Chapter 6

Parametric survival analysis

Until now, most of the course has focused on non- or semi-parametric meth-
ods, namely the Kaplan—Meier estimate of S(¢) and the Cox model its exten-
sions. The Cox model is semi-parametric because the form of the baseline
hazard is not specified, only the form of the effect of covariates. Because of
this, it is particularly popular in survival analysis.

In parametric survival analaysis, on the other hand, all parts of the model
are specified, both the hazard function and the effect of any covariates. The
strength of this is that estimation is easier and estimated survival curves are
smoother as they draw information from the whole data. In addition, it is
possible to do more sophisticated analyses with parametric models, such as
including random effects or using Bayesian methodology to pool sources of
information. The main drawback to parametric methods is that they require
extra assumptions that may not be appropriate.

In this chapter, we cover some of the possibilities in parametric modelling
of survival. We begin by recapping some of chapter 1. Then we consider
accelerated failure time models, that allow covariates to predict survival.
We conclude by introducing frailty, or random effects, models, that allow
additional sources of variability to be accounted for.
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6.1 Preliminaries

Consider the case in which there are no covariates or censoring. Then if
we assume a particular model M (say, Weibull) with parameter(s) 6, the
likelihood contribution from an individual failing at time ¢; is f(¢;|0, M).
Since failures are independent (most of the time), the likelihood from m

observations is
m

7416, 21) = [ ] (116, 2)

i=1

The maximum likelihood estimate of the parameters is typically obtained
by taking the logarithm, and ideally by then taking the (partial) derivatives
with respect to 6. Setting all partial derivatives equal to zero and solving the
resulting system of equations for @ will yield the MLE 6. An approximate
confidence interval can be obtained by appealing to the asymptotic normality
of the MLE, using the observed information

A A~ 2

V() =11(0) = (—%%logf(tw,M))_ .

Often, no analytic solution for the MLE exists. In such cases, a numerical
approach must be taken. A popular method is to use Newton—Raphson
(see chapter 3), but this is very sensitive to initial conditions and requires
differentiation. There are several other methods, and two are outlined below.

6.1.1 Cross Entropy

One alternative (of many) is called Cross Entropy, which has the advan-
tages of simplicity and generalisability. For information on the method, see
www.cemethod.org. It may require many function calls, though, which on
occasion may make it prohibitively expensive.

Consider the Weibull example. For illustration, it will be nice to have a
contour plot of the likelihood. This can be obtained by making a grid of
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points, calculating the (log) likelihood, and creating a plot; this is very easy
in R using the following code, where t is a vector of data input elsewhere.

Firstly, the following code defines a function to calculate the log-likelihood:

logl=function(kappa,lambda)

{
logf=rep(0,length(kappa))
ok=as.logical ((lambda>0) * (kappa>0))
for(i in 1:length(kappa))
{
if(ok[i])logf[i] = m*log(lambdal[i])+m*log(kappalil)
+(kappal[i]l-1)*sum(log(t)) -lambdalil*sum(t~kappalil)
if (1ok[1])1logf [1]1=-999999999 #ie very small
}
logf
}
grid=20
mink=0.45
maxk=1.0
minl=0.1
max1=0.6

Kappa=seq(mink,maxk,length.out=grid)
Lambda=seq(minl,maxl,length.out=grid)
Logf = matrix(0,grid,grid)
for(i in 1:grid)
{
for(j in 1:grid)
{
k=Kappa[i] ;1=Lambda[j];Logf[i,jl=logl(k,1)
}
}
Logf=Logf-max(Logf)
contour (kappa,lambda,exp(logf) ,drawlabels=FALSE,
xlab=expression(kappa) ,x1im=c(0,1.5),
ylab=expression(lambda),ylim=c(0,1.5))
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The resulting contour plot will be in the background for our other plots
illustrating the CE method. Note that the contour plot is only really do-able
for toy problems with two parameters: it may guide the eye towards the
MLE and with and ad hoc sequence of iterations of zooming in on where we
think the maximum is, can provide the MLE to the desired accuracy. Grid
searches (as effectively the contour plot is) are horrendously inefficient and
infeasible for more than two or three parameters, a limitation not shared by
Cross Entropy.

In Cross Entropy, we create a random sample of candidate points for the
MLE. At each point, we evaluate the log likelihood. We discard the worst
X% of these, and take the mean of those retained: this then defines the mean
for the next iteration of random sampling. When the mean changes by less
than some threshold, the routine stops.

