0 = µ̂ j (1 − yj (ŵ>x j + b̂)) (2.72)
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Now comes some crucial observations. First, suppose for the moment that µ̂ has been found.
Then, our maximal margin decision function (i.e. best approximator of the oracle classi�er) is

f̂ (x) = Sign
(
N∑
j=1

µ̂ jyjx
>
j x + b̂

)
. (2.73)

In the above sum, only data points (x j ,yj ) for which µ̂ j , 0 contributes. Owing to the comple-
mentary slackness condition (2.72), these are precisely the vectors satisfying yj (ŵ>x j + b̂) = 1,
i.e. those that are closest to the maximum margin decision boundary ŵ>x j + b̂ = 0. These
are called support vectors. In this sense, the prediction step in linear SVM is sparse in the data
points, unlike kernel ridge regression.

Dual Problem for Linear SVM. We can go on to derive the dual problem of (2.62), which if
solved gives us µ̂. Following (2.69), we obtain the dual problem

max
µ ∈RN

N∑
j=1

µ j −
1
2

N∑
i, j

µiµ jyiyjx
>
i x j (2.74)

Subject to: µ j ≥ 0, j = 1, . . . ,N
N∑
j=1

µ jyj = 0. (2.75)

Once solved, we can plug into expression (2.71) to �nd ŵ . The constant b̂ can be found by solving
1 = ŵ>x j + b̂ for any support vector x j . Consequently, this �xes our learned classi�er (2.73)
with which we can make predictions.

2.4.2 Kernel Support Vector Machines

As in Section 2.3.3, the advantage of the dual formulation is that now, all that is required to
predict a new data point is the evaluation of x>x ′ for any inputs x ,x ′. We can then make the
SVM nonlinear by replacing x by feature maps ϕ(x). Finally, using the kernel trick we can
replace the inner product ϕ(x)>ϕ(x ′) by kernels k(x ,x ′). The resulting kernel SVM dual problem
reads

max
µ ∈RN

N∑
j=1

µ j −
1
2

N∑
i, j

µiµ jyiyjk(xi ,x j ) (2.76)

Subject to: µ j ≥ 0, j = 1, . . . ,N
N∑
j=1

µ jyj = 0. (2.77)
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Once solved to obtain µ̂, we would have the predictive function

f̂ (x) = Sign
(
N∑
j=1

µ̂ jyjk(x j ,x) + b̂

)
. (2.78)

where b̂ = 1 −
N∑
j=1

µ̂ jyjk(x j ,xi ) for some support vector xi . (2.79)

2.4.3 Further Reading

In the previous sections we introduced the most basic SVM setting. There are a number of
extensions. The most important one has to do with the fact that we assumed separability.
Although it is plausible that a feature map induced by a kernel choice may make our data
linearly separable in feature space, it is useful to derive a theory without such assumptions. It
turns out that this is quite simple, as we just consider a relaxed version of (2.62) with additional
slack variables ξ ∈ RN ,

min
w ∈Rd ,ξ ∈RN ,b ∈R

1
2 ‖w ‖

2 +C
N∑
i=1

ξ
p
i (2.80)

subject to: yi (w>ϕ(xi ) + b) ≥ 1 − ξi and ξi ≥ 0 for all i = 1, . . . ,N . (2.81)

Here p ≥ 1 ensures convexity and all the theory before can be analogously extended to this case.
This also immediately allows for us to remove the constraint by observing that the solution must
be obtained when equality yi (w>ϕ(xi ) + b) = 1 − ξi holds. Therefore, we have the equivalent,
but unconstrained version of (2.80)

min
w ∈Rd ,ξ ∈RN ,b ∈R

1
2 ‖w ‖

2 +C
N∑
i=1

max(0, 1 − yi (w>ϕ(xi ) + b))p . (2.82)

The unconstrained formulation (2.82) may be useful for direct optimization of the primal SVM
problem. Other extensions includes those to multi-class classi�cation, regression and Bayesian
inference in the form of relevance vector machines, see [MRT18, BO06] and also in-depth
discussions on SVM and kernel methods in [CV95, SC04, CS00, HSS08].

2.5 Decision Trees

So far we have looked at linear or linear basis models and their kernel variants. In this section,
we are going to consider a di�erent sort of classi�cation or regression method, in which the
approximators are piece-wise constant functions. The simplest of such methods is decision
trees, in which input space is strati�ed or partitioned into simple regular regions and a constant
prediction is assigned to each region.
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Decision trees are very natural models of decision making, and consists a class of easily in-
terpretable machine learning models, in the sense that we can readily deduce how the model
arrives at the prediction. Regression and classi�cation models using decision trees are called
CART, which stands for classi�cation and regression trees.

2.5.1 Decision Trees for Regression

Mathematically, a (directed) tree is a directed acyclic graph (See Figure 2.3). The base vertex of
the tree is called the root node. The terminal vertices are called terminal nodes. All other vertices
are called internal nodes. The edges that connects the nodes are called branches.

Based on a decision tree, how can we build a model capable of making predictions? Let us �rst
discuss this in terms of regression in one dimension.

Figure 2.3: The structure of a decision tree.

Suppose we want to approximate some oracle function f ∗ : [0, 1] → R. The simplest decision
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tree is formed by selecting some θ0 ∈ (0, 1) and de�ning the piece-wise constant function

f (x) =

{
a x > θ0

b x ≤ θ0
. (2.83)

What values should we pick for a and b? One simple proposal is to pick them to be the average
of f ∗ in these regions, i.e.

a =
1
θ0

∫ θ0

0
f ∗(z)dz, b =

1
1 − θ0

∫ 1

θ0
f ∗(z)dz. (2.84)

This is a binary decision tree of depth 1, since there are only two nodes connected to the root
node. We can also form deeper decision trees by further splits. See Figure 2.4.
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Figure 2.4: Decision trees of di�erent depths for regression.

More generally, a decision tree based regressor is formed by dividing the input domain X into
J distinct and non-overlapping regions R1,R2, . . . ,R J with ∪Nj=1Rj = X. We then assign a
constant value aj for all input points in Rj . More precisely, a decision tree regression hypothesis
space consists of functions of the form

f (x) =

J∑
j=1

aj1Rj (x), {Rj } a partition of X. (2.85)

The regions Rj can theoretically be of any shape, but often we want to keep the results inter-
pretable, and hence we restrict them to high dimensional rectangles (Figure 2.5).

Optimization How do we optimize in this hypothesis space of regression trees? Given a
dataset D = {xi ,yi }Ni=1, we can simply set aj to be the average of yi ’s for which xi ∈ Rj , i.e.

aj = y j =

∑
i yi1Rj (xi )∑
i 1Rj (xi )

(2.86)
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Figure 2.5: Piecewise constant function with rectangular regions.

Then, it remains to determine the regions {Rj }. Hence, the empirical risk minimization with
square loss involves the following optimization problem

min
{Rj }

1
2

N∑
i=1

(
J∑
j=1

y j1Rj (xi ) − yi

)2
. (2.87)

In other words, we are minimizing over all possible rectangular partitions {Rj } of the input
space X. It turns out that this problem is very di�cult to solve exactly. In the language of
complexity theory, it is NP-hard.

Instead of solving (2.87) exactly, we can proceed in a greedy manner. This approach is called
recursive binary splitting. We start with the root node and successively split the input space in
one of its dimensions into two parts. This corresponds to adding two leaf nodes into the tree by
attaching them to a chosen leaf node, which now becomes an internal node. The split is chosen
so that the loss function (e.g. square loss) is minimized at the current step, regardless if future
splits may become suboptimal. This is why it is called a greedy method, since it only cares
about minimizing the present error and not future ones. In Figure 2.6, we illustrate using a one
dimensional example where greedy method gives a sub-optimal solution. A common stopping
criterion is when each split region contains only a few number of sample points.
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Figure 2.6: Comparison of greedy solution vs optimal solution.

2.5.2 Decision Trees for Classification

Classi�cation problems can be similarly handled by decision trees. In this case, we can still
consider the hypothesis space (2.85), except that we have to pick the values {aj } di�erently
during optimization. Instead of using the average as in (2.86), we usually take aj to be the
majority vote: suppose we have a K-class classi�cation problem where the labels can take values
in {c1, c2, . . . , cK }, then we can set aj = c j where c j is the most frequently occurring class for
inputs in Rj . Ties can be broken randomly.

To carry out the recursive binary splitting algorithm as before, we need a performance metric
for classi�cation so that a greedy selection of the split can be chosen at every step. One natural
choice is the classi�cation error rate, but it is not very sensitive to splits and hence not suitable
for building good decision trees. Instead, let us de�ne pjk to be the proportion of samples in Rj
belonging to class k , then we can use the following loss functions, also known as measures of
impurity, as basis for greedy splitting:

Entropy:
J∑
j=1

K∑
k=1
−pjk logpjk , (2.88)

Gini Index:
J∑
j=1

K∑
k=1

pjk (1 − pjk ). (2.89)

The recursive binary splitting algorithm can be carried out analogously by minimizing the
losses/impurities at each split.
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2.5.3 Advantages and Disadvantages of Decision Trees

Decision trees are quite di�erent from other types of models we have seen before. So, what are
some advantages and disadvantages of using decision trees? Below we give a non-exhaustive
list.

Advantages:

• Can readily visualize and understand predictions

• Implicit feature selection via analyzing contribution of splits to reduction of error/impurity

• Robust to data types, supervised learning tasks and nonlinear relationships

Disadvantages:

• Prone to over�tting

• Sensitive to data variation and balancing

• Greedy algorithms may �nd sub-optimal solutions to empirical risk minimization

2.5.4 Further Reading

The main issue that we have not discussed here is that of pruning. It is found that greedy
methods typically obtain trees of poor generalization properties. To overcome this, we usually
devise a pruning procedure: we �rst grow (using greedy methods) a large tree and then prune it
to obtain a smaller sub-tree that has better generalization properties. Such pruning procedures
usually involves minimizing a loss function (e.g. (2.88) or (2.89)) plus a term that penalizes the
complexity of a tree, e.g. number of leaf nodes, or other complexity measures motivated by
learning theory. For details, see [BO06, MRT18].

2.6 Model Ensembling

The most glaring drawback of decision trees is that they are prone to over�tting: if the depth
is low, the approximation power is low, but when the depth is large, there often over�t the
data. Figure 2.7 gives an illustration of this. However, there is a class of methods that greatly
overcomes this drawback and they enable signi�cant broader application of decision trees.
These are known as ensembling methods, where we combine a collection of weak learners
(models from a small hypothesis space) to form a strong learner that has good approximation
and generalization properties. The role of weak learners are usually played by decision trees.
Nevertheless, we can discuss these methods with respect to general weak learners. We will
introduce two di�erent methods to combine models, namely bagging and boosting.
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Figure 2.7: Over�tting phenomenon of decision trees. Shallow trees have limited expressive
power and deep trees tend to over�t.

2.6.1 Bagging

The �rst method we discuss for combining models is also perhaps the most obvious: we aggregate
the predictions due to a collection of models trained on di�erent sub-samples of the training
set in the obvious way – For regression problems, we simply take the their average prediction;
For classi�cation problems, we take their modal prediction via a majority vote. This is broadly
known as the method of bootstrap aggregating, or bagging. The regression case is summarized
in Algorithm 1. The classi�cation case is similar.

Algorithm 1: Bootstrap Aggregating (Bagging)
Data: D = {xi ,yi }Ni=1
for j = 1, . . . ,m do

Draw a random, independent size N ′ subset Dj from D, with replacement;
Obtain fj from empirical risk minimization on Dj ;

end
return f (x) = 1

m
∑m

j=1 fj (x)

What does bagging achieve? To see this, we can consider a simple model of bagging for regres-
sion. Assume that we have a collection of trained models { fi }mi=1 from some �xed hypothesis
spaceH . We assume that each fi is a random approximation of the oracle function f ∗, in the
sense that

fi (x) = f ∗(x) + ϵi (x) (2.90)

44



2 Supervised Learning

for some random function ϵi of mean 0 and variance σ 2. The aggregated prediction function is

f (x) =
1
m

m∑
i=1

fi (x). (2.91)

We will now show that the aggregated function reduces the mean squared error, under the
assumption that for i , j , ϵi and ϵj are uncorrelated functions. To see this, notice that the mean
squared error of the prediction of each fi is given by

E(x) = E
1
m

m∑
i=1
(f ∗(x) − fi (x))

2

= E
1
m

m∑
i=1

ϵi (x)
2

=
1
m

m∑
i=1
Eϵi (x)

2

= σ (x)2.

(2.92)

On the other hand, the squared error of the aggregated prediction is

E(x) = E
(
f ∗(x) − f (x)

)2
= E

(
f ∗(x) −

1
m

m∑
i=1

fi (x)

)2
= E

(
1
m

m∑
i=1
[f ∗(x) − fi (x)]

)2
= E

(
1
m

m∑
i=1

ϵi (x)

)2
= E

1
m2

m∑
i=1

ϵi (x)
2 (uncorrelated)

=
1
m
σ (x)2 =

1
m
E(x).

(2.93)

What if there is a bias, such that each Eϵi (x) = b(x) , 0? Then, one can see that Ef = Efi = b,
i.e. the aggregate model does not change the bias. However, a similar calculation as the above
will show that it reduces the variance bym times. More generally, this result can be deduced by
the central limit theorem, or concentration/large-deviation estimates.

The apparent signi�cant variance reduction is rarely observed in practice. This is because the
errors ϵi are formed by sub-sampling of the training dataset: if a small number of samples are
taken then the variance σ 2 is large; if a large number of samples are taken then di�erent models
become highly correlated. More importantly, bagging does not e�ectively reduce the bias of
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the model. In other words, it does not improve the approximation power of the underlying
hypothesis space. In the following, we will introduce another way of combining models that in
fact increases the approximation capacity.

2.6.2 Boosting

Unlike bagging which combines models in parallel, boosting combines models in a sequential
way. The most basic form of boosting is adaptive boosting, or AdaBoost [FS96]. The main idea
in AdaBoost is to adaptively re-weight the training sample after training each weak learner so
that the next weak learner can focus on correcting the mistakes made by the previous learners.
Finally, the weak learners are combined together with appropriate weights to reduce the overall
error. The Adaboost algorithm is given in Algorithm 2.

Algorithm 2: AdaBoost
Data: D = {xi ,yi }Ni=1
Initialize: w (1)j = 1/N for all j = 1, . . . ,N
for j = 1, . . . ,m do

Obtain fj from

fj = argmin
f ∈H

N∑
i=1

w (j)i 1yi,f (xi ) (2.94)

Compute combination coe�cients:

δ j =

∑N
i=1w

(j)
i 1yi,fj (xi )∑N
i=1w

(j)
i

α j = log
(1 − δ j

δ j

)
(2.95)

Update weights:

w (j+1)i = w (j)i exp(α j1yi,fj (xi )) (2.96)

end

return f (x) = Sign
(∑m

j=1 α j fj (x)
)

From Algorithm 2, we observe that f1 is trained with uniform weights wi = 1/N , i.e. in the
usual way. Subsequently, the weights are increased for misclassi�ed points and decreased
for correctly classi�ed points. Therefore, subsequent classi�ers are encouraged to focus on
these misclassi�ed points. The weighting coe�cients α j gives greater weight to more accurate
classi�ers and hence improves overall classi�cation accuracy.
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Exponential Loss Interpretation The original AdaBoost algorithm is inspired by statisti-
cal learning, but Friedman et al [FHT00] showed that it can also be viewed as a sequential
minimization of the exponential loss. Let us brie�y account this interpretation below.

De�ne the exponential loss for binary outputs as

L(y ′,y) = e−yy
′

. (2.97)

Then, the empirical risk minimization problem is

Remp(f ) =
N∑
i=1

e−yi f (xi ). (2.98)

We now take f = f m to be a linear combination of a sequence of m base classi�ers (weak
learners) fj , j = 1, . . . ,m, so that

f m(x) =
1
2

m∑
j=1

α j fj (x). (2.99)

Note that the factor 1/2, which makes subsequent calculations convenient, does not a�ect the
sign of the output that is used to make predictions. Training involves minimizing the empirical
risk with respect to both the base classi�ers { fj } and the combination coe�cients {α j }.

We shall proceed sequentially. Suppose that we have learned f1, . . . , fm−1 and α1, . . . ,αm−1.
Our goal is to determine fm ,αm . We have

Remp(f m) =
N∑
i=1

exp
(
−yi f m−1(xi ) −

1
2yiαm fm(xi )

)
=

N∑
i=1

w (m)i exp
(
−
1
2yiαm fm(xi )

)
,

(2.100)

where the coe�cients w (m)i = exp(−yi f m−1(xi )) can be treated as constants since we are only
minimizing over fm and αm . Now, we have

Remp(f m) = e−αm/2
N∑
i=1

1fm (xi )=yiw
(m)
i + eαm/2

N∑
i=1

1fm (xi ),yiw
(m)
i

= (eαm/2 − e−αm/2)
N∑
i=1

1fm (xi ),yiw
(m)
i + e−αm/2

N∑
i=1

w (m)i .

(2.101)

Observe that the last term and the factor in the �rst term is independent of fm , so minimizing
with respect to fm is equivalent to (2.94). Moreover, minimizing with respect to αm above
corresponds to the update rule (2.95). Lastly, with the choice of fm and αm , the weights on the
data points is updated as

w (m+1)i = w (m)i e−αmyi fm (xi )/2. (2.102)
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Using the fact that yi fm(xi ) = 1 − 21yi,fm (xi ), we see that the update rule for weights is

w (m+1)i = w (m)i e−αm/2eαm1yi,fm (xi ) . (2.103)

Discarding the constant factor e−αm/2 which is independent of i , we obtain the weight update
scheme (2.96).

2.6.3 Further Reading

There is a vast literature on model ensembling. For bagging, one of the primary algorithms
used in practice is random forests [Bre01], which combines bootstrap aggregation with decision
trees and random feature selection. For boosting algorithms, there are numerous extensions to
AdaBoost not discussed here, including multi-class classi�cation and regression. The underlying
idea of these extensions are based on the exponential loss interpretation presented earlier.
Another popular boosting method is gradient boosting, where each subsequent regressor is
added in the gradient direction (in function space) of the loss function. See [FHT00, FHT01] for
an exposition on these methods and beyond.

2.7 Neural Networks

We started the discussion on supervised learning models on linear basis models and their
variants, including kernel machines and the SVM. Common to all these models is the fact that
the basis functions, or feature maps, are chosen a priori and does not depend on the training
dataset. In Section 2.5, we introduced decision trees, which is the �rst example where the basis
functions are chosen at training time according to the dataset. Concretely, the decision tree
basis function ϕ j (x) = 1x ∈Rj depends on the partition {Rj }, which is learned from the data, e.g.
using the recursive splitting algorithm.

In this section, we are going to introduce another class of such models where the basis functions
are learned from the data: neural networks. Machine learning models based on neural networks,
in particular deep learning, have become increasingly popular with the increasing amount of
data and computational power we have. The term "neural networks" originated from the fact
that these models were �rst developed as an attempt to model, in a mathematically precise way,
neural interactions in the human brain [MP43, WH60]. However, it became clear quickly that
such models are over-simpli�ed and lack complexity required to understand human physiol-
ogy. Nevertheless, they form a class of powerful machine learning models that admit unique
properties that are worth studying. In the following, we start with the basics of shallow neural
networks.
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2.7.1 Shallow Neural Networks

For simplicity, let us consider a regression problem in d dimensions, so that the oracle function
is f ∗ : Rd → R. A shallow neural network corresponds to the following hypothesis space

Hnn,M =

{
f : f (x) =

M∑
j=1

vjσ (w
>
j x + bj ),w j ∈ R

d ,vj ∈ R,bj ∈ R

}
(2.104)

Let us now introduce some nomenclature that is customary in the study of neural networks.
The function σ : R→ R is called an activation function. Popular choices include

ReLU (Recti�ed Linear Unit) σ (z) = max(0, z) (2.105)
Leaky ReLU σ (z) = max(0, z) + δ min(0, z) (2.106)
Tanh σ (z) = tanh(z) (2.107)

Sigmoid σ (z) =
1

1 + e−z (2.108)

Soft-plus σ (z) = log(1 + ez ) (2.109)

but this list is of course not exhaustive. Next, the parameters w j are often called weights and bj
are called biases. Recall that in linear models, we tend to combine them by appending “1” to the
input state x . However, here we will write out the bias term explicitly to conform with popular
notation. We will refer to vj as coe�cients, but in deeper models they can also be regarded as
weights. Finally, the number M is the dimensional of the hidden layer and this controls the
complexity of the model. Often, we refer to hj = w

>
j x + bj as the value on the jth hidden node.

