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ABSTRACT 
 

The aim of this project is to determine the solvability by radicals of polynomials of different 
degrees. Further, for polynomials which are solvable by radicals, the Galois- theoretic derivation 
of the general solution to the polynomial is sought. Where a degree k ≥ 5 polynomial is found to 
be insolvable, the project aims to prove this, as well as find more specific cases of the 
polynomial which can be solved. 
 
The solvability by radicals is shown through the use of Galois Theory as well as aspects of 
Group and Field theory. This solvability is demonstrated through the showing of the solvability 
of the Galois group of the polynomial. 
 
Polynomials of degree one and two are easily shown to be solvable by radicals due to the 
presence of a general formula for both. More complex formulas exist for cubic and quartic 
polynomials, and are thus solvable by radicals. However, general polynomials of degree five are 
not solvable, and hence no general formulas exist. Rather, more specific cases of polynomials of 
degree five are solvable, namely polynomials reducible over rational numbers, and cyclotomic 
polynomials. 
 
Research into the study of polynomials and the solving of  its roots is of practical and widespread  
use in computer  aided design and other computer applications in both the fields of physics and 
engineering. 
 
 

INTRODUCTION 
 
Polynomials are functions of the type  
 

   
 
where 0. The root(s) of a polynomial are the value(s) of  which satisfy 0. 
Being able to solve for polynomial roots using radicals is not about finding a root, as this is 
known by the fundamental theorem of algebra that any polynomial of degree  has  complex 
roots, which need not be distinct. Solving a polynomial by radicals is the expression of all roots 
of a polynomial using only the four basic operations: addition, subtraction, multiplication and 
division, as well as the taking of radicals, on the arithmetical combinations of coefficients of any 
given polynomial.  
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Solving for polynomial roots by radicals, involves finding the general solution to the general 
form of a polynomial of some specific degree. 
 
The purpose of this research is thus to find out if all polynomials can be solved by radicals and to 
prove the resultant findings about the solvability of polynomials.  
 

RESULTS 
1. Cubic Functions 
Solving Cubic functions can be done using Cardano’s method, which transforms the general 
cubic equation into a depressed cubic without the  term. 
 
The method is as follows. 
 
We begin with the general form of a polynomial of degree three. 
 

                                0.                           1  
 
Since it is easier to work with a polynomial of leading coefficient one, we can divide  out of the 
entire equation to obtain 
 

0. 

 
Substitute the following equation into (2) 

3
. 

 
The polynomial becomes  

3 3 3
 

3
2
3 27 9 3

0. 

 
Thus we are reduced to the cubic polynomial of the form  
 
                                                                    0.                                                          2  

 
 
Here  
 
 

 
3

2
3

,
27 9 3

, 

 
 
and observe that  
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                                                3 0.                                    3  
 
Equation (2) corresponds to equation (3) since we can let 
 

, 3 , . 
 
Thus we can solve equation (3) for  as follows: 
 

2 2 3 2 2 3
, 

 
where 1,2,3  and  is one of the 3rd roots of unity. 
 
Thus the general solutions for the equation (4) are  
 

3 3 2 2 3 2 2 3
. 

 
We will consider the Galois group of the irreducible depressed cubic equation.  
 
The Galois group of the splitting field of a general cubic equation is  . 
Thus we see that the possible Galois group of any cubic is isomorphic to either  or . 
 
Let  be an irreducible cubic in the polynomial ring F[x] over a field F of 
characteristic zero (e.g. F = Q, R), with roots , , . 
 
We have the relations 0, 
 

, 
 

. 
 
Hence we have the chain of fields , where , , , . This is 
because if two roots are in the field, the third automatically is. 
 
We know that either , or . 
 
Case I: . Thus we know  for any 1,2,3 , or : 3. Hence  

/ .  
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The composition series of /  is thus 1.  
 
Case II: .  
 
We know that /  is a subgroup of .  
 
Since we know that  factors over  , and  does not contain  , consider  

. We know that  is irreducible over , hence : 6. 
 
Since : 6, .  has only one degree 3 subgroup, . This implies that there exists a 
field  such that : | | 3, and : 2.  is thus obtained by adjoining a square root, 
that of the discriminant, , where 
 

. 

 
We realise that √  is fixed by any even permutation of the roots , but that √ √  for 
any odd permutation , where  acts naturally on the subscripts in the above expression of D. 
Thus we see that  is fixed by all of  , so if  is not a square, √ , hence √ : 2, 

or is a radical extension. Since / , one can show that   √ . 
 
Thus , √ , , and we have the composition series of / : 
  

1. 
 
We also realise that this is so because we find that  
 

2 3 27 9 3 9
2
9 3

 

                       
1

108
4 4 18 27  

1
108

. 

 
Thus we see that the adjoining of the square root of the discriminant gives rise to the field L 
which contains the term 

2 3
. 

 
2. Quartic Functions 
Solving Quartic polynomials can be done using Ferrari’s method, which transforms a quartic 
polynomial into a depressed quartic which has no  term. 
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We begin with the general form of a quartic equation. 
 
                                                      0.                                                4  
 
Indeed, we can reduce all quartic polynomials to the above monic polynomials by dividing 
throughout by the leading coefficient, and replacing the coefficients of the other terms with 

, , , . 
 
Substitute the following into (5) 
 

                                                                    
4

                                                                          5  

to get an equation of the form 
 
                                                             0.                                                       6  
 
We can add 2  to the above equation, to obtain 
 

2 2 . 
 