For the Weibull problem, we specify the following arguments:

e /%, \° (initial guesses at the MLE)
e 0, =0, = 0.01 (tuning arguments)
® Nt = 100 (the number of particles in the sample)

® Nyop = 10 (the number of particles in the retained set)

€ = 0.0001 (threshold for ending the routine)
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The code to run this algorithm was:
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#t are the data

npart=100

muk=1

mul=1

sigmak=0.01

sigmal=0.01

finished=FALSE

topn=10

bestk=muk

bestl=mul

bestlogf=1logl (bestk,bestl)

while(!finished)

{
old_muk=muk;old_mul=mul
kappa=rnorm(npart,old_muk,sigmak)
lambda=rnorm(npart,old_mul,sigmal)
logf=1logl (kappa, lambda)
toplot=order (logf,decreasing=TRUE) [1:topn]

muk=mean (kappa[toplot])
mul=mean (lambda[toplot])
if (max (logf)>bestlogf)
{
bestlogf=max(logf)
bestk=kappa [which.max(logf)]
bestl=lambda[which.max(logf)]
}

if ((abs (muk-0ld_muk)<0.0001) && (abs(mul-o0ld_mul)<0.0001))finished=TRUE
kappahat=muk
lambdahat=mul
points (kappahat,lambdahat,col=5,pch="+")
}
kappahat=bestk
lambdahat=bestl
points (kappahat,lambdahat,col=2,pch="+")
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6.1.2 Simulated annealing

Simulated annealing was introduced by Kirkpatrick et al. (1983) as a stochas-
tic optimisation method. Unlike Cross Entropy, it is not really suitable for
stochastic response surfaces, but for deterministic objective functions is prob-
ably more efficient. It is very similar to Markov chain Monte Carlo (MCMC)
simulation, so if you have learned MCMC you may readily apply the same
technique with minor adaptation to optimisation problems.

Let us begin with a recap of MCMC. MCMC is a simulation based approach
to sample a complicated distribution, of a (usually multivariate) random
variable 6. You need to be able to evaluate the density function f(6) of the
distribution up to a constant of proportionality, or the log density plus some
unknown constant, [(f). You specify initial conditions 6, for the random
variable whose distribution you wish to sample and a proposal distribution,
q(6*)0;), often a function of the current value 6; of the random variable, that
you can simulate from and evaluate the density of. You then successively
propose new values of the random variable and either accept them or retain
the old value according to the Metropolis—Hastings algorithm. This leads to
a correlated sample of 6 with density equal to the target density. Here is the
algorithm:

1. Set i = 0 to be the iteration.
2. Set 6y to be an arbitrary initial choice of 6.
3. Repeat the following steps until i = M, some large number (e.g. 10 000).

(3a) Draw 0* from ¢(0*|0;). A common choice is a normal distribution
with mean 6; and an arbitrary covariance.

(3b) Evaluate [(6*).

(3c) With probability exp(1(6*) — 1(6;))q(6:16*)/q(6*|0;) let 6,11 = 67,
otherwise let 6,1 = 6,.

(3d) Increase i by one.
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MCMC is very popular in Bayesian statistics, for it provides a way to sample
posterior distributions of parameters. It is not often used in frequentist
statistics, but is actually quite useful there too. Although the likelihood
function is not a probability density for the parameters, as long as it has
finite integral you can treat it as such, and use MCMC to draw a sample
proportional to it. The MLE can be taken to be the mode of the sample,
which can be evaluated using kernel density estimation, or the sampled value
with highest log-likelihood.

Simulated annealing replaces step 3c by the following

(3c) If 1(6*) > 1(0;) then 0;, = 0*. Otherwise, with probability exp[(l(6*) —
l(@z))q(ez|9*)/(T,q(0*|01))] let 9,‘_,_1 = 6*, otherwise let 072—}—1 = Qz Here, /_TZ
is the annealing schedule, and a simple choice is Ty = 1, T; 1 = 0.997;.

In other words, simulated annealing is the same as MCMC except that it
becomes progressively harder to move downhill as the routine continues. This
encourages the resulting chain to stay nearer the maximum of the function.
Note though that this is an heuristic optimisation method in that it does not
guarantee an optimum be found.
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The code to do the MCMC sample is as follows:

contour (Kappa,Lambda, exp(Logf) ,drawlabels=FALSE,
xlab=expression(kappa) ,x1lim=c(0,1.5),
ylab=expression(lambda),ylim=c(0,1.5))

NITS=1000

kappa=1

lambda=1

logf=1logl (kappa,lambda)

sigmak=0.1

sigmal=0.1

bestk=muk

bestl=mul

bestlogf=logf

for(i in 1:NITS)

{
old_kappa=kappa;old_lambda=lambda;old_logf=logt
kappa=rnorm(1,kappa,sigmak)
lambda=rnorm(1,lambda,sigmal)
logf=1logl (kappa,lambda)

accept=TRUE; if (kappa<0)accept=FALSE;if (1ambda<0)accept=FALSE

if (Log(runif (1))>(logf-old_logf))accept=FALSE

if (taccept){kappa=0ld_kappa;lambda=o0ld_lambda;logf=0ld_logf}

if (Logf>bestlogf)
{
bestlogf=logf
bestk=kappa
bestl=lambda
}
points (kappa,lambda,col=2,pch="+")
}
kappahat=bestk
lambdahat=bestl
points (kappahat,lambdahat,col=5,pch="+")

179
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The simulated annealing routine is similar:

contour (Kappa,Lambda, exp(Logf) ,drawlabels=FALSE,
xlab=expression(kappa) ,x1im=c(0,1.5),
ylab=expression(lambda),ylim=c(0,1.5))

NITS=1000

kappa=1

lambda=1

logf=1logl (kappa,lambda)

sigmak=0.01

sigmal=0.01

bestk=muk

bestl=mul

bestlogf=logf

temperature=1

for(i in 1:NITS)