Thus, M is the number of hidden nodes in the neural network. Figure 2.8 gives an illustration
of a shallow neural network model for prediction.

Linear vs Nonlinear Approximation Let us now discuss the approximation properties of
shallow neural networks. We begin by stressing again the di�erence between (2.104) and linear
basis models. For (2.104), we are allowed to choose w j ,bj after seeing the data or the oracle
function f ∗. On the other hand, the linear basis equivalent of (2.104) is

Hlinear =

{
f : f (x) =

M∑
j=1

vjσ (w
>
j x + bj ),vj ∈ R

}
(2.110)

with a �xed collection of w j ∈ R
d , bj ∈ R for j = 1, . . . ,M . This is linear because for any

f1, f2 ∈ Hlinear and λ1, λ2 ∈ R, λ1 f1 + λ2 f2 ∈ Hlinear. The same is not true forHnn,M since this
would require in general 2M terms in the summation. So, what is the di�erence between linear
and nonlinear hypothesis spaces? We give a simple illustration in Example 2.23. In general,
nonlinear hypothesis space o�ers a more e�cient representation of functions, but we pay an
price of obtaining a often harder optimization problem.
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Figure 2.8: Illustration of a function parameterized by a shallow neural network with one hidden
layer. For convenience we ignore the biases.

Example 2.23: Cosine Series Approximation

Let us consider a 1D problem. Suppose we are given an oracle function f ∗(x) = cos(x/2),
and we attempt to approximate it using a cosine series. Consider the following two choices:

Hlinear = { f : f (x) =
∑M

j=0 aj cos(jx)} (2.111)
Hnonlinear = { f : f (x) =

∑M
j=0 aj cos(w jx),w j ∈ R} (2.112)

It is clear that in the nonlinear case, we could simply take M = 0 and obtain a perfect
approximation by picking a0 = 1,w0 = 1/2. However, in the linear case we would not have
perfect approximation for any �nite M ; In fact, the best (M + 1)-term linear approximation
is the cosine series

f̂ (x) =
∑M

j=0
2(−1)j
π (1−4j2) cos(jx). (2.113)

Universal Approximation Theorem To further demonstrate its approximation power, let
us now discuss a foundational result in approximation theory of neural networks. This is known
as the universal approximation theorem. In words, it says that given enough hidden nodes, a
neural network can approximate any function to arbitrary accuracy. Let us give the precise
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statement of this result below.

Theorem 2.24: Universal Approximation Theorem for Neural Networks

Let K ⊂ Rd be closed and bounded and f ∗ : K → R be continuous. Assume that the activa-
tion function σ is sigmoidal, i.e. σ is continuous and limz→∞ σ (z) = 1, limz→−∞ σ (z) = 0.
Then, for every ϵ > 0 there exists f ∈ ∪M ≥1Hnn,M such that

‖ f − f ∗‖C(K ) = max
x ∈K
| f (x) − f ∗(x)| < ϵ (2.114)

A general proof of Theorem 2.24 follows from an application of the Hahn-Banach theorem
and the Riesz-Markov representation theorem, together with an argument based on the non-
degenerate properties of σ [Cyb89], although there are also many other proofs using di�erent
techniques (see further reading at the end of this section). Since understanding the proof
requires some knowledge of functional analysis that is not covered in these notes, we will not
present the details.

2.7.2 Optimizing Neural Networks

The universal approximation theorem (Theorem 2.24) ensures that a neural network can be
built to approximate any continuous function f ∗ on a compact domain. However, it does not
tell us how to build it. In other words, while the approximation problem (c.f. Section 2.1 and
Figure 2.1) is settled, the optimization problem remains. In this section, we shall discuss the
gradient descent method for optimizing machine learning models, including but not limited to
neural networks.

As demonstrated in many previous cases, in practice the empirical risk minimization problem
can be written as an optimization problem over certain trainable parameters. In other words, we
assume that the Hypothesis space admits a parameterization, so thatH = { f : f (x) = fθ (x) :
θ ∈ Θ}. The set Θ is the allowed set of trainable parameters. For example, in the case of shallow
neural networks (2.104), θ = (v,w,b) ∈ Θ = R(2+d )M . In most applications we can let Θ = Rp
be a Euclidean space, but there of course exists important exceptions (e.g. quantized networks).
In the following, we will assume Θ = Rp . Consequently, the empirical risk minimization can be
written as

min
f ∈H

Remp(f ) = min
θ ∈∈Rp

Remp(f (θ )) = min
θ ∈∈Rp

1
N

N∑
i=1

L(fθ (xi ),yi ). (2.115)

Recall that L is the loss function. To introduce optimization methods, it is convenient to introduce
the following shorthand

Φi (θ ) = L(fθ (xi ),yi ), Φ(θ ) =
1
N

N∑
i=1

Φi (θ ). (2.116)
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Then, the empirical risk minimization problem aims to solve minθ ∈Rp Φ(θ ).

Gradient Descent. Except for simple cases (e.g. least squares), minimizing Φ(θ ) does not
admit an explicit solution, and we often resort to iterative approximation methods that are
implementable on a computer. We now introduce the simplest of them all, the gradient descent
(GD) algorithm. Notice that the gradient vector ∇Φ(θ ) always points in the steepest ascent
direction on the surface de�ned by z = Φ(θ ), and hence to decrease Φ(θ ) we should go in the
opposite direction, the steepest descent direction given by −∇Φ(θ ) (Figure 2.9). How long a step
should we take? This is controlled by a parameter called the learning rate or step size, η > 0. It
is typically taken to be small to ensure stability of the algorithm. The algorithm is summarized
in 3 and also illustrated on Figure 2.9.

Figure 2.9: Illustration of gradient descent for function minimization. Left: ∇Φ always points in
the steepest descent direction. Right: the path of the gradient descent algorithm.

Algorithm 3: Gradient Descent
Hyperparameters: K (# iterations), η (learning rate)
Initialize: θ0 ∈ Rp

for k = 0, 1, . . . ,K − 1 do
θk+1 = θk − η∇Φ(θk )

end
return θK

It can be shown that if Φ is su�ciently well-behaved, e.g. if ∇Φ is globally Lipschitz, then
‖∇Φ(θk )‖ → 0 as k → ∞ for η su�ciently small [Nes04]. In other words, there is at least
a subsequence of GD iterates that converge to a stationary point. However, we want to to
minimize Φ and not just �nd a stationary point. Does GD converge to a minimum? To discuss
this question, we need to di�erentiate between two kinds of minima: local and global.

Local vs Global Minima. We begin with concrete de�nitions.
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De�nition 2.25: Local and Global Minima

Let Φ : Rp → R be a function. We say that θ ∗ is local minimum of Φ if there exists δ > 0
such that

Φ(θ ∗) ≤ Φ(θ ) for all θ ∈ Rp satisfying ‖θ − θ ∗‖ ≤ δ . (2.117)

We say that it is a global minimum if

Φ(θ ∗) ≤ Φ(θ ) for all θ ∈ Rp . (2.118)

It turns out that under general conditions, one can show that gradient descent almost always
converges to a local minimum. However, in general it does not converge to a global minimum
unless we assume additional conditions on the function Φ. Let us give an example of such a
condition that is commonly encountered in machine learning.

De�nition 2.26: Convex Functions

We say that a function Φ : Rp → R is convex if

Φ(λθ + (1 − λ)θ ′) ≤ λΦ(θ ) + (1 − λ)Φ(θ ′) (2.119)

for all θ ,θ ′ ∈ Rp and λ ∈ [0, 1].

It turns out that if Φ is convex, then one can show that all local minima are automatically global
minima. We state and prove this result in Proposition 2.27.

Proposition 2.27

Let Φ : Rp → R be convex. Suppose θ ∗ is a local minimum of Φ, then it is a global
minimum of Φ.
Proof. Without loss of generality we assume Φ(θ ∗) = 0 (otherwise just replace Φ(θ ) by
Φ(θ ) − Φ(θ ∗)). Suppose for the sake of contradiction that exists s ∈ Rp such that Φ(s) < 0.
De�ne u(λ) = λs + (1 − λ)θ ∗ for λ ∈ [0, 1]. By the de�nition of convexity (2.119), we have

Φ(u(λ)) ≤ λΦ(s) + (1 − λ)Φ(θ ∗) = λΦ(s), (2.120)

or Φ(s) ≥ Φ(u(λ))/λ for all λ ∈ (0, 1]. But, ‖u(λ) − θ ∗‖ = λ‖s − θ ∗‖. Picking λ =
min(1,δ/‖s − θ ∗‖) gives ‖u(λ) − θ ∗‖ ≤ δ . By de�nition of local minimum, Φ(u(λ)) ≥ 0
and so Φ(s) ≥ Φ(u(λ))/λ ≥ 0, contradicting our premise that Φ(s) < 0.

Consequently, as long as Φ is convex, GD can solve the empirical risk minimization problem.
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Furthermore, for convex functions one can actually give a rate at which GD converges: to reach
an error of ϵ in the function value, we roughly require at most O(ϵ−1) GD iterations. If stronger
conditions are assumed on Φ (e.g. strong convexity), then this rate can be faster.

Stochastic Gradient Descent. So far we have discussed GD in quite general optimization
problems. However, there is some structure to the objective function Φ in empirical risk
minimization problems: it is written as an average over objectives due to each sample [c.f. (2.116)]

Φ(θ ) =
1
N

N∑
i=1

Φi (θ ). (2.121)

By linearity of the gradient operation, we also have

∇Φ(θ ) =
1
N

N∑
i=1
∇Φi (θ ). (2.122)

When the number of samples N is large, computing the gradient above, which is necessary for
every step of the GD algorithm (Algorithm 3), becomes prohibitively expensive.

To tackle this problem, we use instead stochastic gradient descent [RM51] Here, instead of
computing the full gradient ∇Φ(θ ), we can sample a sub-sample of objectives corresponding to
the training samples and compute a random gradient estimate for use in the descent algorithm.
Algorithm 4 summarizes the stochastic gradient descent algorithm. Unlike GD, in each step
of SGD we only need to compute a sum of B gradients instead of N gradients. In large-scale
applications, N can be millions yet B can typically be picked to be less than 100, o�ering
tremendous savings. Of course, the price we pay here is that the random gradients дk introduce
random �uctuations and complicates the analysis of the descent algorithm: although E[дk |θk ] =
∇Φ(θk ), its variance can play a large role in determining the behavior of the algorithm.

Algorithm 4: Stochastic Gradient Descent
Hyperparameters: K (# iterations), η (learning rate), B (batch size)
Initialize: θ0 ∈ Rp

for k = 0, 1, . . . ,K − 1 do
Sample {i1, . . . , iB} ⊂ {1, . . . ,N } uniformly at random;
Compute дk = 1

B
∑B

j=1 ∇Φi j (θk );
Update θk+1 = θk − ηдk ;

end
return θK

2.7.3 Deep Neural Networks and Back-Propagation

So far, we have introduced shallow neural networks and discussed their optimization and
approximation properties. In this section, we discuss the extension of shallow neural networks
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to deep neural networks (DNN), forming the basis of the deep learning revolution we are
witnessing today.

The simplest type of DNN are the so-called deep fully-connected networks, where we simply
iterate the structure of shallow neural networks T times. T is the depth of the DNN. Concretely,
deep neural networks make up the following hypothesis space

Hdnn =
{
f : f (x) = v> fT (x),v ∈ RdT

}
where
ft+1(x) = σ (Wt ft (x) + bt ), Wt ∈ R

dt+1×dt , bt ∈ R
dt+1 , t = 0, . . . ,T − 1

with d0 = d, f0(x) = x .

(2.123)

The trainable parameters are the weights {W0, . . . ,WT−1}, biases {b0, . . . ,bT−1} and the �nal
combination (�nal layer) weights v . The activation function is applied element-wise to each
vector, i.e. σ (z)i = σ (zi ). Figure 2.10 shows a standard fully connected DNN. Compared
to shallow neural networks, deep neural networks has the advantage that it can represent
hierarchical features naturally, owing to the compositional nature of the hypothesis space. One
can show that just like shallow networks, DNNs have the universal approximation property: if
the number of layers is large enough, provided that the width of each layer {dt } are not too
small [Han17, LPW+17].

Figure 2.10: Illustration of a function parameterized by a deep neural network with three hidden
layers. As before, we ignore the biases.
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Back-propagation Algorithm. Just like shallow networks, DNNs can be trained using GD
or SGD. The only complication is, since there are many trainable parameters, can we have
a e�cient way to compute the (stochastic) gradient? Recall that we have the sample-wise
objective

Φi (θ ) = L(v> fT (xi ),yi ), (2.124)

with fT computed using the iteration rule (2.123). Thus, trainable parameters are of the form

θ = {W0, . . . ,WT−1;b0, . . . ,bT−1;v} (2.125)

and we have to compute the derivative of Φi with respect to each of these parameters. For
simplicity, we shall drop the biases (they can be absorbed into the weights by adding a 1 to the
state vector).

On �rst look, this may seem daunting, but it turns out that we can use the chain rule to simply
this computation, and it is rather e�cient to compute the required gradient vectors sequentially.
This is the content of the back-propagation algorithm [LeC88? , BH75]. To describe this
algorithm, it is instructive to rewrite the iteration rule in (2.123) (without biases) for a speci�c
sample (x ,y) as follows:

xt+1 = дt (xt ,Wt ) t = 0, . . . ,T
where x0 = x ,

(2.126)

For the speci�c case of DNNs, the �nal layer is absorbed into layer t = T , withv =WT . Moreover,
the feed-forward function дt (x ,W ) = σ (Wx) for all layers other than t = T , where дT (x ,W ) =
Wx . The loss function thus has the form Φ(θ ) = L(xT+1,y). However, the formulation above
will include any recursive architecture since дt is assumed to be a general feed-forward function.
We will derive the back-propagation formula for this general scenario.

To compute the derivative ∇WtΦ(θ ), we make the crucial observation: due to the feed-forward
nature of the DNN, given xt+1, xT+1 does not depend onWs for s ≤ t . Thus, we can write

Φ(θ ) = L(xT+1(xt+1(x ,W0, . . . ,Wt );Wt+1, . . . ,WT ),y), (2.127)

and so by the chain rule we have
∇WtΦ(θ ) = [∇Wtxt+1]

>∇xt+1L(xT+1,y)

= [∇Wtдt (xt ,Wt )]
>∇xt+1L(xT+1,y).

(2.128)

Let us de�ne pt = ∇xtL(xT+1(xt ;Wt , . . . ,WT ),y), then we have

∇WtΦ(θ ) = [∇Wtдt (xt ,Wt )]
>pt+1. (2.129)

Therefore, as long as we can compute {pt }, we can compute the gradients readily. Observe that
pt can in fact be computed via a backward pass, which is again a consequence of the chain rule

pt = [∇xtдt (xt ,Wt )]
>pt+1, pT+1 = ∇xT+1L(xT+1,WT ). (2.130)

Hence, the back-propagation algorithm can be carried out as follows: feed-forward to compute
{xt }, feed-backward to compute {pt } along with the derivatives according to (2.129). The
back-propagation algorithm to compute parameter gradients are summarized in Algorithm 5.
Once gradients are computed, standard GD/SGD algorithms can be applied to optimize DNNs.
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Remark. The above presentation of the back-propagation algorithm may appear di�erent
from many machine learning references, but it is more succinct. More importantly, it highlights
an important origin from optimal control theory [Ber00, BH75, Pon18]. In fact, this is a special
case of the sweeping algorithm, or method of successive approximations [CL82] – one of the most
basic algorithms in optimal control theory, and the algorithm is based on the solution of the
Pontryagin’s maximum principle [BGP61]. The variables {pt } are called co-states and can be
interpreted as Lagrange multipliers. There are also important connections between (2.130) and
the variational equation in the theory of ordinary di�erential equations [Arn12]. In fact, (2.130)
is the discrete analogue of the variational equation.

Algorithm 5: back-propagation Algorithm
Initialize: x0 = x ∈ Rd

for t = 0, 1, . . . ,T do
xt+1 = дt (xt ,Wt ) = σ (Wtxt );

end
Set pT+1 = ∇xT+1L(xT+1,y);
for t = T ,T − 1, . . . , 1 do
∇WtΦ = p

>
t+1∇Wtдt (xt ,Wt );

pt = [∇xtдt (xt ,Wt )]
>pt+1;

end
return {∇WtΦ : t = 0, . . . ,T }

2.7.4 Further Reading

First, the topic of nonlinear approximation and its di�erences from linear �xed-terms ap-
proximation is reviewed in [DeV98]. The universal approximation theorem for shallow net-
works has been the subject of a lot of attention in the earlier developments in neural net-
works, with many theoretical works proving it under various assumptions and conditions, see
e.g. [Cyb89, HSW89, SW89, SW90, HSW90, Hor91, Hor93, Bar93, Bar94]. More recently, such
approximation theorems have been extended to deep neural networks [Han17, LPW+17, LJ18,
Zho19, SYZ19, EMW19].

Next, on the topic of optimization in machine learning, there are many important extensions
to the simple (S)GD algorithm. A recent review is [BCN18], although there are many new
developments as well. One point of view is that the SGD and its variants can be viewed as a noisy
gradient �ow corresponding to a stochastic di�erential equation, leading to connections between
large-scale optimization, di�usion processes, optimal control and beyond [LTE17, LTE19].

Finally, with regard to deep learning, as alluded to earlier there is also a connection between
deep neural network architecture itself to di�erential equations. The mathematical theory for
this viewpoint is laid out in [LCTE17, EHL+19]. Finally, we have only introduced the simplest of
deep learning architectures. In the next section, we will introduce two classes of deep learning
architectures for structured data.
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2.8 Deep Learning for Data with Structures

In principle, almost any input data (image, time series, tabular values) can be �attened and
concatenated in to a vector in Rd , after which we can apply any of the machine learning
methods introduced in the previous sections, including fully-connected NNs. However, there
are good reasons not to perform such �attening transformations. One reason is that there is
often no canonical means of �attening, and a arbitrarily picked one may destroy some structured
information that was present in the input data. For example, two distinctly di�erent classes of
images, when �attened, may become much harder to distinguish (See Figure 2.11). For these
types of data with intrinsic structures and symmetries, it is desirable to build models that directly
work on these data and respect their structures and symmetries. In this section, we discuss
several deep learning architectures that exploit this fact.

(a) Image (b) Time Series

Figure 2.11: Illustration of the e�ect of permutation on data with spatial or temporal structure.
Applying a permutation on the spatial or temporal indices destroys such structure,
but fully connected neural networks treats these two cases equivalently, thus
unsuitable to process such data types.

2.8.1 Convolutional Neural Networks

In this section, we introduce a popular architecture for image and time series applications,
known as the convolutional neural network (CNN). To motivate ideas, we begin with a quick
introduction to the idea of convolution, which is ubiquitous in signal processing and harmonic
analysis.

Convolutions. Let us consider two real valued functions x ,w : R→ R. The convolution of
w and x , which we denote by w ∗ x , is given by

(w ∗ x)(τ ) =

∫ ∞

−∞

w(t)x(τ − t)dt (2.131)

We shall assume that w,x are such that the above integral exists for all τ . The following basic
properties are immediate from the de�nition of convolutions:
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1. Commutativity: w ∗ x = x ∗w

2. Linearity: w ∗ (λ1x1 + λ2x2) = λ1w ∗ x1 + λ2w ∗ x2
So, what does the convolution do? Let us give some intuitions below.