Since we want the right hand side to be a square as well, we should let the discriminant of the 
quadratic on the RHS be 0. Namely, we assume that 
 

                                                     4 2 0.                                                  – 7  
 
Rearranging the terms we get a cubic in , 
 
                                         8 4 8 4 0.                                         --- (8) 
 
We can thus find the root  of this equation, and solve for  by substituting that value into (6) to 
get a quadratic in  
 
Solving the resultant quadratic in   gives the roots of the depressed quartic, from which we can 
derive . 
 
Thus we get the solutions for the quartic equation (4). One root of (8) is fixed in this formula. 
 

1
2

2
1
2

1
4 4

. 

 
The Galois theoretic derivation of the formula is as follows. 
 
Solving for the roots of a quartic involves the solving of the cubic equation (8) in : 
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8 4 8 4 0. 
 
We know that for a   quartic equation   in  the Galois group 

/   is .  
 
  has the composition series: 
 

1  , 
  
where  is the Klein 4-group.  is any of the 3 order 2 involutions in  . 
  
The corresponding field extension is: 
 

 . 
 
The part   (corresponding to ) is of degree two, and corresponds to the degree 
two extension in solving .  The element  is solved through the taking of a degree two extension 
i.e., square root of the discriminant, and followed by a cubic root (as stated above for cubic 
equations). We note that / /  , which is isomorphic to  . Indeed, 

 |  in ,  in . The group  acts on   trivially and hence /  (identified with ) acts on  
  which fixes exactly elements in . 
 
The extension   is of degree 2, and corresponds to the taking of either 2  or 

√ . These are equivalent since from equation  we have that 2 , 
which is a square. 
 
There are 3 possible groups , which correspond to the adjoining of the 3 possible values of 

 as solutions of the equation (8). 
 
The last radical extension (    corresponds to the taking of  
 

1
2

1
4

  or 
1
2

1
4

  . 

 
Adjoining either of these two to  will give rise to the same field  since the degree :  
 2. 
 
3. Quintic Functions 
Generally, quintic polynomials are insolvable by radicals. This proof makes use of group theory 
and Galois Theory, and is unlike Abel’s 1819 paper. We will use the result below: 
 
Theorem 1. An irreducible polynomial  defined over a field  of characteristic zero (e.g. 

, ) is solvable by radicals if and only if the Galois group /  of the splitting field 
 of the polynomial  is a solvable group.[1],[2] 
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Let , …  be independent transcendental elements over the field  of rational numbers. 
Consider 
 

… . 
 
By Vieta’s formula, we know that  
 

, , … , , 
 
 are elementary symmetrical functions in  . Thus  is a polynomial defined over the field 

, … ,  .We now show that this  is not solvable by taking radicals.   
 
Set , … , . Then the polynomial  in  has  as its splitting field.  
Suppose on the contrary that /  is solvable for the above polynomial  of degree 
five. 
 
Consider the composition series of subgroups from   to 1: 
 

. 
 
This corresponds to the following extension of fields: 
 

. 
 
Each extension is cyclic and Galois. 
 
We know that /  the commutator group ,  and that  has no nontrivial 
normal subgroup. Indeed, the composition series of   is as follows: 
 

1. 
 
Thus /  is not solvable. Hence  is not solvable by radicals by Theorem 1.  
 
Special Solvable Cases 
 
By the proof above, we know that it is impossible to solve all quintics by radicals, and thus no 
general solution can be found. However, there are many cases of quintics which are solvable by 
radicals. A case will be discussed below. 
 
a. Cyclotomic Polynomials 
 
Consider the cyclotomic polynomial  1 0. 
 



8 
 

By Theorem 1, we know that a polynomial is solvable if and only if its Galois group is solvable. 
This equation is solvable in radicals as its splitting field is generated by the 5th roots of unity, so 
the resultant Galois group is also solvable. 
 
The roots of this equation are simply the 5th roots of unity,  
 

, 
 
where  0,1,2,3,4 . 
 
These roots of unity can be expressed by radicals. 
 
Similarly, all equations of the form 0, where  is a constant, are solvable by radicals, 
since the roots are simply 
 

√  . 
 
Polynomials and the solving of its roots have practical and widespread use in computer 
applications, the foremost of which is cryptography, or the encryption of sensitive data for 
sending over the internet. This is especially useful in banking transactions where secrecy and 
privacy of the individual customer is paramount. Polynomials can be used in public key 
encryption, as a means to encrypt information. The decryption of a polynomial is hence directly 
linked to the solvability of this polynomial. Only those with the required decryption key will get 
to know the real message behind the encrypted message. Being able to solve for a polynomials 
roots will enable one to create a decryption key, and hence solvability or the lack thereof of such 
a polynomial, is important in choosing a polynomial as a possible encryption key so that it 
cannot be hacked. 
 

DISCUSSION 
 
In general, polynomials of degree 5 or greater than 5 cannot be solved using radicals. 
Polynomials of degree 0,1,2,3 and 4 all can be solved generally by radicals, as there is the 
quadratic formula for polynomials of degree 2, Cardano’s method for polynomials of degree 3, 
and Ferrari’s method for polynomials of degree 4. 
 
While polynomials of degree five or larger cannot be solved by radicals generally, there are 
many more specific types of polynomials  that can be solved by radicals.  
 
Polynomials of the form  for some real number  are solvable, as the Galois group of its 
splitting field is solvable. 
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