{
old_kappa=kappa;old_lambda=lambda;old_logf=logf
kappa=rnorm(1,kappa, sigmak)
lambda=rnorm(1,lambda,sigmal)
logf=logl (kappa, lambda)

accept=TRUE; if (kappa<0)accept=FALSE; if (lambda<0)accept=FALSE

if (logf<old_logf)
{

if (Llog(runif (1))>((logf-old_logf)/temperature))accept=FALSE

}

if (taccept){kappa=0ld_kappa;lambda=o0ld_lambda;logf=0ld_logf}

if (Logf>bestlogf)
{
bestlogf=logf
bestk=kappa
bestl=lambda
X
points (kappa,lambda,col=2,pch="+")
temperature=temperature*.99
}
kappahat=bestk
lambdahat=bestl
points (kappahat,lambdahat,col=5,pch="+")
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6.1.3 Comparing parametric models

We can compare parametric models in the usual way. If they are nested, the
likelihood ratio test can be used to test for a significant deviation from the
more parsimonious model. If they are not, the Akaike information criterion
(AIC) can be used to select the best fitting.

Note that it is fine to use the AIC to select between parametric models, or to
select between semi-parametric Cox models, but not to select from a mixture
of the two. This is because the data are different:

e parametric models are fit to the event times, whereas

e Cox models are fit to the ordered event times only (as the baseline
hazard function is not estimated).

It would thus be an unfair comparison as the Cox model would be trying to
explain a much simpler data set. Alternatives do exist but these are beyond
the scope and remaining time-scale of the course.

6.1.4 Censored data

Censored data are dealt with trivially within parametric models. Limit at-
tention to right-censored data for simplicity. We imagine there is a true
failure time 7. We observe a pair (¢, 0).

e If § =1, we know T = t, i.e. the individual failed at the time we have
observed.

o If 0 =0, we know T > ¢, i.e. the individual was right-censored at the
time we have observed.

If we had observed the set of T} for ¢ = 1,...,m, the likelihood would be. ..
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6.2 Assessing the validity of common para-
metric models

The AIC or likelihood ratio test allow us to assess relative model goodness
of fit, but not absolute model goodness of fit. Just because the log-logistic
fits better than the exponential does not mean the log-logistic adequately
describes the data, for example.

Thus, we would like a method, at least a graphical one, that lets us assess
the absolute goodness of fit of a parametric model.

One way to do this is to create plots of a function of survival against a
function of time that should be linear if the model is true. Obvious non-
linearities would suggest the model does not characterise salient points in
the data. It turns out that this is easy to do for some common parametric
models, including the exponential, Weibull and log-logistic.

Our objective for each model is to obtain something linear in a function of
time, where this function of time has no unobserved parameters, that is:

FI{S(t)} = f2(0) + f3(0) fu(t).

This would then allow us to plot fi1{S(t)} using the Kaplan-Meier estimate
versus fy(t) to obtain a straight line if the model were true.
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6.3 Regression parametric models

So far in this chapter, we have ignored any covariates. But it is perfectly pos-
sible to introduce covariates into a parametric model—indeed, if we couldn’t
it would be fairly pointless to study them.

Consider first the exponential model with a single covariate x.

Without covariates, the hazard would be

h(t) = .

We can make this into a PHM by making A a function of x:
h(t) = exp(fy + frx) = e®e® = hoelr®
where [y and (3; (or, equivalently, hy and (3;) are parameters to be estimated.

But we can also make it into a different kind of model called an accelerated
failure time model (AFT) by writing the hazard thus:

h(t) = 1/exp(a0 + 04155) = hoe_alx
where now g and a; are the parameters to be estimated.

For the exponential model, these are equivalent, but this is not true in gen-
eral. It is possible for a model to be PHM but not AFT, or AFT but not PHM,
or both, or neither.
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6.3.1 Accelerated failure time models

In an AFT model we assume that the time ¢; to S(¢;) = o for one individual
i is a constant times the time ¢; to S(t;) = o for individual j. The same
constant holds regardless of whether we consider ¢ = 0.5, i.e. the median, or
any other quantile. Written mathematically, we have

S(ti) = S(W(w, z5)t5)

where t(x;,x;) is the acceleration factor for i relative to j.

If a parametric model has just one scale parameter A, like the exponential
does, that parameter is replaced by

A =exp(—ay — a1y +...).
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If the model has both a scale A and a shape parameter k, as the Weibull or
log-logistic do, the scale parameter only is replaced by this function of the
covariates.

So for example, the exponential, Weibull and log-logistic AFT models with
two covariates are:

e Exponential: S(t,z1,z3) = exp{—texp(—ay — a1x1 — asxs)}
o Weibull: S(t,z1,x2) = exp{—t"exp(—ag — @111 — ows) }

o Log-logistic: S(t,z1, 1) = {1+ t"exp(—ap — a1 — apws)} !

We can estimate the parameters as before, e.g. using maximum likelihood,
and again their distribution will be asymptotically normal.

We can compare models with varying degrees of complexity in exactly the
same way as with the Cox PHM: i.e. with the likelihood ratio test if the
models are nested and with the AIC if they are not.

We can also assess the validity of the chosen parametric forms using the plots
discussed in the last section, but stratified over covariates.