Example 2.28: Some Intuitions Behind Convolution

Let us consider two real valued random variables U ,V with probability densities w(u)
and x(v) respectively. What is the probability density of U + V ? Observe that for any
value τ , there are in�nite number of possibilities such that u + v = τ . In fact, for any u,
as long as we set v = τ − u we satisfy u +v = τ . Hence, the probability density of U +V
evaluated at some value τ must be obtained by summing, or integrating, the product of
the probability density of U at u and that of V at τ − u over all of u. This is precisely
the integral (2.131), and so the density of U +V is w ∗ x . In this sense, the convolution
operation can be thought of as a fuzzy version of addition, just like how random variables
are fuzzy versions of numbers.
Another more visual illustration is following. Suppose that w is a smooth bump function
and x is some rough function of its argument. Then w ∗ x smooths out x , kind of like how
a myopic person sees the world. This is illustrated below. In fact, as long as w is smooth,
one can show that its Fourier transform decays quickly, and so it has the same smoothing
properties by �ltering out the high frequency components of x when convolved with it.
This is a consequence of the convolution theorem, which says that F (w ∗ x) = F (w)F (x),
where F denotes the Fourier transform.

Discrete Convolutions. While the theory of convolutions of continuous functions plays an
important role in mathematics, particularly in the �eld of probability theory and harmonic
analysis, very often for applications we are faced with discrete signals. They can be discrete in
a generic sense, or more often, they are discrete samples from a continuous signal. One may
think that such a sampling procedure always loses information, but a classical result due to
Shannon [Sha49] shows that if a function is band-limited (i.e. its Fourier transform is compactly
supported), then it can be recovered from discrete measurements.

In machine learning, signals (pictures, time series) are often represented as vectors or tensors,
which may come from discrete samplings from continuous data. To apply the concept of
convolution just like in the continuous case, we need to de�ne a discrete analogue. Given
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two in�nitely-long vectors w = {w(i) : i ∈ Z} and x = {x(i) : i ∈ Z }, we de�ne their discrete
convolution as

(w ∗ x)(k) =
∞∑

i=−∞

w(i)x(k − i). (2.132)

Notice that the usual properties, such as commutativity and linearity, and in fact many other
properties from the continuous case, are retained. In particular, observe that if w is a discrete
bump function, then w also smooths a potentially rough signal x .

Notice that if we were to �ip the kernel w so that w(n) 7→ w(−n), we would have

(w ∗ x)(k) =
∞∑

i=−∞

w(i)x(k + i). (2.133)

Technically, this is not a convolution but rather a cross-correlation, but often in machine learning
there is no need to make such a distinction, since it only involves �ipping the de�nition ofw . We
shall hereafter abuse notation, as is common in machine learning literature and programming
libraries, to refer to the above also as a convolution.

Padding for Finite Convolutions. In practice, however, we can only represent �nite values,
meaning that w and x are �nite vectors. Let us say that their lengths arem and n respectively.
In this case, we need to take care of the boundary conditions. There are a few possible ways to
do so, leading to di�erent types of convolutions. In the following, we shall assume that m < n,
and we will call w the kernel2 or �lter and x the signal.

• Circular convolution:

(w ∗ x)(k) =
m−1∑
i=0

w(i)x(k + i), k = 0, . . . ,n − 1, (2.134)

where x is periodically extended so that x(j) = x(j − n) for j ≥ n.

• Valid convolution:

(w ∗ x)(k) =
m−1∑
i=0

w(i)x(k + i), k = 0, . . . ,n −m, (2.135)

in which case no periodic extension is needed.

• Convolution with same zero padding:

(w ∗ x)(k) =
m−1∑
i=0

w(i)x(k + i − bm/2c), k = 0, . . . ,n − 1, (2.136)

2This is not the same as the kernel as in kernel methods in Section 2.3.
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where x is padded with zeros, so that x(j) = 0 for j < {0, . . . ,n − 1}. The symbol bzc
denotes the biggest integer smaller or equal to z. This is to balance the zero padding on
both sides. Some implementations ignore this balancing and just have x(k + i) in the
above.

Di�erent types of convolutions are illustrated in Figure 2.12.

(a) Circular (b) Valid (c) Same

Figure 2.12: Illustration of di�erent kind of boundary conditions for �nite discrete convolutions.
[TODO:Fix mistake in plot]

2D Convolutions Very often, we want the discrete convolution to deal with images and so
it is useful to de�ne convolutions in two dimensions. For two dimensional w,x (now matrices),
we de�ne

(w ∗ x)(k, l) =
∞∑

i=−∞

∞∑
j=−∞

w(i, j)x(k + i, l + j) (2.137)

or with a “−” sign above, if we do not �ip the �lters. As before, for �nite signals this can be
padded or periodically extended in the same way as in (2.134) to (2.136).

Input Data and Convolution Layer We will now focus on image data, to which convolu-
tional neural networks are most commonly applied. Let us consider an input image x . In the
unstructured case, we typically assume that x ∈ Rd . In the case of images, x represents discrete
samples from a continuous image, so x ∈ Rd×d , where d × d is the number of pixel samples.
The intensity of the image at the (i, j)th pixel is denoted as x(i, j), and is typically a value from 0
to 255 inclusive. This can be further normalized to the range [0, 1].

If we are dealing with monochrome images this is su�cient. However, for colored images we
usually have an additional dimension known as channels. In the case of RGB images, we would
have a d × d matrix for each color, red, green and blue. Hence, the resulting image should be
represented as a rank 3 tensor

xk (i, j), i, j = 0, . . . ,d − 1, k = 0, . . . , c − 1 (c is # channels). (2.138)

For monochrome or black-and-white images, we have c = 1.
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A convolution layer is very much like a fully connected layer. Instead of de�ning a matrix
weights to apply the linear transformation, we have a “matrix”W of convolution �lters, i.e. each
Wlk is a 2D convolution �lter of sizem ×m3. A simple convolution layer applies the following
transformation to an input image xk (i, j)

σ

(∑
k

Wlk ∗ xk + bl

)
. (2.139)

As before σ is a point-wise nonlinearity applied to each element in the tensor and bl are the
biases. What is the output dimension of this transformation? We can see that this is again a
collection of images arranged in channels, where the number of channels is the number of
values the index l can take. For each output channel l , the dimension of the output image
corresponding to that channel depends on the mode of convolution: for circular and same
padded convolutions, we again have a d × d image. For valid convolutions, the image size
will decrease. Eq. (2.139) is the most basic form of a convolution layer, and there are many
variants and generalizations of this, although they mostly comprise of basic building blocks of
transformations such as above.

Why Convolutions? There are in fact many reasons one would want to use convolution
layers instead of fully connected layers for image processing and related applications. In the
following, we will discuss some of them.

First, recall that the convolution operation is a linear operation. Let us look at the 1D case:
suppose that we have length 3 �lter w and we apply it to a signal x ∈ R5 using the circular
convolution boundary conditions. By writing out the product we can see that this is really a
matrix multiplication:

w ∗ x =

©«
w0 w1 w2 0 0
0 w0 w1 w2 0
0 0 w0 w1 w2
w2 0 0 w0 w1
w1 w2 0 0 w0

ª®®®®®¬︸                          ︷︷                          ︸
Cw

©«
x0
x1
x2
x3
x4

ª®®®®®¬
(2.140)

The matrix Cw is known as a Toeplitz matrix. The matrix representation of convolutions high-
lights an important property of convolution networks: weight sharing. Unlike fully connected
networks where every element of the weight matrix can be varied, in a convolution the matrix
representation shares weights across di�erent points of space. To put it in another way, the
structure of Cw ensures that the transformation applied to each spatial coordinate of x are not
independent. This is sensible when working on images. Furthermore, notice that in the case
where x is a very long vector where as the �lter w has short length, then we will get a very
sparse Toeplitz matrix. Together with weight sharing, we can see that although convolution can

3We can also have varying sizes for each �lter
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be represented as a matrix multiplication, it has a much smaller number of trainable variables.
This is good for both learning and for storage.

Lastly, and perhaps most importantly, the convolution operation allows us to place a prior
restriction on our hypothesis space. To understand this point, Let us take the example in (2.140),
but we now translate the input signal to x ′ = (x4,x0,x1,x2,x3), i.e. shift it by one position
downwards. By applying the same convolution with w , we see that w ∗ x ′ is just w ∗ x , but also
shifted one position down. More generally, let T be any translation operation, then we have

w ∗ (Tx) = T (w ∗ x). (2.141)

Due to this fact, we say that convolutions are equivariant with translations. Equivalently,
convolutions and translations commute. Lastly, observe that the point-wise nonlinear operation
z 7→ σ (z) is also equivariant to translations. This means that the entire convolution layer (2.139)
is equivariant to translations.

To see the signi�cance of this, let us consider another concept called invariance. Let T be any
transformation operator on the signal x (e.g. translation), we say that a function f is invariant
under T if

f (Tx) = f (x) for all x . (2.142)

An example of translation invariant mapping is

f (x) =
∑
i

x(i), (2.143)

but this is of course too simple to be used to model practical relationships. The equivariance
property of convolutions allows us to easily construct more complicated models by the following
observation: Suppose that a function д is equivariant and f is invariant with respect to a
transformation T , then f ◦ д is invariant with respect to T . This is immediate since

(f ◦ д)(Tx) = f (д(Tx)) = f (Tд(x)) = f (д(x)) = (f ◦ д)(x). (2.144)

Carrying on this line of reasoning, for any invariant f and any sequence of equivariant {дj },
the function f ◦ д1 ◦ · · · ◦ дJ is invariant with respect to T .

Now, for many image applications, our oracle model is in fact translation invariant. Suppose
we have an image x of a object, whose class label is given by f ∗(x), then, if we translate the
image x we would not expect its class to change: a translated cat is still a cat. Mathematically,
f ∗(T (x)) = f ∗(x) for any translation T . The equivariance property of convolutional layers
enables us to easily build models that are also invariant under translations. This highlights
a important rule in choosing hypothesis spaces: if we know f ∗ satis�es some symmetry
or invariance properties, we want to pick a hypothesis space so that every function in our
hypothesis space also satis�es the same symmetry or invariance. This way, we can e�ectively
decrease the size of the hypothesis space and improve approximation and optimization errors.
This is visualized in Figure 2.13.
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Figure 2.13: Schematic showing that it is desirable to shrink hypothesis space using information
from f ∗. If we know that f ∗ is invariant under T , then it is desirable to choose a
hypothesis spaceH ′ whose member functions also respect such invariance.

Pooling. As another illustration of building invariance, we brie�y discuss the idea of pooling.
This is another type of transformation on signals x that builds invariance. The most commonly
used version is max pooling with stride p, which corresponds to the following operation in 1D:

(Tmpx)(k) = max
i=kp, ...,(k+1)p

x(i). (2.145)

The stride p indicates the length of the pooling window. Figure 2.14 illustrates the pooling
operation in 1D and 2D. Notice that this transformation operation decreases the signal size by p
times. Moreover, pooling has invariance to local deformations: if within each pooling window
the signal x is deformed by permuting its pixel values, then the output remains invariant. This
is another way to build another type of invariance that is useful in many image applications.
We note here that there are many other variants of pooling, including average pooling and
un-strided pooling, to name a few [GBC16].

Deep CNN Architecture. We conclude this section by giving an example of a basic deep
convolutional neural network (CNN) architecture. We start with some multi-channel image
x ∈ Rd×d×c . Just like in deep fully connected neural networks, we recursive apply the following
operations:

x0 = x

xt+1 = TmpTconvxt , t = 0, . . . ,T − 1
f (x) = TfcxT ,

(2.146)

where Tconv refers to the simple convolution layer (2.139) and Tmp is the max pooling layer
de�ned in (2.145). After each transformation, we may call xt a feature map, which is a result
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(a) 1D (b) 2D

Figure 2.14: Max pooling operation in 1 and 2 dimensions.

of the convolution and pooling operations. In the �nal layer, we �atten the image into a long
vector and apply a simple (usually 1-2 hidden layers) fully connected NN, Tfc to yield our
model predictions. Just as in Section 2.7.2, the network can be trained with GD/SGD with
backpropagation. The trainable weights are the convolution weights and biases, together with
the weights in the fully connected layers at the end. We illustrate this simple CNN in Figure 2.15.
Note that there are many variants to the basic architecture and the reader is referred to [GBC16]
and also current research literature for further exploration.

Figure 2.15: A basic deep CNN architecture.

2.8.2 Recurrent Neural Networks

Just like image data, time series data also exhibit some structure. Instead of spatial information,
we must now take into account temporal information and correlations. One neural network
architecture suited for such applications is recurrent neural networks. In this section, we will
brie�y introduce the basics of recurrent neural networks.
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Time Series Data. We will denote an input data from a time series as

x = {x(τ ) : τ = 1, . . . ,τmax}. (2.147)

Here, τ denotes time and τmax is the terminal length and can be∞ for some applications. Each
xτ may also contain additional structure (e.g. an image, in which x represents a video sequence),
but for simplicity of exposition we will assume xτ ∈ Rd is a vector for each τ . Corresponding
to an input time series x is an output. There are two types of outputs that one can consider. In
the �rst type, y is just a scalar number or a class that corresponds to the entire time series input
x . In the second type, the output y itself can also be a time series, in which case we need to
make a prediction for every time step τ .

Recurrent Neural Networks and Parameter Sharing in Time Our goal is to build a
relationship between x and y, which is again related by some oracle f ∗, except that this oracle
now works on the temporal sequence and may also produce a temporal sequence as output.

Recurrent neural networks (RNN) attempt to model the relationship between x andy by learning
a hidden dynamical system. The essence of the model is the following di�erence equation

hτ+1 = д(hτ ,xτ+1;θ )
oτ = u(hτ ,ϕ).

(2.148)

The trainable parameters are θ ,ϕ and the sequence of outputs {oτ : τ = 1, . . . ,τmax} is the
prediction from our RNN model. The parameters θ ,ϕ are trained so that {oτ } closely approx-
imates yτ . If only a single input is required, then only oτmax is used for prediction. Just as in
traditional neural networks, the simplest RNN can be formed by taking д and u to be 1-layer
neural networks, i.e.

д(h,x ,θ ) = σ (Whh +Wxx + b), θ = (Wh ,Wx ,b),

u(h,ϕ) = σ (Woh + bo), θ = (Wo ,bo).
(2.149)

There are of course many variants to this basic architecture, e.g. д,u can be deep, or even
convolutional neural networks.

The most important point to observe is that unlike deep neural networks we have seen before,
although the forward inference of RNNs requires repeated application of transformations, in
each “layer” in the τ direction, we always use the same set of parameters. In other words, we
share parameters in the time-wise (τ ) direction, just like how we share parameters in CNN in
the space direction. For this reason, we di�erentiate this type of networks from classical deep
networks, which we usually call feed-forward neural networks. In the case of RNNs, there is
actually a loop in the computational graph, as illustrated in �gure 2.16.

Training Recurrent Neural Networks. It turns out that training RNNs is almost the same
as in feed-forward networks. We can simply unroll the graph in Figure 2.16 to a feed-forward-
like structure, as shown in Figure 2.17. Again, notice that di�erent from truly feed-forward
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Figure 2.16: A basic RNN architecture. Note that unlike feed-forward networks, the graph has a
cyclic node modelling the evolution of the hidden states {hτ }.

networks, the weights at every unrolled layer are tied, or shared. After unrolling, we can
proceed exactly as before and use backpropagation to compute the gradients with respect to all
parameters. This is known as backpropagation through time (BPTT) [Wer90].

Figure 2.17: An unrolled RNN. It is important to note that the same parameters θ ,ϕ are shared
for every unrolled layer. This is unlike feed-forward networks.
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2.8.3 Further Reading

As CNNs and RNNs saw a ton of development in recent years, it is impossible to give a full
account of the detailed network architectures and theoretical underpinnings. The interested
reader is referred to a modern reference [GBC16] as well as up-to-date literature on ArXiV for
more thorough exposition. We will name some interesting topics in this area that is missing
in these notes. First, we only discussed the simplest CNN components, but there are many
important variants and improvements, including graph CNNs (see [WPC+19]) and attention
mechanisms [VSP+17], just to name a few. Besides CNNs, there are also other methods to
build invariance, such as scattering transform neural networks [Mal16]. On the side of RNNs ,
there are many more complex architectures to handle time series data, particularly those with
long time dependence. These include recursive neural networks [Pol90, Bot14] and gated
networks (LSTM, GRU) [HS97, CVMG+14]. They are very powerful models for time series data,
particularly in the area of language modelling.

2.9 Basic Learning Theory

So far have we introduced various supervised learning models and discussed their approximation
and optimization properties. We have also made some primarily empirical observation of their
generalization performance. In this section, we introduce some basic concepts in learning
theory that concretizes, in a mathematical sense, the problem of generalization and present
some basic generalization bounds for simple learning scenarios. We begin with a review of
relevant concepts in probability theory.

2.9.1 Review: Basic Concepts in Probability

In this section, we quickly review some basic concepts and notions in probability that are
relevant to the rest of this section on learning theory.

Sets. The study of sets forms the basis of mathematics. This is especially so in probability
and statistics, where sets and operations amongst sets play a fundamental role. Let Ω be set,
which is a collection of “stu�”. We recall the following notions

1. An element of Ω, ω is an object that is contained in Ω. We denote this as ω ∈ Ω. If ω is
not contained in Ω, we write ω < Ω.

2. A set Ω is empty if there are no ω such that ω ∈ Ω. In that case we write Ω = � and call
it an empty set.

3. A subset A of Ω, written as A ⊂ Ω, is a set such that every ω ∈ A satis�es ω ∈ Ω.

4. Consider two subsets A,B ⊂ Ω. Then, the intersection A∩B is the set {ω : ω ∈ A and ω ∈
B}. Their union, A ∪ B is {ω : ω ∈ A or ω ∈ B}.
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5. The set A \ B is the set {ω : ω ∈ A and ω < B}.

6. A and B are disjoint if A ∩ B = �.

7. If Ω contains only a �nite number of elements, we de�ne |Ω | to be the number of elements.
This can be extended to the general notion of cardinality, which applies to both �nite and
in�nite sets.

Probability. An axiomatic study of probability started with the seminal work of Andrey
Kolmogorov in the 1930s, building on the work of Émile Borel, Henri Lebesgue and others on
set theory and measure theory. We will only review the main concepts without going into the
abstract mathematical underpinnings:

1. Sample space: Ω (all possible events that can happen)

2. An event: A ⊂ Ω (some combination of things that happen)

3. Probability measure: A probability measure P assigns each combination of things hap-
pening a probability of it happening, i.e. P(A) is the probability that A happens. The
probability measure satis�es the following properties:

a) P(A) ∈ [0, 1] for any A.

b) P(Ω) = 1.

c) Let Aj , j = 1, 2, . . . be disjoint, then P(∪jAj ) =
∑

j P(Aj ).

These properties are enough to derive all properties that you may know, such as law
of large numbers and central limit theorems! This is the primary contribution of Kol-
mogorov’s work, which gave the theory of probability a concrete axiomatic basis. Let us
list some properties that we will need later below.

4. If A ⊂ B, then P(A) ≤ P(B)

5. P(A ∪ B) ≤ P(A) + P(B). Note that by induction, this implies P(∪mj=1Aj ) ≤
∑m

j=1 P(Aj ) for
allm ≥ 1. This is known as the union bound, which will become useful later.

6. Random variables: random variables are functions from Ω into Rd . The simplest way to
think of them is to just treat Ω = Rd , in this case a random variable x is just a random
vector in Rd .

7. Distribution: for each random variable x , we can identify P with a probability measure
µ on subsets of Rd . We call it the distribution of x and write x ∼ µ. It has the property
that the probability of x ∈ A for some A ⊂ Rd is given by µ(A). We have the following
integral representation

Px∼µ [x ∈ A] ≡ µ(A) =

∫
A
dµ ≡

∫
Rd
1y∈Adµ(y) (2.150)
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8. Densities: If for any zero-volume set A, µ(A) is also 0, then we say that µ is absolutely
continuous with respect to the Lebesgue measure. Essentially, this means that µ assigns
small probabilities to sets of small volume, and contains no “lumps”. In this case, we can
show that µ has a representation via a probability density ρ : Rd → R+, such that

µ(A) =

∫
Rd
1y∈Aρ(y)dy. (2.151)

This is a consequence of the Radon-Nikodym theorem and basically says that µ(A) is like
a weighted version of the volume of A, applying a weight to each point y equal to ρ(y).

9. Expectation: Let u : Rd → R be any function. Then, the expectation of u(x), denoted
by Ex∼µ [u(x)] is the average value of u(x) when x has distribution µ. Again, it has the
integral representation

Ex∼µ [u(x)] =

∫
Rd

u(y)µ(dy)
(if no lumps)
=

∫
Rd

u(y)ρ(y)dy. (2.152)

Notice that using this de�nition and point 8 above, we can see that

Px∼µ [x ∈ A] ≡ µ(A) ≡ Ex∼µ [1x ∈A] (2.153)

In short, probabilities operates on sets, whereas expectations operates on functions.
Probability can be seen as an expectation operating on the function which is the indicator
function of the set.

10. Independence: two events A and B are independent if P(A ∩ B) = P(A)P(B). Phrased in
terms of random variables, x and x ′ are independently distributed if P[x ∈ A,x ′ ∈ B] =
P[x ∈ A]P[x ′ ∈ B] for all A,B ⊂ Rd . In words, the outcome of one of them does not a�ect
that of the other in any way.

11. independently, Identically Distributed (i.i.d.): We say a collection of random variables
{x1, . . . ,xN } is i.i.d. with distribution µ if each xi ∼ µ.

2.9.2 The PAC Framework

We now introduce a basic setting for developing learning theory, known as the probably ap-
proximately correct (PAC) framework. The main intuition behind developing this framework is
the following conundrum: we want some precise measure of the performance of our model, say
accuracy, on a test set, but

1. The training set is usually randomly sampled from some distribution, so our trained
model is going to be random, and furthermore, the performance of a randomly generated
test set is going to be random.

2. The accuracy for the worst case tends to be bad, but this is not representative. In fact,
almost no model can achieve perfect accuracy.
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The PAC framework resolves these issues by allowing us to ascertain that a model is performing
well if it is correct up to some accuracy allowance (approximately) with high probability
(probably). Let us now formalize this idea.

We denote by X the space of inputs and Y the space of labels. Recall that f ∗ : X → Y is an
oracle function we would like to approximate using functions from a chosen hypothesis space
H . For simplicity, in this section we assume that Y = {0, 1}, meaning that we have a binary
classi�cation problem, although the results presented can be extended to more general scenarios.
We consider the slightly more general case where f ∗ itself belongs to a space of concepts C. In
other words, we want to de�ne learning notions that holds not for just one, but for a collection
of target oracle functions.

Let us now consider a datasetD = {xi ,yi ≡ f ∗(xi )}
N
i=1 where each xi is independent, identically

distributed (i.i.d.) according to some distribution µ on X. Recall that for each f ∈ H , we can
de�ne the following risks using the zero-one loss

Empirical Risk Remp(f ) =
1
N

N∑
i=1

1f (xi ),f ∗(xi ) (2.154)

Population/Expected Risk Rpop(f ) = Ex∼µ1f (x ),f ∗(x ) (2.155)

In practical learning, we can minimize the empirical risk, while in reality the expected risk
controls the actual generalization capabilities of our model on unseen data. In the following,
we shall use the notation ED∼µ to denote the expectation taken with respect to the dataset D
where each xi is i.i.d. with distribution µ.

Exercise 2.29

Show that for a �xed function f , ED∼µRemp(f ) = Rpop(f ). This shows that the empirical
riskRemp(f ), which is random, is an unbiased estimator ofRpop(f ), the population/expected
risk. Is the i.i.d. assumption on {xi } necessary for this to hold?

Let us now de�ne a notion of learnability under the PAC framework.
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De�nition 2.30: PAC-Learnability

We say a concept space C is PAC-learnable if there exists an algorithmA and a polynomial
function poly(·, ·) such that for any ϵ,δ > 0, any distributions µ and any oracle f ∗ ∈ C,A
returns an approximator f̂ such that as long as N ≥ poly(1/ϵ, 1/δ ), we have

PD∼µ [Rpop( f̂ ) ≤ ϵ] ≥ 1 − δ . (2.156)

If further that A runs in poly(1/ϵ, 1/δ ), then C is said to be e�ciently PAC-learnable and
A is called a PAC-learning algorithm for C.

Remark. In a more general de�nition, the poly function can also depend on other
properties pertaining to the concept space C and the input space X, e.g. their complexities.

The most important point in the above is formula (2.156), which is the mathematical way of
saying that our returned approximator, f̂ , is probably (with probability 1−δ ) and approximately
(with error ϵ) correct when evaluated in terms of the population risk.

Let us emphasize certain key aspects of this de�nition:

1. There are no speci�c assumptions on the input distribution µ.

2. Training and testing samples are drawn from the same distribution.

3. PAC-learnability is a property of a concept space C.

2.9.3 Examples of PAC-learnability and PAC-learning Algorithms

In this section, we discussion some examples of PAC-learnable concept spaces as well as PAC-
learning algorithms that can be constructed, together with how a formula like (2.30) may
arise.

Learning Concentric Circles Under the Uniform Distribution. We begin with an exam-
ple that is not quite what we want to achieve in the end. This is because we are going to assume
that µ is a particular distribution, namely the uniform distribution. However, recall that we
emphasized previously that PAC learnability statement should be distribution independent –
it should hold for any µ. Nevertheless, this example will serve highlight the key insight that
shows why we would expect a PAC-learning guarantee to hold for the current problem to be
introduced, and similar problems.

We consider X = R2 so that we are performing binary classi�cation in the 2D plane. We shall
assume that µ is the uniform distribution on the unit square [−1/2,+1/2]2. This is convenient
since for any set A ⊂ [−1/2,+1/2] that we can ascribe a notion of area to (i.e. it is Lebesgue
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measurable), we must have Px∼µ [x ∈ A] = Area(A) =
∫
A dy. In simpler words, probability is

just area under the uniform distribution – this fact will help us visualize things more easily.

Let us consider the concept space C to be indicator functions of disks in the unit square, i.e.

C =
{
f : f (x) = 1‖x ‖≤r , 0 ≤ r < 1/2

}
. (2.157)

From the concept space we shall pick some oracle function f ∗ that generates our dataset
D = {xi ,yi = f ∗(xi )}

N
i=1 with xi ∼ µ. Figure 2.18 shows the oracle classi�er f ∗(x) = 1‖x ‖≤r ∗

and its predictions on our dataset. Our goal is to �nd some f̂ fromH (which we take to also be
= C in this example) that approximates f ∗ not just on the training dataset but also on a testing
set produced from µ.

Figure 2.18: Illustration of the problem of learning concentric circles. f ∗ predicts everything
within the diskU ∗ to be 1, and 0 otherwise. On the other hand, f̂ predicts everything
inUD to be 1, whereUD is the smallest circumscribing circle of the positive examples
in the training set. On the right, we see that f ∗ and f̂ agree on all predictions
except the annulus U ∗ \UD .

Let us consider the following algorithm that gives us a candidate f̂ : we �nd the smallest circle
that circumscribes the training data for which yi = f ∗(xi ) = 1. Mathematically, we can write

f̂ (x) = 1‖x ‖≤rD , rD = max{‖xi ‖ : yi = 1, i = 1, . . . ,N }. (2.158)

and in Figure 2.18 we also plot f̂ . Notice the following important properties:

1. We can de�ne U ∗ = {x : ‖x ‖ ≤ r ∗} as the disk of radius r ∗ and UD as the disk of radius
rD . Then f ∗ = 1U ∗ and f̂ = 1UD .

2. f̂ always has zero training error, Remp( f̂ ) = 0, since it classi�es all training points correctly.

73



2 Supervised Learning

3. f̂ (x) ≤ f ∗(x) for all x , since rD ≤ r ∗.

4. The only region where f ∗(x) , f̂ (x) is when rD < ‖x ‖ ≤ r ∗, i.e. x belongs to the annulus
U ∗ \UD . Hence, we have

Rpop( f̂ ) = Ex∼µ1f ∗(x ),f̂ (x ) = Px∼µ [x ∈ U
∗ \UD] = Area(U ∗ \UD). (2.159)

Now, let us derive a PAC learning statement for this problem. This amounts to �nding some N
large enough so that Rpop( f̂ ) = Area(U ∗ \UD) ≤ ϵ with probability 1 − δ , for any �xed ϵ,δ > 0.
Note that this probability is with respect to the randomness in D. Putting it another way, we
can try to derive an upper-bound for PD∼µ [Area(U ∗ \UD) > ϵ].

Let us proceed in the following steps, which is also illustrated in Figure 2.19:

1. When is Area(U ∗ \UD) > ϵ?

a) If Area(U ∗) ≤ ϵ , then Area(U ∗ \ UD) ≤ ϵ . Thus, Area(U ∗ \ UD) > ϵ only if
Area(U ∗) > ϵ .

b) Now suppose Area(U ∗) > ϵ . Then, by continuity of the area, we can shrink U ∗ to a
smaller disk U ′ of radius r ′ such that Area(U ∗ \U ′) = ϵ . Suppose that UD contains
U ′, then it is clear that the annulus U ∗ \UD is contained in U ∗ \U ′, which then
implies Area(U ∗ \ UD) ≤ Area(U ∗ \ U ′) = ϵ . Hence, Area(U ∗ \ UD) > ϵ only if
UD ⊂ U ′. This happens only if UD ∩ (U ∗ \U ′) = �, i.e. UD cannot intersect with
an annulus with an area equal to ϵ .

2. Hence, we have

PD∼µ [Rpop( f̂ ) > ϵ]

= PD∼µ [Area(U ∗ \UD) > ϵ]
≤ PD∼µ [UD ∩ (U

∗ \U ′) = �]

= Px∼µ [x < U
∗ \U ′]N [i.i.d. assumption]

= (1 − ϵ)N [Area(U ∗ \U ′) = ϵ]
≤ exp (−ϵN ) . [1 − z ≤ exp(−z)] (2.160)

3. We want the right hand side of the above to be smaller than or equal to δ , so we can �nd
a condition for N for this to be true by solving exp(−ϵN ) ≤ δ , which gives N ≥ 1

ϵ log
1
δ .

Hence we have shown that for any δ , ϵ > 0, as long as N ≥ 1
ϵ log

1
δ , we have

Rpop( f̂ ) ≤ ϵ with probability of at least 1 − δ . (2.161)

This is almost a PAC-learning guarantee, except that we have assumed a speci�c distribu-
tion µ.
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4. In fact, we can write the result (2.161) in another way. Let us just choose N = 1
ϵ log

1
δ so

that (2.161) holds. Then, we can eliminate ϵ and obtain

|Rpop( f̂ ) − Remp( f̂ )︸   ︷︷   ︸
=0

| ≤
1
N

log 1
δ
, (2.162)

which holds with probability at least 1−δ . This is known as a bound on the generalization
gap, or a generalization bound. These bounds are extremely useful in learning theory,
because it tells us the e�ect of increasing the sample size on generalization performance.
In words, it says that the generalization error of our model f̂ , which always minimizes
the empirical risk, decreases at a rate O(N −1) as the number of samples N increases.

Figure 2.19: Illustration of the construction of U ′ for overlapping and non-overlapping cases.

Learning Concentric Circles in General The main reason why the previous does not
constitute a strict PAC learning result is the fact that we assumed µ is the uniform distribution.
In particular, PAC learning results should not depend on a speci�c choice of µ.

It turns out that this assumption is not at all necessary in the general case, by the following
crucial observation: the uniform distribution allows us to associate probabilities with areas. In
general, distributions are “weighted” areas, and obeys essentially the same rules. Hence, the
previous arguments work exactly the same, when we just replace Area(·) = Px∼µ [x ∈ ·].

To simplify things, we shall slightly restrict µ to have no “lumps”. In other words, we assume
µ is such that Px∼µ (x ∈ A) = 0 if Area(A) = 0. Mathematically, we say that µ is absolutely
continuous with respect to the Lebesgue measure (See Section 2.9.1). Not all distributions have
probability densities, but they can all be approximated by those that do. We will come back to
this point later to see how to relax this assumption to show the statement in entire generality.

We proceed as before and replace Area(A) by Px∼µ [x ∈ A], which we can denote by µ(A). The
reason why we can do this is that since µ is absolutely continuous, µ(A) changes in a continuous
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way as we shrink A, just like the area, so all previous arguments follow through without any
changes.

This allows us to show

PD∼µ [Rpop( f̂ ) > ϵ]

= PD∼µ [µ(U
∗ \UD) > ϵ]

≤ PD∼µ [UD ∩ (U
∗ \U ′) = �]

= Px∼µ [x < U
∗ \U ′]N [i.i.d. assumption]

= (1 − ϵ)N [µ(U ∗ \U ′) = ϵ]
≤ exp (−ϵN ) . [1 − z ≤ exp(−z)] (2.163)

which implies the general PAC-learning result for learning concentric circles

Rpop( f̂ ) ≤ ϵ with probability of at least 1 − δ , (2.164)

as long as N ≥ 1
ϵ log

1
δ .

Remark. Finally, we discuss how the no-lumps assumption on µ can be relaxed. Clearly, if µ
only gives non-zero probability to a �nite number of points, then this assumption is not going
to hold. However, there are two ways to extend the results above

1. We can replace the de�nition of r ′ not by the value exactly at which µ(D∗ \D ′) = ϵ but by

r ′ = sup{r : Px∼µ [r ≤ ‖x ‖ ≤ r ∗] ≥ ϵ} (2.165)

This is the same if µ has no lumps, but this supremum always exists whether or not µ has
lumps. This allows us to carry out all the calculations as before exactly in the same way.

2. Alternatively, we can approximate µ by a sequence of µ j which are lump-less, and µ j → µ
weakly, or in distribution. Since PAC learning bounds hold for any µ j , it must also hold
in the limit.

These generalizations require some technical details but introduces no new ideas over the
simpli�ed situation, and hence we can ignore them in these notes.

Learning Rectangles. As another example, let us consider the problem of learning rectangles
instead of circular disks for classi�cation. The setting is mostly identical as before, except now
that f ∗ is an indicator function of a axes-aligned rectangle [a,b] × [c,d] (See Figure 2.20). As
before, given a dataset D we pick the smallest rectangle that contains all the data and set the
approximator f̂ to be the indicator function on the rectangle. The rectangle corresponding to
f ∗ is denoted U ∗, and that corresponding to f̂ is denoted UD .

We proceed in the same way as before, again assuming µ has no lumps and noting that this can be
relaxed by sup/inf type arguments, or by limiting arguments. We upper-bound PD∼µ [Rpop( f̂ ) >
ϵ] = PD∼µ [µ(U

∗ \UD)] by the following steps:
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Figure 2.20: Illustration of the problem of learning rectangles. As before, f ∗ predicts everything
withinU ∗ to be 1, and 0 otherwise. On the other hand, f̂ predicts everything inUD
to be 1, where UD is the smallest circumscribing square of the positive examples in
the training set. On the right, we see that f ∗ and f̂ agree on all predictions except
in the gap U ∗ \UD .

1. When is µ(U ∗ \UD) > ϵ?

a) If µ(U ∗) ≤ ϵ , then µ(U ∗ \UD) ≤ ϵ . Thus, µ(U ∗ \UD) > ϵ only if µ(U ∗) > ϵ .

b) Now suppose µ(U ∗) > ϵ . Then, by continuity, we can shrink U ∗ to a smaller
rectangle, by shrinking all of its sides by forming 4 rectangles A1,A2,A3,A4 such
that each of them has µ(Aj ) = ϵ/4 (See Figure 2.21). If U ∗ overlaps with all of
A1, . . . ,A4, then U ∗ \UD is contained in ∪jAj , and hence cannot have probability
more than ϵ , since each of them only has probability ϵ/4. This is a form of union
bound. Hence, µ(U ∗ \UD) > ϵ only if UD does not overlap with at least one of Aj .
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2. Hence, we have

PD∼µ [Rpop( f̂ ) > ϵ]

= PD∼µ [µ(U
∗ \UD) > ϵ]

≤ PD∼µ [∪
4
j=1{UD ∩Aj = �}]

≤

4∑
j=1
PD∼µ [{UD ∩Aj = �}] [Union bound]

≤

4∑
j=1
PD∼µ [xi < Aj for all i = 1, . . . ,N ]

=

4∑
j=1

(
Px∼µ [x < Aj ]

)N [i.i.d. assumption]

≤ 4 (1 − ϵ/4)N [µ(Aj ) ≥ ϵ/4]
≤ 4 exp (−ϵN /4) . [1 − z ≤ exp(−z)] (2.166)

3. We want the right hand side of the above to be smaller than or equal to δ , so we can �nd a
condition for N for this to be true by solving 4 exp(−ϵN /4) ≤ δ , which gives N ≥ 4

ϵ log
4
δ .

Hence we have shown that for any δ , ϵ > 0, as long as N ≥ 4
ϵ log

4
δ , we have

Rpop( f̂ ) ≤ ϵ with probability of at least 1 − δ . (2.167)

This is again a PAC-learning guarantee

4. As before, we can write (2.167) in another way by choosing N = 4
ϵ log

4
δ , we can eliminate

ϵ and obtain the generalization bound

|Rpop( f̂ ) − Remp( f̂ )︸   ︷︷   ︸
=0

| ≤
4
N

log 4
δ
, (2.168)

which holds with probability at least 1 − δ .

Exercise 2.31

Derive the PAC learning results for the concentric circles case, when instead of choosing
f̂ as the smallest circle consistent with the data, we choose it as the largest one, i.e.

rD = min{‖xi ‖ : yi = 0, i = 1, . . . ,N }. (2.169)

2.9.4 Generalization Bounds for Finite Hypothesis Space

We saw with previous examples that PAC-learning results and generalization bounds can be
derived for simple cases where we chose a particular space of concepts C. It begs the question
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Figure 2.21: Illustration of the construction of A1, . . . ,A4 and the bounds for the overlapping
and non-overlapping cases.

of whether we can do this for general concept spaces. In its full generality, this requires some
more sophisticated tools from probability theory that is out of the scope of the course, but here
we discuss a simple one that can be proven that relies on the following assumptions:

1. The hypothesis space H and the concept space C coincide, i.e. f ∗ always lies in our
hypothesis spaceH . In this case, the approximation error is always 0.

2. The hypothesis spaceH is �nite, i.e. |H | < ∞.

3. For any dataset D, the algorithm A returns a consistent hypothesis, i.e. Remp( f̂ ) = 0.

Under these assumptions, we can now show the following general result.

Theorem 2.32: PAC-Learning Guarantee

Let the assumptions above be satis�ed. Then, for any δ , ϵ > 0, we have

PD∼µ [Rpop( f̂ ) ≤ ϵ] ≥ 1 − δ if N ≥ 1
ϵ

(
log |H | + log 1

δ

)
. (2.170)
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Proof 2.32: PAC-Learning Guarantee

De�neHϵ := { f ∈ H : Rpop(f ) > ϵ}. By de�nition, for any f ∈ Hϵ , we have

PD∼µ [Remp(f ) = 0] = PD∼µ [f (xi ) = f ∗(xi ) for all i = 1, . . . ,N ]

=
(
Px∼µ [f (x) = f ∗(x)]

)N [i.i.d. assumption]

=
(
1 − Px∼µ [f (x) , f ∗(x)]

)N
< (1 − ϵ)N [Since Px∼µ [f (x) , f ∗(x)] = Rpop(f ) > ϵ] (2.171)

Observe that Rpop( f̂ ) > ϵ only if there exists a consistent f ∈ Hϵ , i.e. Remp(f ) = 0. Hence,
we have

PD∼µ [Rpop( f̂ ) > ϵ] ≤ PD∼µ [∪f ∈Hϵ {Remp(f ) = 0}]

≤
∑
f ∈Hϵ

PD∼µ [Remp(f ) = 0] [Union bound]

≤ |Hϵ |(1 − ϵ)N [Using (2.171)].
≤ |H |(1 − ϵ)N (2.172)
≤ |H |e−N ϵ [1 − z ≤ exp(−z)]. (2.173)

Solving |H |e−N ϵ ≤ δ for N completes the proof. �

Remark. Equivalently, Theorem 2.32 gives the generalization bound

Rpop( f̂ ) ≤
1
N

(
log |H | + log 1

δ

)
(2.174)

which holds with probability at least 1 − δ . This is interesting: if we ignore the δ term, then the
generalization error is controlled by log |H |/N . As before, if we increase the sample size, the
generalization error drops. On the other hand, the general case says something more: suppose
we have a �xed sample size, then increasing the complexity of our hypothesis spaceH , meaning
that we increase |H |, then this error bound becomes bigger and bigger. Importantly, since this
is an upper-bound, the bound itself being large does not imply that the actual generalization
error is large. Instead, it means that this bound can tell us very little about the generalization
error in the case where our hypothesis space is highly complex. In this case, we say that the
bound is vacuous. The study of the generalization properties of models where classical bounds
are vacuous is an intense area of research in machine learning theory today.