Model building techniques as described in chapter 4 can also be used for
parametric models.

Note, however, that methods for dealing with violations of the PHA are not
appropriate for AFT parametric models, as these already model the base-
line hazard function. It s possible to stratify over covariates if the shape
parameter differs with the covariates.



CHAPTER 6. PARAMETRIC SURVIVAL ANALYSIS 186

6.4 Parametric analyses in R

In this section, we illustrate how the methods mentioned in the last section
can be implemented in R. In particular, we will illustrate the following things:

how to fit a parametric model in R and interpret the output;

how to plot the estimated survival function(s);

how to plot the complementary log-log function(s) to evaluate model
appropriateness;

how to test if covariates influence survival in a parametric model; and

how to select between competing parametric models.

We will illustrate these with an example we have already covered, albeit non-
parametrically, namely the veteran’s lung cancer study. This concerns the
time until death among veterans diagnosed with lung cancer. The following
predictors are available:

1. treat: 1 if the patient received a standard treatment and 2 if the test
treatment

2. cell: this indicates if the cancerous cell type is large (1), adeno (2),
small (3) or squamous (4). We create dummy categorical variables c1,
c2, c3, c4, with ci=1 if cell=1i and 0 otherwise.

3. perf: “performance status” on the scale 0-100.
4. age: in years.

5. prior: 1 if prior therapy was given, 0 otherwise.
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6.4.1 Fitting parametric models

There is a built-in function in the survival package that automatically fits a
sepecified parametric model to survival data, called survreg (as in “survival
regression”, though semi-parametric methods are also instances of survival
regression, so the name is not wholly appropriate). Its syntax is similar to
that of coxph, so it will be fairly easy to work out how to invoke it.

This function allows four pre-defined parametric models to be fit:

weibull

exponential (a special case of the Weibull)

lognormal

e loglogistic

We will concentrate on the Weibull function, mostly because I completely
cannot work out the parametrisation of the log-normal and log-logistic func-
tions based on their R help entries. (Sorry.) Also, it appears that the form
for the fitted Weibull function differs slightly from that found in the notes.
The R version can be seen in the next example.

Example 1

Suppose that we wish just to fit a Weibull model to the survival times without
exploiting any of the covariates that we have observed. This can be done with
the following command.

wei=survreg(Surv(t,delta)”1,dist="wuw"
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The 1 means it is not regressing on any covariates. The dist="w" means it
is using a Weibull distribution (only enough of the name of the distribution
to specify it uniquely is needed, meaning you can use dist="w", dist="e",
dist="logn", dist="1logl" instead of the full names given above).

Unfortunately, the output is not in the same format as that given from fitting
a Cox PHM. The following output is obtained:

> weil
Call:
survreg(formula = S ~ 1, dist = "w")

Coefficients:
(Intercept)
-1.107436

Scale= 1.173592

Loglik(model)= 7.2 Loglik(intercept only)= 7.2
n= 137

There are two parameters in this output to note. Scale is k and Intercept
is oy in the following equations:

S(t) = exp{—exp(—ap) "t}
h(t) = exp(—ag)*st" .

Note these differ from the definition of the Weibull used by rweibull () and
similar functions. So, the survival and hazard functions corresponding to
these output are:

S(t) = exp{—exp(1.11)"7¢17}
= exp{-3.67t"'"}
h(t) = exp(1.11)"171.17¢%17
4.30t%17

Thus we see that the hazard is around 3 and slowly increases over time.
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Example 2

Now suppose that we wish to use cell type to predict survival. As cell type
is categorical with more than two categories, we first create dummy binary
variables. As there are four categories, we need three of these in the model,
the fourth being identified with the intercept only.

We can fit the model as follows:

wei=survreg(S~c2+c3+c4,dist="w")

using c1 as the baseline to compare the other categories against.

The output of this model is

> weil

Call:

survreg(formula = S ~ ¢c2 + c3 + c4, dist = "w")
Coefficients:

(Intercept) c2 c3 c4

-0.4940319 -1.0831923 -1.2162022 -0.2627843
Scale= 1.030480

Loglik(model)= 21.1 Loglik(intercept only)= 7.2
Chisgq= 27.87 on 3 degrees of freedom, p= 3.9e-06
n= 137

The scale has the same interpretation as before (though note it is now closer
to 1, i.e. the exponential model might be appropriate here). The intercept
is applied to all categories. All categories except c1 have an addition term
associated with them. Thus, the survival and hazard functions for this model
are:
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S(t,x=c;) = exp{—exp(0.49) %3¢ 03}

S(t,r =cy) = exp{—exp(0.49+ 1.08)"3¢ 03}
S(t,x =c3) = exp{—exp(0.49+ 1.22)"%1%}
S(t,r =c;) = exp{—exp(0.49+ 0.26) 93¢0}
h(t,x =c1) = exp(0.49)1%%1.03¢%%

h(t,o =cy) = exp(0.49 + 1.08)"31.03¢%%
h(t,z =c3) = exp(0.49 + 1.22)"%31,03¢%
h(t,x =c;) = exp(0.49 + 0.26)"%%1.03¢%03,

The interpretation of this is that having an adeno cell (c_2) hastens death
by a factor of e%® = 2.9 relative to a large cell (c_1), etec.

6.4.2 Plotting survival functions

The survival and hazard functions are easy to plot based on the output of
the survreg function. We just create a vector of times spanning the time
period of interest, and then for each combination of covariates of interest,
create a vector of survival or hazard functions. These can then be plotted as
a smooth line-plot.

It is informative to compare the resulting survival curves against those ob-
tained from the Kaplan—Meier and Cox PHM fits. These will give a partial
illustration of the suitability of the model, in the same was as expected versus
observed plots did for the PHM.

Example 1

Return to the no predictor scenario.

Event times span the range 0-3y. Thus we begin by creating a vector of
times. To avoid confusion with the vector of event times, I have called this
zeit, the German word for time. (Feel free to use any alternative name for
this!)
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wei=survreg(S~1,dist="w")

kappa=wei$scale
lambda=exp (-wei$coeff [1]) “kappa

zeit=seq(from=0,to=3,length.out=1000)
s=exp(-lambda*zeit “kappa)
h=lambdaxkappa*zeit~ (kappa-1)

The following plots are the MLE estimates of the survival and hazard func-
tions.
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Note that these are much smoother than those based ultimately on the
Kaplan—Meier estimate, as the Cox PHM is.

Let us compare the parametric survival curves to the Kaplan—-Meier estimate
(since there are no predictors, the Kaplan—-Meier estimate is the same as the
Cox PHM here).

Here are the commands:
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plot (survfit(S™1) ,xlab="t’,ylab=expression(hat(S) (t)),1lty=2,conf.int=F)
lines(zeit,s)

The resulting graph is:
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The Weibull model looks reasonable, though it doesn’t quite match the over-
all shape of the non-parametric approach. Note though that this model
contains no covariates, and the addition of the heterogeneity that they bring
may resolve this.

Example 2

Bearing that in mind, consider now the model with cell type as a predictor.
Here are the commands to make a graph with the Kaplan—Meier estimates
as dashed lines, the Cox PHM as solid lines, and the Weibull model as thick
solid lines (toki is the Japanese word for time).
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phm=coxph (S~ c2+c3+c4)
dphm=coxph.detail (phm)
km=survfit (S~ c2+c3+c4)
wei=survreg(S~c2+c3+c4,dist="w")

plot (km,col=c(1,4,3,2),xlab="t’,ylab=expression(hat(8) (t)),1lty=2)

toki=dphm$time
hO=dphm$hazard
SO0=exp (-cumsum (h0) )
beta=phm$coef

xmean=c (mean(c2) ,mean(c3) ,mean(c4))
x1=c(0,0,0)-xmean
x2=c(1,0,0)-xmean
x3=c(0,1,0)-xmean
x4=c(0,0,1)-xmean

S1=8S0" (exp (betak%*%x1))
S2=80" (exp (beta%*%x2))
S3=50" (exp (beta%*%x3))
S4=S0" (exp (betal*%x4))
lines(toki,S1,type=’s’,col=1)
lines(toki,S2,type=’s’,col=2)
lines(toki,S3,type=’s’,col=3)
lines(toki,S4,type=’s’,col=4)

kappa=wei$scale
lambdal=exp(-wei$coeff [1]) “kappa
lambda2=exp(-wei$coeff [1]-wei$coeff [2]) “kappa
lambda3=exp(-wei$coeff [1]-wei$coeff [3]) “kappa
lambdad=exp (-wei$coeff [1]-wei$coeff [4]) "kappa

zeit=0.001%(0:1000)*max (t/365.25)
sl=exp(-lambdal*zeit “kappa)
s2=exp(-lambda2+*zeit “kappa)
s3=exp(-lambda3*zeit “kappa)
s4=exp (-lambdad*zeit "kappa)
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lines(zeit,sl,col=1,1wd=2)
lines(zeit,s2,co0l=2,1wd=2)
lines(zeit,s3,co0l=3,1lwd=2)
lines(zeit,s4,col=4,1wd=2)

The resulting graph is:

S(1)
00 0.2 04 006 08 1.0

The parametric curves go nicely through the Kaplan-Meier estimates. This
gives weight to the decision to use a Weibull model. Note also that the red
and green curves (small and squamous cells) are very close, suggesting that
they might have the same effect, while the black and blue curves (large and
adenous) are fairly close, indicating that they might have the same effect as
each other.

6.4.3 Visual assessment of model appropriateness

We have just seen an example of how the expected versus observed plot could
be generalised to the parametric scenario. An alternative is to plot trans-
formations of the Kaplan—Meier estimates versus transformations of time, as
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described in the last section. For the Weibull model, these transformations

N

should be log(—log(S(t))) versus logt. This again is easy to effect in R.