2.9.5 Further Reading

Again, we have only discussed the very basics of learning theory, which is a large subject
warranting its own course(s). The interested reader may refer to reference [MRT18], Chapter
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2 and 3, for a more thorough treatment. Note that much of the materials in this chapter is
adapted from [MRT18], albeit with some simpli�cations. It is particularly useful to read on the
generalizations of the basic results here to inconsistent cases, as well as in�nite-dimensional
hypothesis spaces. Modern research on dealing with cases where the bounds are vacuous can be
found in [ZBH+16, DZPS18, ALS18, ALS18, LL18, ACH18, ADH+19, Coo18, OS19, CG19, OS18]
and new papers on this topic come out very often.
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3 Unsupervised Learning

3.1 Overview

Unsupervised learning represents a large set of problem statements in machine learning that
does not involve approximating some input-label relationship. In particular, we are given a
dataset D = {xi }Ni=1 and our goal is to learn some often task-agnostic properties of the dataset.
In some sense, unsupervised learning is any learning problem that is not supervised learning,
so it contains a much richer class of problems. Below, we give some examples of unsupervised
learning tasks:

1. Dimensionality Reduction: Suppose that each data point xi is very high-dimensional, e.g.
it represents a picture of very high resolution. Can we �nd a reduced representation of
the data that still retains its key features, but lives a much lower dimensional space?

2. Clustering: Can we �nd clusters within the dataset, so that data points within clusters
share higher similarities than across clusters?

3. Density Estimation: Suppose that each data point xi is sampled from some underlying
distribution µ∗ which is unknown to us. Can we model µ∗, e.g. estimate a µ̂ from the data
so that µ∗ ≈ µ̂?

4. Generative Models: Similar to density estimation, we suppose xi ∼ µ∗. However, instead
of modelling µ∗ explicitly, can we build a model that produces fresh samples x ′i that are
approximately distributed according to µ∗?

These are of course not exhaustive, but they represent some main class of unsupervised learning
formulations that are useful in practice. As in the supervised case, we shall start with linear
models and work our way towards more complex and modern methodologies.

3.2 Principal Component Analysis

Principal component analysis, or PCA for short, is an incredibly useful method for dimensional
reduction and compression of data. It is essentially an eigenvalue decomposition of a sample
covariance matrix. For this reason, we will �rst review some associated concepts in linear
algebra.
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3.2.1 Review: Eigenvalues and Eigenvectors

In this section we will use the following basic properties of eigenvalues and eigenvectors.
Readers unfamiliar with any of these properties should refer to standard linear algebra references,
e.g. [GVL96].

1. For a real square matrix (d × d) A, an eigenvector of A with associated eigenvalue is a pair
(u, λ) such that

Au = λu . (3.1)

Here, u is a non-zero, d-dimensional vector and λ is a scalar.

2. We say thatA is diagonalizable if there exists a diagonal matrix Λ and an invertible matrix
P such that A = PΛP−1.

3. A is symmetric if A> = A.

4. A is orthogonal if A>A = AA> = I . Equivalently, A> = A−1.

5. A well-known result is that if A is symmetric, then A is diagonalizable by orthogonal
matrices with real eigenvalues, i.e. there exists an orthogonal U and real diagonal matrix
Λ such that

A = UΛU >. (3.2)

In particular, Λ is a diagonal matrix of eigenvalues and columns {uj } of U are the corre-
sponding eigenvectors. By scaling, {uj } can be further made orthonormal, in the sense
that

u>i uj = δi j =

{
1 i = j,

0 otherwise.
(3.3)

6. A symmetric matrix A is positive semi-de�nite if x>Ax ≥ 0 for all x ∈ Rd . Equivalently,
A is positive semi-de�nite if all eigenvalues of A non-negative. A is positive de�nite if
x>Ax > 0, or equivalently if all eigenvalues are strictly positive.

7. For a positive semi-de�nite matrix with eigen-decomposition A = UΛU >, where the diag-
onal matrix of eigenvalues is Λ = diag(λ1, . . . , λd ), we will assume that the eigenvalues
are arranged in decreasing order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0.

3.2.2 Two Formulations of PCA

The primary problem of PCA is to discover, via a linear transformation, a reduced representation
of a set of data D = {xi }Ni=1. To begin with, let us consider an example of how to summarize a
two-dimensional dataset in one dimension.
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Example 3.1: Compressing a 2D Dataset

Let us look at a simple dataset with two variables comparing US and EU shoe sizes.
Although there are two variables, it is clear even without looking at the graphs that there
should be only one main direction of variation, the direction of increasing size!

Let us try to compress the centered data (right plot) to a one-dimensional subspace,
meaning projecting it to a line passing through the origin. We can think of two criteria
for choosing a line: we can either maximize the variation (variance) of the data along the
direction of the line, or we can minimize the error incurred by projecting the data to the
line. It appears in the plot that the red line is optimal in both senses.

As Example 3.1 shows, there are two considerations for how to compress/project the data: one
to maximize the variance and one to minimize the error. In the example, they led to the same
answer. It turns out that in general, this is also true. We now introduce these formulations and
see how they relate to the eigenvalues and eigenvectors.

Maximize Variance Formulation. Suppose that xi ∈ Rd for i = 1, . . . ,N and we want to
�nd a linear transformation from Rd to Rm with m ≤ d (and often much smaller). Without loss
of generality, we shall assume that the data is centered as follows: For each j = 1, . . . ,d , de�ne

x j =
1
N

N∑
i=1

xi j (3.4)

to be the sample mean of the jth dimension of the data. We write x ∈ Rd as the vector of samples
means with its jth coordinate as the above. We assume that x = 0. This can always be achieved
by subtracting x from each xi . Now, the sample covariance matrix of this dataset is

S =
1
N

N∑
i=1

xix
>
i i.e. S jk =

1
N

N∑
i=1

xi jxik , j,k = 1, . . . ,d, (3.5)

Now, we start by considering the case m = 1, i.e. we are transforming to a one-dimensional
space. Then, a general linear transformation of xi to a scalar is given by

zi = u
>xi , u ∈ Rd , ‖u‖ = 1. (3.6)
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Note that we assumed ‖u‖ = 1, i.e. u is a unit vector, so that this corresponds to a projection
map. We want to choose u so that the sample variance of {zi }Ni=1 is maximized. We can compute
the sample variance as follows

Var({zi }) =
1
N

N∑
i=1
(zi − z)

2 =
1
N

N∑
i=1

u>xiu
>xi = u

>Su (3.7)

Hence, the optimal transformation u1 is given by the optimization problem

u1 = argmax
u ∈Rd , ‖u ‖=1

u>Su . (3.8)

How do we solve this problem? It should be intuitively clear from the interpretation of eigenval-
ues that u1 should be the the normalized eigenvector corresponding to the largest eigenvalue.
We can check that this is in fact the case using the method of Lagrange multipliers.

Writing the constraint ‖u‖2 = u>u = 1 in terms of Lagrange multipliers, we have an uncon-
strained maximization problem

u>Su> + λ(1 − u>u) (3.9)

Di�erentiating with respect to u gives

Su = λu, (3.10)

which means that any stationary point of our problem must be an eigenvector with eigenvalue
λ. To see which is a maximum, note that if Su = λu, then

u>Su = λu>u = λ. (3.11)

Thus, the variance is maximized if λ = λ1, the largest eigenvalue of S . Recall that for a symmetric
positive de�nite matrix S , λ1 denotes the largest eigenvalue. Hence, the projection map is
x 7→ u>1 x with u1 the eigenvector corresponding to the eigenvalue λ1. We call {zi = u>1 xi } the
�rst principal component score of the dataset D, with u1 the �rst principal component axis.

The preceding argument generalizes to higher output dimensions m > 1 as follows. For m = 2,
we want to �rst �nd the principal component u1 that maximize variance as before, and then
we can try to �nd a u2 such that u>2 x has maximal variance and that u>2 u1 = 0. That is, u2 is a
direction that is independent from the �rst principal component axis and has maximal variance.
Following similar reasoning we can show that u2 is the eigenvector corresponding to λ2, the
second largest eigenvalue of S . The quantities {u>2 xi } are called the second principal component
score of D, with second principal component axes u2.

In general, the �rstm principal component scores are given by a matrix Zm ∈ R
N×m given by

Zm = XUm , (3.12)

with the ith row of X (data matrix) being xi and Um ∈ R
d×m , with its jth column equal to uj ,

the eigenvector corresponding to the jth largest eigenvalue λj of the covariance matrix S of the
data. This is a matrix of principal component axes.

85



3 Unsupervised Learning

Minimize Error Formulation. Alternatively, we can formulate PCA as a “compression”
algorithm, in which we want to �nd a projection map to a lower dimensional space while
minimizing the error incurred by the projection. Let us consider an orthonormal basis {uj : j =
1, . . . ,d} for Rd . Then, each data point xi can be represented as a linear combination

xi =
d∑
j=1

αi juj =
d∑
j=1
(u>j xi )uj . (3.13)

Suppose now that we want to project xi onto a m-dimensional space spanned by the �rst m
basis vectors {u1, . . . ,um}, so that

zi =
m∑
j=1

βi juj (3.14)

Our goal is to choose {βi j } and {uj } to minimize the error

1
N

N∑
i=1
‖xi − zi ‖

2, (3.15)

which we can rewrite, due to the orthonormal condition u>j uk = δ jk , as

1
N

N∑
i=1
‖xi − zi ‖

2 =
1
N

N∑
i=1

[
m∑
j=1
(αi j − βi j )

2 +
d∑

j=m+1
α2
i j

]
(3.16)

Hence, we can minimize the �rst term by choosing βi j = αi j = u>j xi , making it 0. Then, the
error is measured by

1
N

N∑
i=1

d∑
j=m+1

α2
i j =

1
N

N∑
i=1

d∑
j=m+1

(u>j xi )
2 =

d∑
j=m+1

u>j Suj . (3.17)

Finally, we need to choose {uj } in such a way that
∑d

j=m+1u
>
j Suj is minimized, while preserving

orthonormality. It is not hard to see that {uj } should be chosen as the set of eigenvectors
corresponding to the eigenvalues of S , ordered in decreasing eigenvalue.

For example, let us consider the case when d = 2 and m = 1. Then, we have the Lagrange’s
problem

min
u ∈R2

u>Su + λ(1 − u>u), (3.18)

whose solution gives us u2. Di�erentiating gives

Su = λu (3.19)

and so u is an eigenvector of S with eigenvalue λ, and

u>Su = λ. (3.20)

86



3 Unsupervised Learning

This is minimized if we pick λ = λ2, the minimal eigenvalue of S andu = u2 is the corresponding
eigenvector. Consequently, our projection map is onto the complement of the subspace spanned
by u2, which by orthogonality is u1, the eigenvector corresponding to eigenvalue λ1.

In general, we can show that the minimum error is achieved if we pick {uj } to be the set
of orthonormal eigenvectors of the covariance matrix S , ordered in decreasing eigenvalues.
Consequently, the transformation that incur the minimal error is given by the mapping

x 7→
m∑
j=1
(u>j x)uj (3.21)

Applying this transformation to each data xi , in matrix form we have the mapping

X 7→ XUmU
>
m , (3.22)

and the score Zm = XUm is the coe�cients corresponding to the principal components, as
in (3.12).

3.2.3 The PCA Algorithm

With these interpretations in mind, we summarize the standard PCA algorithm for dimension-
ality reduction in Alg. 6. One point of discussion that remains is how to choose m. In turns
out that one can usually compute a full eigen-decomposition of the covariance matrix S and
observe the decay of the eigenvalues. A cut-o� can be suitably determined by studying the
eigenvalues. The following example illustrates this.

Algorithm 6: Principal Component Analysis
Data: D = {xi }Ni=1, xi ∈ Rd for all i
Hyperparameters:m (reduction dimension)
Compute sample covariance matrix S = 1

N
∑N

i=1 xix
>
i ;

Compute the �rstm eigenvectors {u1, . . . ,um} and eigenvalues {λ1, . . . , λm} ;
Form d ×m matrix Um whose jth column is uj ;
Compute Zm = XUm ;
return Principal component scores Zm . Eigenvalues and eigenvectors λj ,uj for
j = 1, . . . ,m
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Example 3.2: Determiningm in PCA

Let us consider the MNIST dataset of hand-written digits. Performing a PCA on the dataset
(d = 784) we obtain a eigenvalue distribution as shown in the following �gure. Notice the
decay of the eigenvalues of the sample covariance matrix (right plot). We can choosem to
be su�ciently large so that the projection error

∑d
j=m+1 λj (shaded area) is small enough.

Numerical Methods for PCA. In Algorithm 6, it is required to compute the top m eigen-
values and eigenvectors for the d × d covariance matrix S . One way to do it numerically is to
compute a full eigen-decomposition of S , which requires O(d3) operations. For large d and the
case that we know m, a better way is to only compute the top m eigenvalues and eigenvectors.
This can be achieved by the power method and its variants [TBI97], which have complexity
O(md2), which represents a large amount of savings ifm � d .

Another case of interest is when N � d , i.e. where we are dealing with extremely high
dimensional problems. Then, observe that eigen-decompositions are extremely expensive. Let
us see how we can rewrite the eigenvalue problem

X>Xui = Sui = λiui (3.23)

Multiply X to both sides of the above, we get

XX>(Xui ) = λi (Xui ) (3.24)

We can then de�ne vi = Xui . Notice that each vi ∈ RN and we obtain an eigenvalue problem
in RN instead of Rd , as follows

XX>vi = λivi (3.25)

Furthermore, the eigenvalue problems (3.23) and (3.25) have the same eigenvalues. Thus, we
can solve (3.25) in place of (3.23). The former can work in N dimensions instead of d , and is
useful if d � N .

3.2.4 PCA in Feature Space

To motivate an extension of the usual PCA, we �rst give an example of a dataset where a naïve
PCA is insu�cient in discovering low-dimensional embeddings of the dataset.
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Example 3.3: Circular Clusters

Consider the dataset plotted below in the left plot.

A direct application of PCA cannot reduce this dataset to one e�ective dimension. Indeed,
the sample covariance matrix is S = diag(1, 1)/2. Giving principal directions aligned with
the coordinate axes, but no dominant eigenvalues. See right plot.

How do we come up with an extension of PCA to handle such cases? As with passing from
linear models to linear basis models, the trick here is that we can work with feature maps. Just
like in Section 2.2.2, we de�ne a vector of feature maps

ϕ(x) = (ϕ1(x), . . . ,ϕM (x)) (3.26)

Then, we can perform PCA in feature space, in which case the design matrix Φi j = ϕ j (xi ) then
plays the role of the data matrix X . More concretely, let us assume without loss of generality
that Φ is again centered with 0 sum for each column (otherwise, center it before proceeding).
Then, de�ne the sample covariance matrix in feature space as

Sϕ =
1
N

N∑
i=1

ϕ(xi )ϕ(xi )
>. (3.27)

Note that Sϕ is a M × M matrix, whereas S was a d × d matrix. Then, we can perform PCA
entirely as before, by performing the eigen-decomposition

Sϕ = UΛU >, (3.28)

where U is a M ×M matrix whose columns are the orthonormal eigenvectors of Sϕ and Λ is a
diagonal matrix of eigenvalues. The nonlinear principal component scores are given by

Z = ΦU (3.29)

We summarize this algorithm in Alg. 7.
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Algorithm 7: Principal Component Analysis in Feature Space
Data: D = {xi }Ni=1, xi ∈ Rd for all i
Hyperparameters:m (reduction dimension), ϕ (feature maps)
Compute design matrix Φi j = ϕ j (xi );
Center design matrix Φi j ← Φi j −

∑
i Φi j/N ;

Compute sample covariance matrix Sϕ =
1
N Φ>Φ;

Compute the �rstm eigenvectors {u1, . . . ,um} and eigenvalues {λ1, . . . , λm} of Sϕ ;
Form d ×m matrix Um whose jth column is uj ;
Compute Zm = ΦUm ;
return Principal component score Zm . Eigenvalues and eigenvectors λj ,uj for
j = 1, . . . ,m

Example 3.4: Circular Clusters Revisited

Let us return to Example 3.3, but consider the feature maps ϕ1(x) = (x21 + x22)1/2 and ϕ2 =
| tan−1(x2/x1)|. Then, we have Sϕ = diag(0,π 2/16) after centering, which gives a principal
component in the second coordinate axis in (ϕ1,ϕ2) plane that perfectly summarizes the
data (see right plot).

Remark. Just like in Section 2.3, once we begin to work with feature maps, we can then
attempt to write the PCA formulation entirely in terms of dot products ϕ(x)>ϕ(x), upon which
we can then turn to a kernel formulation. This is in fact possible with PCAs, which allows
us to work only implicitly with feature maps. This is the well-known kernel PCA (KPCA)
algorithm [SSM97].

3.2.5 PCA as a Form of Whitening

Finally, we discuss how PCA can be used as a form of normalization for data, known aswhitening.
Let us stick with the original space and not feature space, so we have the data matrix X whose
ith row is xi . Recall that the principal components are given by

Z = XU , (3.30)
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where U is the eigenvector matrix of the sample covariance matrix S . As before, let us denote
by Λ the diagonal matrix of eigenvalues. Let us assume that the data is such that S is invertible,
and hence the eigenvalues are all positive. This is usually the case if N ≥ d and the data are
linearly independent. Now, de�ne the transformation

X 7→ X ′ = XUΛ−1/2 = ZΛ−1/2. (3.31)

Note that this is a linear transformation on the dataset, so clearly the sample mean of X ′ is still
0. Let us check its covariance:

1
N

N∑
i=1

x ′ix
′
i
>
=

1
N
X ′>X ′ =

1
N
(XUΛ−1/2)

>
(XUΛ−1/2)

=
1
N
(XUΛ−1/2)

>
(XUΛ−1/2) = Λ−1/2U >SUΛ−1/2.

(3.32)

But S = UΛU > and so U >SU = Λ, therefore

1
N

N∑
i=1

x ′ix
′
i
>
= Λ−1/2ΛΛ−1/2 = I (3.33)

Hence, the transformed dataset X ′ has mean 0 and covariance I , i.e. it is transformed into
independent and normalized components. This is known as whitening or sphering.

Example 3.5: Data Whitening

We consider the Iris Petals dataset [Fis36] shown on the left, which plots sepal and petal
lengths of three iris species, Iris setosa, Iris virginica and Iris versicolor. We can clearly see
a correlation between the two variables. Now, we apply the whitening transformation
based on PCA described above and the results are shown on the right plot. Observe that
the two components x ′1,x ′2 are now uncorrelated.

3.2.6 Autoencoders

To motivate autoencoders, we start by interpreting PCA as a lossy encoding-decoding algorithm.
Recall upon computing eigenvectors and eigenvalues of the sample covariance matrix, we have
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the principal component scores

Z = XU . (3.34)

Since U is orthogonal, we can invert this to obtain

X = ZU > (3.35)

Now, if we insist on a dimensionality reduction, then we cannot use the full eigenvector matrix
U , but only Um , the �rstm columns of U . Then, the �rst m principal components is the matrix

Zm = XUm (3.36)

We can approximately invert this by

Xm = ZmU
>
m . (3.37)

Just like our original data matrix X , Xm ∈ R
N×d . However, if m < d then it is in general not

true that Xm = X . In particular, observe that if N ≥ d and if X has independent columns,
then X has rank d . On the other hand, Xm is of rank at most m, and hence cannot be equal
to X . Nevertheless, Xm represents an approximation of X , and we know that the error of the
approximation is the sum of the omitted eigenvalues

∑d
i=m+1 λi . The approximation is good if

the eigenvalues have disparate magnitudes so that the �rstm eigenvalues dominate the rest.