Consider only the model with cell type as a predictor (the no-predictor model
is similar). (temp is the French word for time.)

km=survfit (S~ c2+c3+c4)
m=1;n=km$stratal1]
temp=km$time [m:n]
cloglog=log(-log(km$surv[m:n]))
plot(log(temp),cloglog,type=’s’,xlab="log(t)’,
ylab=expression(log(-log(hat(S)(t)))))
m=n+1;n=n+km$stratal2]
temp=km$time [m:n]
cloglog=log(-log(km$surv[m:n]))
lines(log(temp),cloglog,type=’s’,col=2)
m=n+1;n=n+km$stratal3]
temp=km$time [m:n]
cloglog=log(-log(km$surv[m:n]))
lines(log(temp),cloglog,type=’s’,col=3)
m=n+1;n=n+km$stratal4]
temp=km$time [m:n]
cloglog=log(-log(km$surv[m:n]))
lines(log(temp),cloglog,type=’s’,col=4)
lines(c(-5,-2),c(-2,1),c0l=8,1ty=2)

The estimated log-log lines should be roughly straight if the Weibull model
is appropriate. It seems from the plot below that this is a valid assumption.
The last line of code adds a dashed grey line to the plot with slope 1: the
other lines should be parallel to this if the exponential special case holds:
again, it seems they are.
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log(~log(S(1)))

6.4.4 Testing parameters

We thought above that some of the cell types might be merged. With para-
metric models, as with semi-parametric ones, we often wish to test whether
covariates belong in the model or not. One way to do this is to use the
likelihood ratio test on two models. This requires a bit of work. The other
is to do the Wald test on a single fitted model. This also requires a bit of
work. They are illustrated in the two examples below.

Example 2

Consider cell type as the only predictor. Let us try to merge small and
squamous cells. We fit two models: one with parameters for three cell types
(again keeping the fourth as the baseline) and one with parameters for just
two, i.e. forcing the small and squamous cells to share the same parameter.

This can be done using the following commands:
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weil=survreg(S~c2+c3+c4,dist="w")
wei2=survreg(S~I(c2+c3)+c4,dist="w")

Twice the difference in log-likelihoods should be distributed according to a
chi-squared distribution with one degree of freedom. Thus the p-value can
be calculated as follows:

> teststat=2*(weil$logl[2]-wei2$logl[2])
> pchisq(teststat,df=1,lower.tail=F)
[1] 0.6036761

As the p-value is large, we have no evidence to reject the hypothesis that
actually, small and squamous cells have the same effect on survival. We
would thus proceed with the simpler model in which they share a coefficient.

We can test whether large and squamous cells have the same coefficient in
the same way:

wei3d=survreg(S~I(c2+c3) ,dist="w")
teststat=2*(wei2$logl[2] -wei3$logl[2])
pchisq(teststat,df=1,lower.tail=F)

The p-value is 35%, so again there is no evidence against the simpler model.

Example 3

Now suppose that we use all the other covariates as well to predict survival.
The output from the fitted model is:
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> weid=survreg(S~I(c2+c3)+perf+dur+age+prior+treat,dist="w")

> weid

Call:

survreg(formula = S ~ I(c2 + c3) + perf + dur + age + prior +
treat, dist = "w")

Coefficients:
(Intercept) I(c2 + c3) perf dur age
-2.5370261600 -0.7735513168 0.0296084295 0.0006208002 0.0060580376
prior treat

-0.0022279946 -0.2473433228
Scale= 0.9547677

Loglik(model)= 37.7 Loglik(intercept only)= 7.2
Chisq= 61.08 on 6 degrees of freedom, p= 2.7e-11
n= 137

We would like to test if the other covariates could have no effect or not
i.e. whether the population coefficients could be zero. We could go through,
one by one, knocking the covariate out and then checking via the likelihood
ratio test if its effect were significant, but this would be a bit of a pain.
Doing the Wald test would be easier, but R does not output it automatically.
Nevertheless, it can easily be done using the following commands:

> p=c();for(i in 1:length(weid$coefficients))
plil=pnorm(abs(weid$coefficients[i]/sqrt (weid$var[i,il)),lower.tail=F)
> cbind(weid$coefficients,p)

%
(Intercept) -2.5370261600 1.310409e-04
I(c2 + c3) -0.7735513168 1.865116e-05
pert 0.0296084295 1.560841e-09
dur 0.0006208002 4.704753e-01
age 0.0060580376 2.475195e-01
prior -0.0022279946 4.591049e-01
treat -0.2473433228 7.974881e-02
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The first column in the cbind command output is the parameter name, the
second the MLE of the parameter, the third the Wald test statistic. Note
that only our binary cell type and performance appear to be significant. A
model building approach similar to those described in chapter 4 could be
used based on these p-values.

6.4.5 Selecting between competing parametric models

We have arbitrarily chosen the Weibull distribution for our models above.
We might like to choose between a set of competing models, say Weibull
versus log-normal versus exponential versus log-logistic. This can be done
via Akaike’s information criterion. Again, it is very simple to do this in R,
as the following example shows.