The low-dimensional representation Zm of X is known as a latent representation, simply latents.
That is, each row of Zm is a reduced representation of each row of X , which corresponds to an
input data. In this case, the latent space has dimension m. The PCA maps each input x ∈ Rd
into the latent space Rm by the encoding map

Tenc : Rd → Rm Tenc(x)j = x>uj = (U
>
mx)j , j = 1, . . . ,m. (3.38)

For each latent z ∈ Rm , we can approximately recover its original representation by the decoding
map

Tdec : Rm → Rd Tdec(z)j = (Umz)j , j = 1, . . . ,m. (3.39)

Figure 3.1 illustrates this encoding-decoding procedure.

It is clear from Example 3.3 that linear transformations may not be su�cient in �nding e�cient
latent representations. Autoencoders builds on this idea to derive a nonlinear analogue. Here,
we consider two general parameterized mappings

Tenc(·;θ ) : Rd → Rm Tdec(·;ϕ) : Rm → Rd (3.40)

representing a general, possibly nonlinear encoding and decoding map. Under these mappings,
for each input x we can obtain the latents z = Tenc(x ;θ ), which we can then decode to obtain
x ′ = Tdec(z;ϕ).
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These maps depend on adjustable parameters θ ,ϕ, which can be optimized by solving the empir-
ical risk minimization problem which aims to minimize the distance between the reconstruction
x ′i of each sample xi

min
θ,ϕ

1
N

N∑
i=1
‖xi −Tdec(Tenc(xi ;θ );ϕ)‖2 (3.41)

It remains to discuss how to parameterize the encoder and decoder functions. One popular
choice is to use neural networks. For example, we can use a one-hidden-layer shallow neural
network with q hidden units, we then obtain the encoder function

Tenc(x ;θ ) = Aσ (Wx + b), θ = (A,W ,b) ∈ Rm×q × Rq×d × Rq . (3.42)

Similarly, the decoder function is

Tdec(x ;θ ) = Bσ (Vx + c), θ = (B,V , c) ∈ Rd×q × Rq×m × Rq . (3.43)

The empirical risk minimization problem (3.41) can be solved by stochastic gradient descent,
which trains both the encoder parameters θ and the decoder parameters ϕ concurrently. This
is known as the autoencoder and its architecture is illustrated in Figure 3.1. Of course, in
general we can replace the encoder and decoder functions by any other function approximators,
including deep neural networks.

Figure 3.1: Illustration of both PCA and AE as compression-decompression algorithms involving
latent representations.

3.2.7 Further Reading

In the simple formulation discussed here we focused on the eigen-decomposition of the co-
variance matrix. In fact, another perhaps more natural way to interpret PCA is that it is an
singular value decomposition (SVD) of the data matrixX . In fact, most state-of-the-art numerical
algorithms for PCA performs e�cient SVD on X without necessarily computing the covariance
matrix [GVL96]. Note that PCA has been independently discovered in many di�erent �elds.
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Hence, they may come in many names. For example, in the dynamical systems literature, PCA is
known as the Karhunen–Loève transform (KLT) [Kar47] or the proper orthogonal decomposition
(POD) [Cha00]. In introducing the PCA in feature space, we have alluded to the kernel version
of the PCA. This is useful when a good kernel can be identi�ed on physical grounds. More
information on kernel PCA can be found in [SSM97]. There are also many probabilistic variants
of PCA, such as maximum likelihood PCA, Bayesian PCA, etc. See Chapter 12 of [BO06]. Finally,
there are also many variants on the autoencoder architecture, including regularized or sparse
autoencoders, as well as their probabilistic extensions. See Chapter 14 of [GBC16].

3.3 Clustering and Gaussian Mixture Models

Cluster analysis, or simply clustering, is a commonly encountered task in unsupervised learning.
Here our goal is to partition the input data into several groups, such that samples within the
same group exhibit higher similarity than samples across groups. Applications of this is abound
in practice, ranging from feature extraction, data compression to image segmentation. In this
section, we �rst introduce a simple clustering algorithm called K-means clustering, and then
discuss a probabilistic extension of it using Gaussian mixture models.

3.3.1 K-means Clustering

Clustering is a widely used technique in unsupervised learning to identify groupings of data
based on some similarity measure. Suppose we have a dataset D = {xi }Ni=1 of vectors in Rd .
Our goal is to partition D into K groups, and we will assume that K is unknown to us. We
proceed in the following steps

1. Identify representative of the clusters z1, . . . , zK ∈ Rd .

2. Assign each data point xi to the k th cluster whose representative is zk .

To formalize the assignment step, we introduce the notation

rik =

{
1 xi is assigned to cluster k,
0 otherwise.

(3.44)

We denote by R the matrix with entries {ri j }. This is known as the 1-of-K coding scheme. Now,
we can introduce a measure of distortion of our assignment scheme:

J (R,Z ) =
1
2N

N∑
i=1

K∑
k=1

rik ‖xi − zk ‖
2. Z ∈ RK×d , Zk j = zk j (3.45)

This is simply the sum of squares of distances from each sample point xi to the representative
zk that it is assigned to. It remains to minimize the distortion or loss J with respect to both the
representatives or centers Z and the assignment scheme R. It is easier to proceed iteratively as
follows:

94



3 Unsupervised Learning

1. Suppose we know Z . Then, R is determined by assigning each xi to the nearest zk . That is

rik =

{
1 k = argminj ‖xi − zj ‖2

0 otherwise.
(3.46)

Ties are broken arbitrarily (e.g. take k to be the smallest index value of the minimizing
indices).

2. Suppose we know R. Then, the loss function J is a quadratic function of Z , which we can
�nd its minimum by setting its derivative to zero. We have

∇z J (R, z) =
1
N

N∑
i=1

rik (xi − zk ) = 0, (3.47)

giving

zk =

∑N
i=1 rikxi∑N
i=1 rik

. (3.48)

In other words, zk is the average value of xi that has been assigned to the cluster rep-
resented by zk . This motivates the name K-means algorithm and we summarize the
algorithm in Alg. 8. There are many possible stopping criteria, e.g. check convergence of
the loss function J , or the convergence of the cluster centers Z .

Algorithm 8: K-means Clustering Algorithm
Data: D = {xi }Ni=1, xi ∈ Rd for all i
Hyperparameters: K (number of clusters); stopping criterion
Initialize: Z ∈ RK×d

while stopping criterion not reached do

Update R: rik =
{
1 k = argminj ‖xi − zj ‖2

0 otherwise.
, i = 1, . . . ,N ;

Update Z : zk =
∑N
i=1 rikxi∑N
i=1 rik

, k = 1, . . . ,K ;
end
return cluster centers Z , cluster assignments R

Let us say a few words about the convergence properties of the K-means algorithm. Notice in
both steps of Alg. 8, the loss J cannot increase. Moreover, J ≥ 0 and hence we know that

J (Rk ,xk ) → Ĵ as k →∞ (3.49)

for some Ĵ ≥ 0 starting with any R0,x0. In fact, we can show that the algorithm converges
in a �nite number of steps. To see this, observe that since the data is �nite, there are at most
KN possible partitions (in fact, much less due to repetitions in the count). Hence the sequence
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{Rk } must end in cycles, but if R changes then the loss must decrease, thus the cycle must be of
length 1.

However, we do not know Alg. 8 will converge to a global optimum. In fact, it is generally not
true that the algorithm �nds a global optimum, as the following example illustrates.

Example 3.6: Local Optimum vs Global Optimum in K-means

Let us consider K-means clustering in two dimensions (d = 2) with N = 4 data points,
located at x1 = (2, 1),x2 = (2,−1),x3 = (−2, 1),x4 = (−2,−1). Let us apply the K-means
algorithm with K = 2. We initialize the cluster assignments so that r1 = r2 = (1, 0) (cluster
1) and r3 = r4 = (0, 1) (cluster 2). Observe that the K-means algorithm converges in one
iteration, �nding centers z1 = (1, 0), z2 = (−1, 0) and retaining this cluster assignment
with loss 1/2. However, if we initialize with a di�erent cluster assignment r1 = r3 = (1, 0)
and r2 = r4 = (0, 1), then the K-means algorithm again converges in one iteration, �nding
centers z1 = (0, 1), z2 = (0,−1) and retaining the assignment. However, this time we have
loss 2, meaning that this is only a sub-optimal solution.

3.3.2 Gaussian Mixture Models

One drawback of the K-means algorithm is that the cluster identi�cation is hard, in that each
sample xi belongs to one and only one cluster. This makes sense for problems where the data is
clustered tightly, but this hard assignment is not stable if there are many data lying roughly
in-between two classes.

In this section, we introduce Gaussian mixture models which can be interpreted both as a
density estimation method, as well as a soft version of the K-means clustering.

Review: Conditional Distribution, Maximum Likelihood. Let A,B be events and sup-
pose P(B) , 0. The conditional probability of A given B is

P(A|B) =
P(A ∩ B)

P(B)
. (3.50)

The Bayes rule (or Bayes theorem) follows from the de�nition of conditional probabilities

Proposition 3.7: Bayes Rule

We have P(A|B) = P(B |A)P(A)P(B) provided P(B) , 0.
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Let X ,Y be random variables taking values in a discrete and �nite set. The conditional distribu-
tion of X given Y is

p(x |y) = P(X = x |Y = y) =
P(X = x and Y = y)

P(Y = y)
. (3.51)

For continuous random variables the de�nition is similar by replacing the terms on the right
hand side with densities. Denoting p(x) = P(X = x) and p(y) = P(Y = y) as the marginal
distributions and p(x ,y) = P(X = x and Y = y) as the joint distribution, it follows from Bayes
rule that

p(x |y) = p(y |x)p(x)/p(y), p(y) , 0. (3.52)

Often, we encounter problems of estimating some parameters r of a probabilistic model that
explains some observed data {xi }. That is, we assume that {xi } is i.i.d. according to some formal
conditional distribution p(x |r ), and we want to estimate r from {xi }. One way to do this is
called maximum likelihood estimation, which solves the problem

r = argmax
s

log
∏
i

p(xi |s) = argmax
s

∑
i

logp(xi |s). (3.53)
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Example 3.8: Fitting a Gaussian in 1D

Consider a dataset D = {xi }Ni=1, which we model as i.i.d. samples from a standard normal
distribution with mean z and variance σ 2 to be determined. Then, the log-likelihood of
the dataset given the mean and variance is

l(D, z,σ ) = log
N∏
i=1
(2πσ 2)−1/2 exp

(
−

1
2σ 2 (xi − z)

2
)
. (3.54)

= −
N

2 log(2πσ 2) −
1
2σ 2

N∑
i=1
(xi − z)

2 (3.55)

We now perform maximum likelihood estimation by maximizing l(D, z,σ ) with respect
to z,σ . Taking derivative with respect to z and setting it to 0 gives

N∑
i=1
(xi − z) = 0 ⇒ z =

1
N

N∑
i=1

xi . (3.56)

Taking derivative with respect to σ and setting it to 0 gives

−
N

σ
+

1
σ 3

N∑
i=1
(xi − z)

2 = 0 ⇒ σ 2 =
1
N

N∑
i=1
(xi − z)

2. (3.57)

In other words, the maximum likelihood estimators for z,σ 2 are the sample mean and
variance respectively. These are known as su�cient statistics for the Gaussian distribution.
The same holds for higher dimensions if one replaces the sample variance by the sample
covariance matrix.

Gaussian Mixtures. In the K-means algorithm, each data point xi is assigned to the cluster
represented by the closest zk , as decided by the ith row of the 1-to-K encoding matrix, ri , which
equals 1 at the k th position and 0 otherwise. We now consider a soft version of this.

In essence, we model {xi } as samples from some unknown probability distribution with K
clusters, and our goal is to approximate this distribution. We will use the Gaussian mixture
model to parameterize this distribution. A Gaussian mixture distribution has the following
probability density function (PDF):

p(x) =
K∑
k=1

πkpд(x ; zk , Σk ), (3.58)

where zk ∈ R
d and Σk ∈ R

d×d , k = 1, . . . ,K are a collection of vectors and positive de�nite
matrices, representing the mean and covariance of each Gaussian component, and pд denotes
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the Gaussian PDF, i.e.

pд(x ; z, Σ) = (2π )−d/2 |Σ|−1/2e(x−z)
>Σ−1(x−z). (3.59)

Here, pik ≥ 0 and
∑

k πk = 1, i.e. π = (π1, . . . ,πK ) is a probability vector. The πk ’s are known
as the mixture weights or mixture coe�cients.

We now show that the Gaussian mixture distribution can be interpreted using conditional
probabilities. The idea is simple: we can generate samples from (3.58) by �rst generating a
one-hot vector r ∈ {0, 1}K which has a one at position k with probabilities πk . Then, given r
which has one at position k , we consider x which has a Gaussian distribution with meanmk
and Σk . More precisely,

p(r ) =
K∏
k=1

π rkk . (3.60)

p(x |r ) =
K∏
k=1
(pд(x ; zk , Σk ))rk . (3.61)

Then, the marginal distribution for x is given by

p(x) =
∑
r

p(x |r )p(r ) =
K∑
k=1

πkpд(x ; zk , Σk ), (3.62)

which agrees with the Gaussian mixture distribution (3.58). Here, the vector r plays the role of
a latent variable, whose existence helps represent the distribution of x more easily. We will see
that the problem formulated this way allows us to come up with an algorithm to determine
zk , Σk and πk from data.

Before proceeding, we also use the Bayes rule to derive the conditional probability that r has a
1 at the k th position, given x :

p(rk = 1|x) = p(x |rk = 1)p(rk = 1)
p(x)

=
πkpд(x ; zk , Σk ))∑K
`=1 π`pд(x ; z`, Σ`)

. (3.63)

The interpretation is as follows: if we regard πk as the prior probability for rk = 1, then
p(rk = 1|x) is the posterior probability that rk = 1, after observing a realization x . It can be
viewed as a measure of “responsibility” of the component k for explaining the outcome x . This
viewpoint is illustrated in the example below.
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Example 3.9: Posterior Distribution

We consider a 2D dataset generated from a mixture of three Gaussians shown in the left
�gure below. In the middle �gure, we mark the dataset according to which Gaussian the
data is generated from in the underlying latent generation process {rik }. In the far right
�gure, we plot the same dataset, but with colors representing the posteriors computed
via (3.63), which shows which cluster explains each data point. We can see that in the
overlaps of the 3 Gaussians, the posteriors take intermediate values.
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Maximum Likelihood. Our task is to model D = {xi }Ni=1 i.i.d. samples from a Gaussian
mixture distribution of the form (3.58). This amounts to estimating {πk , zk , Σk } from data. To
proceed, let us represent D as the usual data matrix X ∈ RN×d . For data point we can associate
a latent variable ri ∈ {0, 1}K i.i.d. according to {πk }. We can similarly write the latent variables
as a matrix R ∈ RN×K whose ith row is ri .

Then, the log-likelihood is given by

logp(X |{πk , zk , Σk }) =
N∑
i=1

log
[
K∑
k=1

πkpд(xi ; zk , Σk )
]
. (3.64)

Our goal is to now maximize this log-likelihood.

Remark. There is some technical issues with directly maximizing the log-likelihood without
any regularization when K ≥ 2 since the Gaussians can collapse onto a point (covariance goes
to 0). See [BO06], Chapter 9 for a discussion on this.

An Iterative Algorithm. Let us now introduce a powerful algorithm for maximizing the
likelihood in (3.64).

We begin by writing down the conditions that a maximum of the log-likelihood must satisfy.
First, setting the derivative of (3.64) with respect to zk to zero, we obtain

0 = −
N∑
i=1

πkpд(xi ; zk , Σk )∑K
`=1 π`pд(xi ; z`, Σ`)

Σ−1k (xi − zk ) (3.65)
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Notice that the �rst term in the summation over i is the “responsibility” of the k th component
for xi , p(rik = 1|xi ) (See (3.63)). Let us denote this quantity by γik = p(rik = 1|xi ). Then, (3.66)
implies

zk =
1
Nk

N∑
i=1

γikxi , Nk =

N∑
i=1

γik . (3.66)

In a sense, zk is a weighted average of sample points xi , whose weight is determined by the
responsibility of the k’th cluster in explaining xi . We can interpret Nk as the “e�ective” number
of points assigned to cluster k .

Next, we set the derivative of (3.64) with respect to Σk to 0 to obtain

Σk =
1
Nk

N∑
i=1

γik (xi − zk )(xi − zk )
>, (3.67)

which is again the form of a weighted average of covariance matrices. Deriving this result in
one dimension is similar to what is done in Example 3.8. In higher dimensions, one needs to
use some properties of derivatives of log-determinants. However the idea is the same.

Exercise 3.10

Derive the result (3.67) in one dimension. Using the fact that ∇A log(det(A)) = (A−1)> for
any positive de�nite matrix A, derive the results in general.

Finally, we maximize (3.64) with respect to the mixture weights πk . This is a constrained
optimization since we require

∑
k πk = 1. Using the Lagrange multiplier method, we have the

Lagrangian

logp(X |{πk , zk , Σk }) + λ
(∑

k

πk − 1
)
. (3.68)

Taking derivative with respect to πk and setting it to 0, we get

N∑
i=1

pд(xi ; zk , Σk )∑K
`=1 π`pд(xi ; z`, Σ`)

+ λ = 0. (3.69)

Multiply both sides by πk and summing over k yields λ = −N . Substitute this back to the above
gives (noting that the �rst term is nothing by γik )

πk =
Nk

N
. (3.70)

That is, the mixture coe�cients are just the proportion of the e�ective number of data points
assigned to the k th cluster.
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Importantly, notice that expressions (3.66), (3.67) and (3.70) are not explicit solutions of the
maximum likelihood problem, since they are inter-dependent. For example, to compute them
we need {γik }, which depends non-trivially on {zk ,πk ,σk }. However, just like in the K-means
algorithm, these expressions point us to a way to an iterative algorithm:

1. Suppose we know {zk ,πk ,σk }, then we can compute {γik }.

2. Suppose we know {γik }, then we can compute {zk ,πk ,σk }.

Hence, we simply iterate the above two steps until some error criterion is reached. The algorithm
is summarized in Alg. 9, again with many possible stopping criteria. Just as in Alg. 8, we can show
that each iteration must increase the log-likelihood (3.64) and thus the algorithm converges.

Algorithm 9: Maximum Likelihood for Gaussian Mixture Models
Data: D = {xi }Ni=1, xi ∈ Rd for all i
Hyperparameters: K (number of clusters); stopping criterion
Initialize: πk = 1/K , zk ∈ Rd , Σk ∈ Rd×d for k = 1, . . . ,K
while stopping criterion not reached do

Update {γi j }: γik =
πkpд (x ;zk ,Σk ))∑K
`=1 π`pд (x ;z`,Σ` )

., i = 1, . . . ,N , k = 1, . . . ,K ;

Compute {Nk =
∑N

i=1 γik } and Update {πk , zk , Σk }:

zk =
1
Nk

N∑
i=1

γikxi , Σk =
1
Nk

N∑
i=1

γik (xi − zk )(xi − zk )
>, πk =

Nk

N
. (3.71)

for k = 1, . . . ,K ;
end
return cluster centers, covariances, and mixture coe�cients {zk , Σk ,πk }, cluster
responsibilities or soft assignments {γik },

Relationship between Gaussian Mixture Models and K-means Clustering. One may
guess from the similarities in Alg. 8 and Alg. 9 that there should be some relationship between
the two methods. In fact, we motivated the Gaussian mixture model as a soft version of the
K-means algorithm. Let us now make this precise.

We consider �tting a Gaussian mixture model (3.58), but with �xed common covariance matrices
Σk = ϵId , where ϵ > 0 and Id is the d × d covariance matrix. This gives the PDF

pд(x ; zk , Σk ) =
1

(2πϵ)d/2
exp

(
−
1
2ϵ ‖x − zk ‖

2
)

(3.72)

We will regard ϵ (and hence the covariance matrices) as given and not estimate it from data.
From Alg. 9, given any {πk , zk , Σk = ϵI }, we estimate the posteriors (responsibilities) as

γik =
πk exp

(
− 1

2ϵ ‖xi − zk ‖
2)∑K

`=1 π` exp
(
− 1

2ϵ ‖xi − z` ‖
2) (3.73)

102



3 Unsupervised Learning

Let us assume that πk , 0 for all k and xi , zk , then as ϵ → 0, we can see that

γik →

{
1 k = argmin` ‖xi − z` ‖2,
0 otherwise,

(3.74)

assuming that the argmin is unique. This is identical to the hard assignment rik de�ned in (3.46)
in K-means clustering. Furthermore, the estimation for zk in (3.66) reduces to the K-means
estimation (3.48), since γik → rik . The estimation of {πk } in (3.70) is inconsequential here. In
summary, the Gaussian mixture model reduces to the K-means clustering algorithm in the limit
of zero covariance matrix. In this sense, the former in the case of �nite covariance is a soft, or
probabilistic extension of the K-means clustering algorithm.

3.3.3 Further Reading

There are a number of extensions of the basic K-means algorithm introduced here. First, with
regards to computational complexity, the estimation step for the assignment matrix {ri j } re-
quires computation of a large number of Euclidean norms. In high dimensions this is ine�cient.
Consequently, approaches based on precomputing a good data structure [RP89, Moo00] or
using triangle inequality to exclude redundant computations have been used to improve the
computational e�ciency of the K-means algorithm [Hod88]. Another way to reduce compu-
tational burden is to use mini-batch algorithms to update the cluster centers zk , i.e. using
stochastic gradient descent [Mac67]. Furthermore, we have only considered loss functions
of the mean-squared type. One can extend this to arbitrary loss functions, giving rise to the
so-called K-medoids algorithm [PJ09].

Algorithm 9 is in fact a special case of a large class of algorithms known as expectationmaximiza-
tion (EM) algorithms, which are commonly applied to solve maximum likelihood or maximum
a posterior estimation for problems involving latent random variables. The interested reader
may refer to [BO06] chapter 9, upon which most of the material in this chapter is based.
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4 Reinforcement Learning

4.1 Overview

So far we have covered supervised learning problems where we are given labelled data, as well
as unsupervised learning where we are only given inputs. Reinforcement learning (RL) presents
another paradigm somewhere in between. In reinforcement learning problems, we are given
some reward signal that promotes desired outcomes, and through maximizing the reward we
can build learners that accomplishes very complex tasks.

Some distinguishing features of reinforcement learning problems are as follows: First, they
involve some form of long-term planning, as maximizing the immediate reward is often not
the desired tasks. Next, they typically are closed-loop systems in the sense that the learner’s
actions also a�ect the environment. Finally, they involve accumulating experience and presents
a general problem of exploration vs exploitation.

Let us give some examples of problems RL can be applied to in order to make the above points
clearer.

1. Playing chess: this involves long term planning, as reward in the form of win-loss only
comes at the end of the game. We get better at chess by playing chess.

2. A robotic vacuum cleaner �nding the best path to clean a room with unknown geometry,
and deciding when to go back for charging or continues cleaning. Here exploration is
key, but it should also perform planning so as to not run of battery before reaching the
charging station.

3. A newly-born gazelle learning how to walk and run. Exploration and processing of
constant reward signal allows it to learn quickly.

There are of course many more examples and the reader is encouraged to browse [Sut99] for
other instances.

Of course, as always we should formalize the heuristic notions we described before. In rein-
forcement learning, three key entities are involved:

1. The agent

2. The environment

3. The interpreter

104



4 Reinforcement Learning

The agent is the learner, which can perform actions that a�ect the environment. Through the
interpreter, the environment then tells the agent the associated reward for that action at the
current state of the agent-environment system, as well as the next state as a result of that action
and other extrinsic factors. The interpreter is present for the agent may not always be able to
fully observe the environment. Figure 4.1 illustrates these concepts.

Figure 4.1: The main components of a RL system.

Example 4.1: The RL Components for a Robotic Vacuum Cleaner

For the robotic cleaner example above, the agent is the robot. The environment is the
entire room together with the full status of the robot. The robot cannot observe the entire
environment, and its perception of the environment is through its own charted map of the
room, the location of the charging hub, as well as its own battery level. Possible actions of
the robot include to clean, to move, or to go back to the charging hub. Positive rewards
should be given when the robot cleans up trash, and a large negative reward is given when
the robot runs out of battery before reaching the charging hub.

Let us now emphasize the key di�erence between RL and supervised learning as well as
unsupervised learning: unlike fully unsupervised learning where no information other than
inputs are given, in RL we have a form of reward signal that guides our learning. However,
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unlike supervised learning, these reward signals are not some predictions we wish to make, but
rather just guidance that steers us towards the right path. For example, applying RL to chess,
we only need to give a positive reward for winning, but unlike supervised learning, we do not
need a supervisor to tell us what is the best move to take at each board position. This highlights
the �exibility of the RL framework.

4.2 Markov Decision Processes

To set the stage for RL algorithms and applications, we �rst introduce the basic mathematical
framework that underlies RL, known as Markov decision processes (MDP).

Let some agent interact with an environment in a sequence of time steps t = 0, 1, 2, . . . . At
each time t , the agent receives through the interpreter some state St ∈ S where S is the set
of possible states that the agent can observe. On the basis of St , the agent performs an action
At ∈ A(St ), with A(St ) the space of actions that the agent can perform at state St . One time
step later, the agent receives a numerical reward Rt+1 ∈ R ⊂ R and �nds itself in a new state
St+1. Figure 4.2 illustrates these essential components.

Figure 4.2: Components of a Markov decision process.

The Markov decision process models the inter-dependence of the quantities {St ,At ,Rt }. We
de�ne the policy, denoted by π , as

π (a |s) = P[At = a |St = s]. (4.1)

The agent will select actions stochastically based on the current state and the policy function,
i.e.

At ∼ π (·|St ). (4.2)
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The agent’s goal is to maximize long term reward by adjusting its policy π through experience.
We will also consider deterministic policies where π (a |s) = 1a=a(s). In this case, we can simply
interpret π as a mapping

π : S → A π (s) = a(s). (4.3)

Of course, the reward Rt+1 is going to depend on the current action and state. The same holds
for the next state St+1, which should also depend on on the current action and state. Just like the
policy function, we will also assume that they are stochastic, i.e. they are sampled according to

p(s ′, r |s,a) = P[St+1 = s
′,Rt+1 |St = s,At = a]. (4.4)

The primary assumption in (4.4) is that the system is Markovian, meaning that the distribution
of the reward and next state depends only on the current state and action taken, and not on their
histories. This is the primary assumption we take hereafter. Unlike the policy function, (4.4) is
a property of the underlying system and not something that the agent has control over.

De�nition 4.2: Markov Decision Processes

A Markov Decision Process (MDP) is speci�ed by its state space S, action space A(s),
s ∈ S and the one-step stochastic dynamics in (4.4). We say that the MDP is �nite if S is
�nite and A(s) is �nite for each s ∈ S.

The goal of RL is not to greedily maximize the reward at the present, but a long term reward.
We will call this the return, which is de�ned by

Gt =

∞∑
k=0

γ kRt+k+1. (4.5)

The number γ ∈ (0, 1] is known as the discount factor. For in�nite horizon problems, we should
take γ < 1 so that Gt remains �nite. In this sense, we weight the immediate rewards to be more
signi�cant than future rewards, but the latter is still taken into consideration. For �nite-horizon
problems where Rt = 0 for all t > T (T is the time horizon), then we may take γ = 1.

Our goal in RL is to maximize the expected return starting from some initial state S0 = s0 ∈ S.,
i.e. the quantity

Eπ [G0 |S0 = s]. (4.6)

Dynamic Programming. Before we introduce the concept of value functions which are cen-
tral objects of study in reinforcement learning, let us �rst motivate its usefulness by considering
a simple example. In doing so, we will illustrate a general recursive principle known as dynamic
programming.
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Example 4.3: A Toy Maze

Consider the following maze where we want to get to the orange circle while maximizing
the reward obtained along the way. When we cross each arrow, we gain a reward equal
to the number attached to that arrow. The red path shows an example path with a �nal
reward of 4.

Suppose that there are N circles to choose from per step and T steps in total. Then, the
total number of paths is NT and grows exponentially with T . This is known as the curse
of dimensionality [Bel66].

Instead of a brute force search over all paths, we can use the principle of dynamic programming
to �nd a solution much more e�ciently. To do this, let us introduce some notation. We will
index each time step in the maze by t = 0, 1, . . . ,T . Also, we denote by St the circle we step on
at the t th step, and Rt the reward we obtain at the t th step.

De�ne the function

vt (s) = max
{

T∑
s=t+1

Rs : St = s
}
. (4.7)

In other words, vt (s) is the best possible reward we can get starting from state s at time t . Then,
we can work backwards easily!

Let us just consider the case in Example 4.3, where St = 1 or 2 for t = 1, 2, 3. Here, St = 1
denotes the top circle and St = 2 is the bottom circle. The initial state is S0 = 0. Then, clearly
we have

v3(1) = +3, v3(2) = −3, (4.8)

since both cases we only have one choice – and this is the best we can do. Now, let us consider
t = 2. Given we are at S2 = 1, then there are two choices, either we go to S3 = 1 or S3 = −1.
If we go to S3 = 1 we get a reward of −1 and then, the best we can do from there would be
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v3(1) = +3. Similarly, if we take S3 = 2 then we get +4 reward and the best we can do from
S3 = 2 is v3(2) = −3. Hence,

v2(1) = max{−1 +v3(1),+4 +v3(2)} = +2. (4.9)

A similar calculation shows that v2(2) = +1. Once we know these values we can then compute
v1(·) and so on. This allows us to calculate backwards to obtain v0(0) = +6. This is the best
possible reward we can get, and we have obtained it without resorting to brute force search
over all the paths! Moreover, once we have solved for vt (s) for all t , s , we can also easily �nd
the optimal policy to navigate this maze. We simply proceed greedily with respect to the value
function: at time t we always go the circle in the next step with the highest vt+1(s) plus the
current immediate reward.

In fact, the above methodology is known as dynamic programming [Bel66]. Let us look at the
computational complexity of dynamic programming versus a brute force search, which takes
NT steps. In dynamic programming, we simply have to traverse the time steps once, starting
the from the end. For each time step, we have to compute N values of vt (s), each depends on a
linear combination of vt+1(s). Hence, for each time step we incur a computation overhead of
N 2. Therefore, the entire dynamical programming procedure solves the problem in N 2T steps.
This is much less than NT !.

The key idea behind dynamic programming is de�ning the so called cost-to-govt (s) (4.7), which
allows us to derive a recursion in vt (s) that gives a solution to our original problem. The
function vt (s) is also known as the value function, emphasizing the fact that it represents the
“value” of a given state.

We will see that in reinforcement learning, we can also de�ne a value function that is similar
in spirit to the one we de�ned above. Consequently, this allows us to derive both theoretical
guarantees and practical algorithms that can e�ectively solve reinforcement learning problems.

4.2.1 Value Function and the Bellman’s Equation

Recall that in RL, we want to maximize the expected return (4.6). To �nd this, we follow the
dynamic programming principle and de�ne the value function

vπ (s) = Eπ [Gt |St = s] = Eπ

[
∞∑
k=0

γ kRt+k+1 |St = s

]
, (4.10)

where Eπ denotes the expected value of a random variable given that the agent follows policy π .
We will speci�cally call vπ (s) the state value function, emphasizing that it represents the value
of a particular state.

On the other hand, we can also de�ne the action value function, corresponding to the value of
an action taken under a state, which is

qπ (s,a) = Eπ [Gt |St = s,At = a] = Eπ

[
∞∑
k=0

γ kRt+k+1 |St = s,At = a

]
. (4.11)
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One can immediately see that from de�nition, we have the following identities

qπ (s,a) =
∑
s ′,r

p(s ′, r |s,a)[r + γvπ (s
′)] (4.12)

vπ (s) =
∑
a

π (a |s)qπ (s,a). (4.13)

As is shown in Example 4.3, the key to using value functions is to derive some recursion. We
now do this for both the state and action value functions. First, for the state value function we
have

vπ (s) = Eπ [Gt |St = s]

= Eπ

[
∞∑
k=0

γ kRt+k+1 |St = s

]
= Eπ

[
Rt+1 + γ

∞∑
k=0

γ kRt+k+2 |St = s

]
=

∑
a

π (a |s)
∑
s ′

∑
r

p (s ′, r |s,a)

[
r + γEπ

[
∞∑
k=0

γ kRt+k+2 |St+1 = s
′

] ]
=

∑
a

π (a |s)
∑
s ′,r

p (s ′, r |s,a) [r + γvπ (s
′)] .

(4.14)

The above gives the following recursion for vπ (s)

vπ (s) =
∑
a

π (a |s)
∑
s ′,r

p (s ′, r |s,a) [r + γvπ (s
′)] . (4.15)

This is known as the Bellman equation.

Equation (4.15) is a recursion, in fact a linear one. To see this, de�ne

p(s ′ |s,a) :=
∑
r

p(s ′, r |s,a), (4.16)

P(π )ss ′ :=
∑
a

π (a |s)p (s ′ |s,a) , (4.17)

b(π )s :=
∑
a

π (a |s)
∑
r

p (s ′, r |s,a) r , (4.18)

where we denote by p(s ′ |s,a) =
∑

r p(s
′, r |s,a) the marginal conditional distribution of s ′. Now,

denote by P(π ) the |S| × |S| matrix with entries {P(π )ss ′ : s, s ′ ∈ S} and b(π ), vπ the |S|
dimensional vectors with entries {b(π )s : s ∈ S} and {vπ (s) : s ∈ S} respectively, then we can
rewrite (4.15) as

vπ = γP(π )vπ + b(π ). (4.19)

One can then show that this equation has a unique solution.
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Proposition 4.4: Existence and Uniqueness of Solution to Bellman’s Equation

There exists a unique solution {vπ (s) : s ∈ S} to the Bellman’s equation (4.19) given by

vπ = (I − γP(π ))
−1b(π ).

Proof. To show this it is enough to show that (I − γP(π )) is invertible, for which it is
su�cient to show ‖P(π )‖∞ = maxs

∑
s ′ |P(π )ss ′ | ≤ 1. In fact, we have the equality

max
s

∑
s ′
|P(π )ss ′ | = max

s

∑
s ′

�����∑
a

π (a |s)p (s ′ |s,a)

�����
= max

s

∑
a

π (a |s)
∑
s ′

p(s ′ |s,a)

= max
s

∑
a

π (a |s) = 1.

This implies I − γP(π ) has no zero eigenvalues and thus invertible.

4.2.2 Optimal Policy and Bellman’s Optimality Equation

The value function induces a partial order on the space of policies. For two policies π and π ′,
we say that π ≥ π ′ if vπ (s) ≥ vπ ′(s) for all s ∈ S. Then, it makes sense to ask whether there
exists an optimal policy π∗ such that π∗ ≥ π for all π . It turns out that this is true, but it is not
obvious. This is because we will need vπ∗(s) ≥ vπ (s) for all s and all π simultaneously for the
same v∗.

We will give a derivation on why this is true, and in doing so we will introduce the important
concept of the Bellman’s optimality equation that characterizes the optimal value function. This
will become important when designing algorithms. We �rst state the formal de�nition of an
optimal policy as discussed above.

De�nition 4.5: Optimal Policy

A policy π∗ is optimal if its value is maximal for every state s ∈ S, i.e. for any other policy
π , we have vπ∗(s) ≥ vπ (s) for all s ∈ S.

At this point, it is not clear if an optimal policy exists, and if it does, it is also not clear if its
unique. We will show that existence holds, but uniqueness does not.

Recall the de�nition of the action-value function qπ as de�ned in (4.11). We �rst show the
following result on policy improvement.
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Proposition 4.6: Policy Improvement

For any two policies π ,π ′, if∑
a

π ′(a |s)qπ (s,a) ≥
∑
a

π (a |s)qπ (s,a) ∀s ∈ S,

then we must have

vπ ′(s) ≥ vπ (s) ∀s ∈ S.
Furthermore, a strict inequality for one s in the �rst implies a strict inequality for at least
one s in the second.
Proof. Let π ,π ′ be as assumed above, then

vπ (s) =
∑
a

π (a |s)qπ (s,a) [Using (4.13)]

≤
∑
a

π ′(a |s)qπ (s,a)

=
∑
a

π ′(a |s)
∑
s ′,r

p(s ′, r |s,a) [r + γvπ (s
′)] [Using (4.12)]

= Eπ ′ [Rt+1 + γvπ (St+1)|St = s] .

Repeating this process on vπ (St+1), we have

vπ (s) ≤ Eπ ′
[
Rt+1 + γRt+2 + γ

2vπ (St+2)|St = s
]

≤ . . .

≤ Eπ ′

[
K∑
k=0

γ kRt+k+1 + γ
K+1vπ (SK+1)|St = s

]
,

for any K ≥ 0. Taking limit K →∞ and noting that vπ is bounded, 0 < γ < 1, we have

vπ (s) ≤ vπ ′(s).

Finally, notice that if there is a strict inequality in the assumption, there is at least one
strict inequality for the result.

Intuitively, Proposition 4.6 says that if we were concentrate the policy on actions with large
action values, then we tend to have a policy that is at least as good as the current one. This
naturally suggests that an optimal policy should already maximize qπ (s,a), otherwise it can be
improved, which leads to a contradiction. The following result makes this precise.
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Theorem 4.7: Bellman Optimality Condition (Necessary)

Let π∗ be an optimal policy. Then, for any pair of state action (s,a) ∈ S × A such that
π∗(a |s) > 0, the following holds:

a ∈ argmax
a′

qπ∗(s,a
′). (4.20)

In particular, the value function of π∗ satis�es the Bellman’s optimality equation

vπ∗(s) = max
a

qπ∗(s,a) ≡ max
a

∑
s ′,r

p(s ′, r |s,a)[r + γvπ∗(s
′)] (4.21)

Proof. By Prop 4.6, if (4.20) does not hold for some s then the policy π is not optimal,
since π can be improved by de�ning π ′(·|s ′) = π (·|s ′) for all s ′ , s , and π ′(a |s) = 1 for
some a ∈ argmaxa′ qπ (s,a′) and 0 otherwise.
Now, π∗ must satisfy the Bellman’s equation, i.e.

vπ∗(s) =
∑
a

π∗(a |s)
∑
s ′,r

p(s ′, r |s,a)[r + γvπ∗(s
′)]︸                              ︷︷                              ︸

qπ∗ (s,a)

= max
a

∑
s ′,r

p(s ′, r |s,a)[r + γvπ∗(s
′)],

where the last step follows from (4.20).

In fact, the converse of Thm. 4.7 also holds. To establish this, we �rst show that the Bellman’s
optimality equation admits a unique solution. This relies on the following well-known result in
analysis.

Theorem 4.8: Contraction Mapping Theorem

Let V be a complete normed space and F : V → V be a contraction, i.e.

‖F (v) − F (u)‖ ≤ γ ‖v − u‖, ∀v,u ∈ V 0 ≤ γ < 1.

Then, there exists a unique v∗ ∈ V such that such that F (v∗) = v∗. Moreover,

v∗ = lim
k→∞

vk

for any sequence {vk } such that vk+1 = F (vk ) and v0 ∈ V is arbitrary.
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Proposition 4.9: Uniqueness of Solutions of Bellman’s Optimality Equation

There exists a unique v∗ that satis�es the Bellman’s optimality equation

v∗(s) = max
a

∑
s ′,r

p(s ′, r |s,a)[r + γv∗(s
′)]

Proof. De�ne F : Rn → Rn (with n = |S|)

F (v)(s) := max
a

∑
s ′,r

p(s ′, r |s,a)[r + γv(s ′)].

Then, the Bellman’s optimality equation can be written asv∗ = F (v∗), i.e. it is a �xed point
of F . Using Thm. 4.8, it is enough to show that F is a contraction under the in�nity norm
‖v ‖∞ = maxs |v(s)|.
Let v,u ∈ Rn be arbitrary and set

πv (s) = argmax
a

∑
s ′,r

p(s ′, r |s,a)[r + γv(s ′)],

which is the maximizing action corresponding to state s given value v . Then,

F (v)(s) − F (u)(s) ≤ F (v)(s) −
∑
s ′,r

p(s ′, r |s,πv (s))[r + γu(s
′)]

= γ
∑
s ′,r

p(s ′, r |s,πv (s))[v(s
′) − u(s ′)]

≤ γ ‖v − u‖∞
∑
s ′,r

p(s ′, r |s,πv (s))

= γ ‖v − u‖∞.