> wei=survreg(S~I(c2+c3)+perf,dist="u"

> exp=survreg(S~I(c2+c3)+perf,dist="w",scale=1)
> lgl=survreg(S~I(c2+c3)+perf,dist="1logl")

> lgn=survreg(S~I(c2+c3)+perf,dist="1logn")

>

> extractAIC(wei) [2]

[1] -65.25415

> extractAIC(exp) [2]
[1] -66.9622

> extractAIC(1gl) [2]
[1] -77.21091

> extractAIC(1lgn) [2]
[1] -69.84801

These suggest that, yes, the Weibull model is the most appropriate.
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6.5 Frailty models

Thus far, for both the Cox PHM and parametric models, we have assumed
that, if individuals have the same values of the covariates, they have the
same survival function. Thus, suppose for example that we are interested
in survival times following installation of a pacemaker. We might regress on
sex and age in either a PHM or AFT model. But extra heterogeneities might
exist, that we don’t include in the model. It might be that smoking status
influences survival times. Ideally, we would collect data on all factors we
think will influence survival, but there will always be others that have an
additional affect that we miss.

The effect of these additional terms gets bundled up into the random com-
ponent of the model. In a linear regression model, they contribute to the
error term € ~ N(0,0?), and so knowledge about them reduces the leftover
randomness left to explain. In standard survival analyses, the error term in
contained within the distribution of (possibly censored) survival times. There
is less flexibility to inflate the variance to account for additional sources of
variability. However, such extra variability can be incorporated using fraulty
models.

A frailty model assumes that the hazard for individual i is multiplied by an
unobserved random effect w;. This random effect might be normal, say, but
is usually modelled via a gamma distribution, as it then has strictly positive
support (as this is necessary for a hazard function). The mean of w is 1, but
it has variance o2, which is an additional parameter to estimate. If o ~ 0,
then no frailty model is needed, as all the variance in the process is captured
by the parametric model for survival times (if a parametric model is used),
or the induced distribution of survival times in a Cox model. If ¢ > 0, then
there is additional between individual variability in survival functions.

If w; > 1 then individual 7 is more frail than typical for his/her other covari-
ates. If w; < 1 then ¢ has a lower frailty than his/her peers.

For example, if i smokes and j doesn’t, we might have w; = 1.2 and w; = 0.9
in the above pacemaker example.
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Frailty models are much harder to fit to data than the models we have con-
sidered thus far, as the random components w; act like extra parameters
to be estimated (though they are not considered to be parameters in the
classical framework), and thus the “parameter” vector becomes very large.
Since they are competing with the inherent variability in the process when
all survival rates are the same, it can also be difficult to identify them. We
therefore consider a special case of frailty models, called shared frailty, that
has attracted more research efforts and thus may be easier to fit.

6.5.1 Shared frailty

Shared frailty models share many of the facets of individual frailty models.
The hazard for each individual is multiplied by a random effect, which comes
from a distribution (e.g. gamma) with mean 1 and unknown variance o2
What differs, though, is that this unknown random effect is shared among a
group that have the same characteristics. For instance, you might consider
the duration of unemployment in Singapore as predicted by sex, age, and
place of residence. If place of residence were defined broadly, e.g. North,
South, East, West or Central, then we could use this a factor in a Cox PHM,
say. If it were much more localised than this, e.g. Jurong, Dover, Clementi,
..., there would be too many factors for this to be worthwhile (unless a
very large data set were collected). One approach would be to drop place of
residence altogether, but this would neglect the effect of place of residence on
survival and might influence the estimates of the effect of sex and age. In this
situation, we might treat place of residence as a random effect, drawn from
a hypothetical population of residential areas. They are allowed to influence
survival, but we do not estimate them directly.
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The model is still quite difficult to fit. R uses penalised likelihood, an ap-
proach that involves inverting a square matrix of size number of parameters +
number of groups. See Therneau et al. (2003, J. Comp. Graph. Stat. 12:156—
75) for details. Other approaches include the Expectation—Maximisation
algorithm, and data augmentation within an MCMC routine. If R fails to fit
the model, you either have to accept it, and discard frailty from your model,
or try to code an alternative up yourself.

6.5.2 Example: rats

We consider an example due to Mantel et al. (1977). They describe an
experiment in which rats belonging to litters were purchased and culled until
they had 50 litters of 3 rats: one of which was allocated a drug, the others
a placebo. Rats from the same litter are siblings, and so may have more
similar survival experiences than rats from different litters.

One approach would be to ignore litter. Another would be to treat litter
as a factor, with each litter getting its own parameter (except the first one,
which is treated as the baseline). Somewhere in between these extremes
is the shared frailty model, which allows litter to influence survival, with
a parameter characterising between litter differences. (A fourth possibility,
but a very bad one, would be to stratify over litter. Since there are only
three rats per litter, the estimates of the baseline hazard would be terribly
uncertain, so it is not recommended.)

Here are R commands for fitting these models.

attach(read.table("rats.dat" ,header=TRUE))
library(survival)

weil=survreg(Surv(t,delta) “treat)
wei2=survreg(Surv(t,delta) “treat+frailty.gaussian(litter))
wei3=survreg(Surv(t,delta) “treat+factor(litter))

The function frailty.gaussian is used to allocate a normal frailty on top of
the hazard function. The survival package is set up so that only a normal
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distribution can be used on the parametric models, but either normal or
gamma can be used in Cox models. I am not sure why this is.

The output from the three models are as follows. First, the one that ignores
litter:

> weil
Call:
survreg(formula = Surv(t, delta) ~ treat)

Coefficients:
(Intercept) treat
4.9837346 -0.2389354

Scale= 0.2640395
Loglik(model)= -242.3 Loglik(intercept only)= -246.3

Chisgq= 8.01 on 1 degrees of freedom, p= 0.0047
n= 150

Second, the frailty model:

> weil
Call:
survreg(formula = Surv(t, delta) ~ treat + frailty.gaussian(litter))

coef  se(coef) se2 Chisq DF p
(Intercept) 4.871 0.0637 0.0575 5855.80 1.0 0.0000
treat -0.182 0.0665 0.0651 7.51 1.0 0.0061
frailty.gaussian(litter) 22.84 15.8 0.1100
Scale= 0.192

Iterations: 8 outer, 38 Newton-Raphson

Variance of random effect= 0.0239
Degrees of freedom for terms= 0.8 1.0 15.8 0.9
Likelihood ratio test=41.2 on 16.5 df, p=0.000667 n= 150
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Finally, the factor model:

> weid
Call:
survreg(formula

Coefficients:
(Intercept)
4.902302090
factor(litter)4
3.954011403
factor(litter)8
0.022127022
factor(litter)12
4.018464823
factor(litter)16
3.828593730
factor(litter)20
-0.321854056
factor(litter)?24
3.901575902
factor(litter)28
-0.155006110
factor(litter)32
-0.236967948
factor(litter)36
0.011923603
factor(litter)40
-0.346366208
factor(litter)44
4.125717135
factor(litter)48
4.032005596

Scale= 0.2026994

Loglik(model)= -2

204

Surv(t, delta) ~ treat + factor(litter))

treat
-0.218613033
factor(litter)5
3.910864063
factor(litter)9
4.009684327
factor(litter)13
-0.948505252
factor(litter)17
3.974426353
factor(litter)21
4.176315766
factor(litter)25
4.176315766
factor(litter)29
-0.279064002
factor(litter)33
0.020322682
factor(litter)37
4.176315766
factor(litter)41
-0.105691461
factor(litter)45
3.856616241
factor(litter)49
0.038732756

01.8

factor(litter)2
4.170743001
factor(litter)6
-0.178212052
factor(litter)10
-0.157142683
factor(litter)14
-0.006715644
factor(litter)18
3.951440970
factor(litter)22
4.176315766
factor(litter)26
3.910864063
factor(litter)30
-0.388280306
factor(litter)34
-0.119415487
factor(litter)38
0.043012646
factor(litter)42
-0.300743812
factor(litter)46
3.581296425
factor(litter)50
0.032876999

factor(litter)3
4.176315766
factor(litter)7
-0.129169562
factor(litter)11
-0.082910266
factor(litter)15
3.926295778
factor(litter)19
3.802347567
factor(litter)23
-0.017264637
factor(litter)27
3.864771844
factor(litter)31
3.901592092
factor(litter)35
-0.203992760
factor(litter)39
-0.358728581
factor(litter)43
-0.143638827
factor(litter)47
-0.012036192

Loglik(intercept only)= -246.3
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Chisgq= 89.06 on 50 degrees of freedom, p= 0.00056
n= 150

Obviously, most of the output from the factor model is uninteresting. In-
stead, the frailty model much more simply characterises the variance in these
output in summary form, namely that the effect of frailties in litter ¢ is to
multiply the hazard by a N(1,0.15%) variate. Note, though, that 0.15 is not
the standard deviation of the exponentiated factor coefficients, it is much
smaller. Information on these coefficients is pooled, and the coefficients are
thus pulled (or shrunk) towards 0.

The parameter for treatment and the baseline hazard are very similar across
the models, and indeed the frailty term is not significant. We would therefore
be likely to remove it from the model.

6.6 Other topics

We have considered events that may only occur once, or have only been
interested in the first time they occur. But some events may occur repeat-
edly to one individual. Criminals may be rereleased from gaol after being
rearrested, patients may survive one heart attack and then suffer another,
leukeemia patients may go into remission several times only for the illness
to return. These situations call for recurrent event survival analysis. At its
most basic level, recurrent event survival analysis can be performed just as
we extended the Cox model, by splitting individuals up into records for each
recurrence. The number of previous events can be included as a covariate,
or we might stratify over number of previous events.

It is also possible for there to be two or more event types. We might be
interested in death due to cancer and death due to cardiovascular disease.
Obviously, one patient can only undergo one of these events. The two types
of failure can be thought of as competing against each other, so this scenario
is called competing risks survival analysis. As briefly mentioned earlier in
the notes, this can be problematic, as the events might not be independent
of each other, but analyses depend upon this. A sensitivity analysis can be
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performed to assess how results might be influenced by non-independence,
but there is no direct method to assess the assumption of non-independence.
For a nice discussion, see Kleinbaum and Klein (2005)

Throughout the lectures, I have made oblique references to all the methods
requiring that failures in different individuals must occur independently, and
warning of dire consequences if you try to use survival methods for situations
when failures are correlated. One such example is in infectious diseases, where
we might be tempted to treat infection as an interval censored failure time.
This would be wrong, however, as diseases spread between individuals, and
as a result the hazard for individual ¢ will increase when individual j gets
infected if ¢ and j are in contact with each other. Models for epidemics are
described in stochastic processes II. Anyone interested in inference for such
situations should contact me, as this is the topic of much of my research!