By swapping u,v in the above argument we also have F (u)(s)− F (v)(s) ≤ γ ‖u −v ‖∞. Thus
we have shown

‖F (v) − F (u)‖∞ ≤ γ ‖v − u‖∞,

and thus the result follows from Thm. 4.8.

Now that we have shown that there exists a unique solution to the Bellman’s optimality
equation, we can deduce that the Bellman’s optimality condition (4.20) is a necessary and
su�cient condition for optimality. We summarize this main result in the following theorem.
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Theorem 4.10: Bellman Optimality Condition

A policy π is optimal if and only if for any pair of state action (s,a) ∈ S × A such that
π (a |s) > 0, the following holds:

a ∈ argmax
a′

qπ (s,a
′). (4.22)

In particular, vπ is the unique solution of the Bellman’s optimality equation

vπ (s) = max
a

qπ (s,a) ≡ max
a

∑
s ′,r

p(s ′, r |s,a)[r + γvπ (s
′)] (4.23)

Proof. The “only if” part follows from Thm. 4.7. The “if” part can be deduced by the
observation that if (4.22) holds, then vπ satis�es (4.23), and by uniqueness of its solution
(Thm. 4.9) we deduce that vπ = v∗ and hence vπ (s) = v∗(s) ≥ vπ ′(s) for any s and any
other policy π ′. Thus, it is an optimal policy.

Now, we show how Prop. 4.6 and Thm. 4.10 implies the existence of an optimal policy π∗ (as
de�ned in Def. 4.5). In fact, we can show that there exists an optimal deterministic policy.

Theorem 4.11: Existence of Optimal Deterministic Policy

Any �nite MDP admits an optimal deterministic policy.
Proof. Let π∗ be a deterministic policy that maximizes

∑
s ∈S vπ (s). The existence of such

a policy is guaranteed since there are only �nite many deterministic policies. If π∗ is not
an optimal policy, then by Theorem 4.10 there exists a state s such that

π∗(s) < argmax
a′

qπ∗(s,a
′)

By Prop. 4.6, we can then improve π∗ by a modi�ed policy such that

π̂ (s ′) = π∗(s
′) ∀s ′ , s and π̂ (s) ∈ argmax

a′
qπ∗(s,a

′).

This gives a strict inequality for at least one s and so
∑

s vπ̂ (s) >
∑

s vπ∗(s), which contra-
dicts the fact that π∗ maximizes

∑
s vπ (s).

Thm. 4.11 suggests that for the purpose of analyzing �nite MDPs, it is enough to consider only
deterministic policies. In the following, we shall denote by π∗ such an optimal deterministic
policy. Then, we can denote by

v∗(s) := vπ∗(s) = max
π

vπ (s) and q∗(s,a) := qπ∗(s,a) = max
π

qπ (s,a) (4.24)

the corresponding optimal value function and action value function respectively. By Thm. 4.10,
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we have the formula

π∗(s) ∈ argmax
a

q∗(s,a). (4.25)

Therefore, knowing the optimal action value function is enough to determine an optimal policy.
Note that the analogues of (4.12), (4.13) are

q∗(s,a) =
∑
s ′,r

p(s ′, r |s,a)[r + γv∗(s
′)] (4.26)

v∗(s) = q∗(s,π∗(s)) = max
a

q∗(s,a). (4.27)

Combining, we have the Bellman’s optimality equations for the optimal value function already
discussed before

v∗(s) = max
a

∑
s ′,r

p(s ′, r |s,a)[r + γv∗(s
′)] (4.28)

and the action value function

q∗(s,a) =
∑
s ′,r

p(s ′, r |s,a)[r + γ max
a′

q∗(s
′,a′)]. (4.29)

The preceding argument shows the following important points:

1. For �nite MDPs, there always exists an optimal policy π∗ such that π∗ ≥ π for all policies
π .

2. The optimal value function v∗ associated with π∗ is unique. However, an optimal policy
need not be unique.

3. There always exists an optimal policy that is deterministic (See (4.25)). In fact, for every
stochastic policy there always exists a deterministic policy that is at least as good.

In the next sections, we will investigate algorithms to solve for the optimal (action) value
functions in order to �nd optimal policies. We will investigate a variety of algorithms for
di�erent settings.

4.3 Numerical Algorithms for Reinforcement Learning

In this section, we introduce some basic algorithms to solve reinforcement learning problems
posed as �nite MDPs. First, we distinguish between the concept of model-free and model-based
algorithms.

• Model-based: Here we assume that we know the underlying probabilistic model for the
interaction between the environment and the agent is known to us. More precisely, we
have access to the function p(s, r ′ |s,a) that de�nes the MDP.
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• Model-free: In model-free algorithms, we do not know the function p(s, r ′ |s,a) and we
can only obtain samples from p.

In fact, recent progress in reinforcement learning is precisely for model-free situations, which
greatly enhances the range of applicability. However, to introduce algorithms we �rst focus on
the model-based approach.

4.3.1 Model-based Algorithms

As seen in Section 4.2.2, a solution of the RL problem can be obtained as long as we solve the
Bellman’s optimality equation (4.28). In the model-based scenario, the terms in the equation are
completely known to us. Let us restate the equation here here:

v∗(s) = max
a

∑
s ′,r

p (s ′, r |s,a) [r + γv∗ (s
′)] . (4.30)

Also, given v∗, the optimal action value function is

q∗(s,a) =
∑
s ′,r

p(s ′, r |s,a)[r + γv∗(s
′)], (4.31)

from which the optimal value function and a deterministic optimal policy can be formed by

v∗(s) = max
a

q∗(s,a), π∗(s) ∈ argmax
a

q∗(s,a). (4.32)

Thus, this shows that we can �nd an optimal policy, thereby solving the reinforcement learning
problem, if we �rst solve the Bellman’s optimality equation (4.30). This forms the �rst class of
model-based algorithms known as value iteration.

Value Iteration. Let us now introduce the value iteration algorithm for model-based re-
inforcement learning. Observe that we can rewrite the Bellman’s optimality equation (4.30)
as

v∗ = F (v∗), (4.33)

where the F : Rn → Rn (n = |S|) is de�ned as

F (v)(s) = max
a

∑
s ′,r

p(s ′, r |s,a)[r + γv(s ′)]. (4.34)

Note that using the previous matrix notations, we can rewrite this as

F (v) = max
π
[γP(π )v + b(π )], (4.35)
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where the maximization is taken over all deterministic policies π : S → A and

P(π )ss ′ =
∑
r

p(s ′, r |s,π (s))

b(π )s =
∑
r

rp(s ′, r |s,π (s))
(4.36)

Owing to (4.33), we can �nd v∗ by solving the �xed point problem, via iterating vk+1 = F (vk ),
k = 0, 1, 2, . . . . Suppose that the limit of vk as k →∞ exists, then it satis�es F (v∞) = v∞, and
by uniqueness of optimal value function it implies v∞ = v∗. The algorithm is summarized in
Alg. 10. A simple stopping criterion is ‖v − F (v)‖ < ϵ for some small error tolerance ϵ .

Algorithm 10: Value Iteration Algorithm
Model Parameters: MDP transition probability p(s ′, r |s,a), discount rate γ < 1
Input: Stopping criterion
Initialize: v ∈ Rn

while stopping criterion not reached do
v ← F (v) = maxπ {γP(π )v + b(π )}

end
return v

We now show that Alg. 10 converges. The proof relies the contraction mapping theorem
(Thm. 4.8) introduced earlier.

Theorem 4.12: Convergence of Value Iteration

Let v0 ∈ Rn be arbitrary and de�ne vk+1 = F (vk ). Then, we have v∗ = limk→vk .

Proof. This follows from the fact that F is a contraction, as proved in Thm. 4.9.

Thm. 4.12 shows that the value iteration algorithm 10 converges. In fact, one can analyze how
fast the convergence happens. Given an error tolerance ϵ > 0, how many iterations is required
so that ‖v −v∗‖ ≤ ϵ? To answer this, observe that

‖vk+1 −v∗‖∞ = ‖F (vk ) − F (v∗)‖∞ ≤ γ ‖vk −v∗‖∞.

Hence, ‖vk − v∗‖∞ ≤ γ k ‖v0 − v∗‖∞. Setting ‖vk − v∗‖∞ ≤ ϵ gives k = O
(
log(1/ϵ )
log(1/γ )

)
. In other

words, the convergence is exponentially fast. In the optimization literature, this is also called
linear convergence.

Policy Iteration. Although value iteration converges very quickly, it still theoretically takes
an in�nite number of iterations to achieve optimality. However, recall that for �nite MDPs,
there are �nite number of deterministic policies, at least one of which must be optimal. Hence,
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it is natural to ask whether there is an algorithm that solves the reinforcement learning problem
in a �nite number of steps. The alternative solution method, policy iteration, achieves this.

The basis for policy iteration is the policy improvement result in Prop. 4.6, which implies that
for any policy π with action value function qπ (s,a), the new policy de�ned by

π ′(s) ∈ argmax
a

qπ (s,a) (4.37)

must have equal or better value, i.e. v ′π ≥ vπ . Moreover:

• If there exists at least one s for which π (s) < argmaxa qπ (s,a), then π ′ so obtained is a
strictly better policy,

• If for all s , π (s) ∈ argmaxa qπ (s,a), then π is optimal.

Hence, by iterating the above policy improvement (4.37), we can then achieve optimality in a
�nite number of steps. The algorithm is summarized in Alg. 11, which essentially weave policy
evaluation (E) and improvement (I) steps

π0
E
−→ vπ0

I
−→ π1

E
−→ vπ1

I
−→ π2

E
−→ · · ·

I
−→ π∗

E
−→ v∗ (4.38)

We prove its convergence in Thm. 4.13.

Algorithm 11: Policy Iteration Algorithm
Model Parameters: MDP transition probability p(s ′, r |s,a), discount rate γ < 1
Initialize: Deterministic policy π ← π0
while π , π ′ do

π ← π ′;
v ← (I − γP(π ))−1b(π ) (Evaluate vπ , the value of policy π );
π ′← argmaxπ {b(π ) + γP(π )v} (The term inside the max is just qπ );

end
return v

Theorem 4.13: Convergence of Policy Iteration

Let πk , k = 0, 1, 2, . . . be a sequence of policies which are updated according to Alg. 11.
Then, we have vπk ≤ vπk+1 ≤ v∗. Moreover, for any π0, vπk = v∗ for all su�ciently large
k .

Proof. By the policy improvement result (Prop. 4.6), we know that vπk ≤ vπk+1 ≤ v∗ for
any k . Moreover, if πk = πk+1 then vπk = v∗, and if the last equality does not hold then
πk , πk+1, and the value strictly increases. Since there are a �nite number of deterministic
policies, we must have vπk = v∗ after a �nite number of steps.
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In general, value iteration may converge quickly in terms of the number of iterations, but each
iteration is in general more expensive than value iteration, due to the fact that a linear equation
of the form (I − γP(π ))vπ = b(π ) must be solved.

4.3.2 Model-free Algorithms

In previous algorithms on policy evaluation and iteration, it is assumed that p(r , s ′ |s,a) is a
known function. This is reasonable for some small toy systems, but in reality p is often not
known to us, due to a variety of reasons:

• Computing/estimating p is intractable due to system size and complexity.

• Reward and state evolutions are from some black-box system.

In this case, it is desirable to ask for model-free algorithms, where we do not need to specify
the functional form of p. However, we will still need information from the evolution of states
and rewards. Thus, we will assume that we can sample from p, i.e., given a state s and an action
a, there exists a possibly black-box simulator that outputs the next state s ′ and the reward r ,
which are distributed according to p(r , s ′ |s,a). We do not know the latter, but we can query
samples from this simulator. It turns out that in the model-free context, we can make use of
Monte-Carlo simulations to evaluate and improve policies. Our goal is to present various useful
algorithms in the model free context, without recourse to the proof of their convergence. The
latter requires some advanced tools in probability theory (e.g. Martingales) which are out of
scope of these notes. The interested readers can refer to textbooks, e.g. [MRT18], Ch. 17.

Monte-Carlo Policy Evaluation. First, we discuss model-free policy evaluation, i.e. esti-
mating the value of a particular given policy. Instead of solving the Bellman’s equation for the
value function, we will directly make use of the de�nition of the value function, namely

vπ (s) = Eπ [Gt |St = s] = Eπ

[
∞∑
k=0

γ kRt+k+1 |St = s

]
. (4.39)

We will assume time homogeneity and take t = 0 in the above. This is written as an expectation,
and hence we can estimate it by average over samples. More precisely, using our black-box
simulator, we can draw N samples

S (n)0 = s, S
(n)
1 , S

(n)
2 , . . . and R(n)1 ,R

(n)
2 , . . . , for n = 1, 2, . . . ,N , (4.40)

where at each S (n)t the action At is chosen according to the policy π . Once the action A(n)t , the
next states S (n)t+1 and reward R(n)t+1 are sampled according to our black-box simulator. Each sample
trajectory of states and rewards {S (n)t ,R

(n)
t : t = 0, 1, . . . } is called an episode.
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By appealing to the law of large numbers, we can approximate the expectation by the sample
mean over the returns of these N episodes:

vπ (s) ≈
1
N

N∑
n=1
[G(n)0 |S

(n)
0 = s] =

1
N

N∑
n=1
[G(n)0 |S

(n)
0 = s] =

1
N

N∑
n=1

[
∞∑
k=0

γ kR(n)k+1

]
. (4.41)

Monte-Carlo Policy Improvement. The Monte-Carlo policy improvement method works
similarly. Looking at the previous section on model-based methods, it is clear that as long as
we can estimate the action value function (4.11). Just like the state value function, we can use
sample means over episodes to get

qπ (s,a) ≈
1
N

N∑
n=1

[
∞∑
k=0

γ kR(n)k+1

]
. S (n)0 = s, A

(n)
0 = a (4.42)

The policy improvement may then be set as

π ′(s) = argmax
a

qπ (s,a). (4.43)

We summarize the model-free policy iteration in Algorithm 12.

Remark. Note that in Algorithm 12, we have resorted to sampling every s ∈ S to compute
the action value function. In practical scenarios, this may be ine�cient since S may be large.
Rather, we can run a very long trajectory, and take any sub-trajectory that starts from s as
another independent trajectory in the average. There are two choices: 1) for each unique sj
in the trajectory, we take the �rst time sj appears as the starting point and take the path that
originates from this starting point as an independent path. This is called every visit Monte Carlo.
2) alternatively, we can take every sj in the long trajectory as a starting point of a sub-trajectory,
and this is called called every visit Monte Carlo. Both can be shown to also give a good estimate
of the value functions, although they have di�erent bias-variance tradeo�s.

Temporal Di�erencing and Q-Learning. While the previous policy iteration method is
easy to implement, one can see that for large state/action spaces, it may not be very e�cient.
This is because the policy evaluation step can be very expensive: for a larger state/action space,
the variance of the Monte-Carlo estimate will be very large. Thus, one may ask if there’s a more
iterative method, such as the value iteration method that we discussed before, which avoids
the computation of value functions given a policy. Rather, we want to iteratively update some
estimate of the value function.

The �rst algorithm along this line of thought is the TD(0) algorithm, which is used to estimate
the value function corresponding to a particular π iteratively. In this algorithm, we do not use
Monte-Carlo to compute the value function in one go. Instead, suppose at the k th iteration we
have an estimate v(k )π of the value function corresponding to policy π .
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Algorithm 12: Model-free Policy Iteration Algorithm
Input: State-reward simulator, Sample size N , Stopping criterion
Initialize: Initial policy π , Initial action value function q(s,a)
while stopping criterion not reached do

Policy evaluation:
for s in S do

for a in A(s) do
Sample episodes according to π :
S (n)0 = s, S

(n)
1 , S

(n)
2 , . . . andR(n)1 ,R

(n)
2 , . . . forn = 1, 2, . . . ,N , Set

action-value function:
q(s,a) ← 1

N
∑N

n=1

[∑∞
k=0 γ

kR(n)k+1 |S
(n)
0 = s,A

(n)
0 = a

]
.

end
end
Policy improvement:
for s in S do

π (s) ← argmaxa q(a, s)
end

end
return π ≈ π∗,q ≈ q∗

Then, we sample the next state s ′ and obtain the reward r from a possibly black-box environment.
Then, we set the next iterate as

v(k+1)π (s) = (1 − α)v(k )π (s) + α[r + γv(k )π (s ′)]. (4.44)

If we take expectation with respect to s ′, r and suppose thatv(k )π converges, then it is not hard to
see that the limit must be the unique solution of the Bellman’s equation, i.e. the value function
corresponding to π . This can be made rigorous, see [MRT18] Ch 17.5.2.

The reason this is called temporal di�erencing is because we can rewrite (4.44) as

v(k+1)π (s) = v(k )π (s) + α[r + γv
(k )
π (s

′) −v(k )(s)]. (4.45)

Then, we can see that the algorithm works as follows:

• If the current iterate “under-values” s , i.e. the value assigned to s is lower than the
immediate reward plus the estimated value of the next state, then we increase its estimated
value

• If the current iterate “over-values” s , i.e. the value assigned to s is higher than the
immediate reward plus the estimated value of the next state, then we decrease its estimated
value

• The last term that decides whether “over-valuing” or “under-valuing” occurs is a temporal
di�erence.
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The “0” in TD(0) is to make a distinction with the more general TD(λ) algorithm, which considers
the temporal di�erence of rewards collected for multiple steps. We omit these here for simplicity.
The TD(0) algorithm for iterative policy evaluation is summarized in Alg. 13.

Algorithm 13: TD(0) Algorithm for Policy Evaluation
Input: State-reward simulator, initial state sampler, Stopping criterion, Policy π
Initialize: Initial value v0, Episode length T
v ← v0;
while stopping criterion not reached do

s ← InitialStateSampler();
for t = 0 to T − 1 do

a ← a ∼ π (·|s);
s ′, r ← StateRewardSimulator(s,a);
v(s) ← (1 − α)v(s) + α[r + γv(s ′)];
s ← s ′

end
end
return v

In a similar vein, we can form an iterative method that �nds an optimal policy via updating
estimations of the action value function. This is based on the result we have derived earlier that
if q∗ is the optimal action value function, then an optimal policy can simply be read o� as

π∗(s) ∈ argmax
a

q∗(s,a). (4.46)

Moreover, the optimal value function satis�es the Bellman’s optimality equation

q∗(s,a) =
∑
s ′,r

p(s ′, r |s,a)[r + γ max
a′

q∗(s
′,a′)]. (4.47)

As before, we can replace the expectation over s ′, r via a sample, and derive the update

q(s,a) ← (1 − α)q(s,a) + α[r + γ max
a′

q(s ′,a′)], (4.48)

where s ′, r are sampled according to the black-box environment simulator. This is known
as Q-learning, and is in fact one of the primary ideas driving the success of Alpha-Go. We
summarize the Q-learning algorithm in Alg. 14.

4.4 Further Reading

The topic of reinforcement learning is a huge one deserving at least one entire course. For
this reason, we have only introduced the bare basics in this chapter. Key topics missing is
the class of methods called policy gradient and actor critic methods. These directly optimizes
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Algorithm 14: Q-learning Algorithm
Input: State-reward simulator, initial state sampler, Stopping criterion, Policy π
Initialize: Initial value q0, Episode length T
q ← q0;
while stopping criterion not reached do

s ← InitialStateSampler();
for t = 0 to T − 1 do

a ← a ∼ π (·|s);
s ′, r ← StateRewardSimulator(s,a);
q(s,a) ← (1 − α)q(s,a) + α[r + γ maxa′ q(s ′,a′)];
s ← s ′;

end
end
return q

the policy function π , with value function computations as support. Another aspect driving
modern deep reinforcement learning is using deep neural networks to estimate value functions
and action value functions, which is an interesting combination of supervised learning and
reinforcement learning. Nevertheless, these methods inevitably builds on the basic ideas we
introduced in this chapter. Instead of specifying a number of references, the reader is referred to
the comprehensive texts [Sut99] on reinforcement learning methods and applications. For more
theoretical treatment on Markov decision processes and reinforcement learning, the reader may
refer to [Put14, MRT18].
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