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Bootstrapping

1 Background
The major assumptions of a LVM are that the manifest variables are multivariate normal,
there is a “sufficiently large” sample size, and that the observations are independent of each
other. The first assumption is usually the one that causes the most trouble. There are two
common ways for a variable to be non-normal: (a) be categorical; or (b) have excess univariate
or multivariate skewness or kurtosis. In Chapter 6 of Latent Variable Modeling using R: A
Step-By-Step Guide, I discussed how to fit LVMs with categorical (specifically dichotomous)
indicator variables. When the variables are continuous, but non-normal, it tends to make the
standard errors (and, likewise, confidence intervals) too small and the χ2 fit statistic too large.
In this appendix, I just focus on a remedy for the former.

1.1 Confidence Interval Review
Confidence intervals (CI) concern a statistic (e.g., mean, variance), and range from 0% to
100%. The interpretation of a CI is: If we took a lot of samples from the same population,
and construct X% CIs each time, approximately X% of them will contain the value of the
parameter. From a different perspective, it is “... one interval generated by a procedure that
will give correct intervals 95% of the time” (Antelman, 1997, p. 375, emphasis added).

CIs can be used in and of themselves (e.g., as a measure of the parameter estimates’ pre-
cision), but they can also be used for other purposes, such as sample size determination and
hypothesis testing. For hypothesis testing, the steps usually go something like: (a) determine
the value of the parameter that maps onto H0 (often this is 0.0, but it can be other values);
(b) set the type 1 and type 2 error rates, α and β, respectively; (c) gather data; and (d) calcu-
late the (1 − [α/2])100% CI. If the the CI does not contain null value, reject H0, otherwise fail
to reject it.

When the assumptions for a statistic are not met, this usually causes the standard error to
be underestimated. This, in turn, causes the CIs to be narrower than they should be, which can
inflate the type 1 error rate. One way to handle the situation when a statistic’s assumptions
are not met by the data is to use bootstrap resampling to create the confidence intervals.

2 Bootstrapping Confidence Intervals
The idea behind bootstrapping is to mimic the sampling distribution of a statistic by resam-
pling with replacement many, many times. Bootstrapped samples can be used for different
purposes, but the most common use is to develop confidence intervals.

2.1 Example: Bootstrapping a Confidence Interval for the Mean
To make the bootstrapping concept and procedures more concrete, I will work through a simple
example. Say I am interested in knowing the mean number of landline phone calls received at
home after 5 p.m. in a certain geographic region. A sample distribution of this type of data is
shown in Figure 1. There are many people who receive 0.0 or 1.0 landline phone calls and very
few who receive more than 5.0. To show how far this distribution is from a normal distribution,
I overlaid a normal distribution in Figure 1 that has the same mean and standard deviation as
the phone call distribution.
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Figure 1 Histogram for bootstrapping example of the number of phone calls received after 5 p.m.
The normal distribution overlay has the same mean and standard deviation as the phone call distribu-
tion.

Pretend I surveyed n = 30 random individuals in the region of interest and asked them the
number of landline phone calls they received the previous evening. The results from my survey
are shown in Table 1 in the Original column. The mean and standard error (SE) of the sample
are 0.97 and 0.21, respectively. The 95% CI is then (0.61 - 1.32).

Since the sample size is not large and does not follow a normal distribution, there are
likely some suspicions about the accuracy of the SE and the CI, which were formed based
on the normality assumption of the phone calls variable. Consequently, I can use bootstrap
resampling as an alternative way to form confidence intervals.

For the bootstrap resampling, say I select a single value, randomly, from the original 30
observations and then replace the value back into the sample data. Then, I repeat this procedure
29 more times for a total of n = 30 values. These 30 “new” values constitute a bootstrap sample.
The key is that after each selection of a value from the original dataset, I replaced the value so
that I could possibly select it again. For most bootstrapping applications, this whole process
is repeated many times, typically 1000 ≤ B ≤ 2000. Columns 2-4 in Table 1 present some
bootstrap samples of the phone call data.

Since I am interested in the CI for the mean in my example, I can calculate the mean for
each of the B bootstrap samples. An example distribution of bootstrapped means for B = 1000
is shown in Figure 2. While the original values (see Figure 1) did not look like they came from
a normal distribution, the distribution of the B bootstrapped means in Figure 2 look much

I calculated the 95%
confidence interval
via: x̄ ± 1.96 × se
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Table 1 Frequency Count of Original Phone Call Data with Bootstrapped Samples.

Phone Calls Original X
∗
1 X

∗
2 . . . X

∗
B

0 14 14 15 . . . 12
1 8 7 7 . . . 5
2 3 3 3 . . . 4
3 5 6 5 . . . 9

x̄ 0.97 1.03 0.93 . . . 1.33

x̄: the mean value.

Dividing the bias
estimate by the
value from the
original sample
would give a relative
measure of bias.

closer to a normally distributed variable. Usually, the distribution of a statistic’s bootstrapped
samples will mimic the statistic’s actual sampling distribution if B is large enough.

The B means from the B bootstrap samples can now act as an empirical sampling distri-
bution for the mean. Thus, if I rank order the B means, I can find the value that is at the
2.5%-ile and the value that is at the 97.5%-ile and use them to create a new 95% CI. I did this
in Figure 2 via the two vertical lines at both ends of the distribution. This method is known
as the percentile method for obtaining a CI using bootstrap resampling.

The relationship between the sample statistics and the statistics from the bootstrap sam-
ples approximate the relationship between the sample statistics and population parameters.
Thus, the difference between the mean from the original sample and the mean of the boot-
strapped means x̄∗

B (or the standard error in the original sample and standard deviation of the
bootstrapped means, sx̄∗) are indications of bootstrapping version of bias.

For the B = 1000 bootstrapped samples used for Figure 2, x̄∗
B = 0.96 and sx̄∗ = 0.19. An

estimate of the parameter bias is then:

x̄∗
B − x̄ = 0.963 − 0.967 = −0.004 .

Figure 2 Distribution of B =
1000 bootstrapped means.
The two vertical line represent
the 95% confidence interval.
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Likewise, an estimate of the standard error bias is

sx̄∗ − sx̄ = 0.19 − 0.21 = −0.01 .

For the mean, parameter and standard error bias tends to be small, but this is not nec-
essarily the case with other statistics. Consequently, an alternative to the percentile method
for calculating bootstrapped confidence intervals is one that attempts to correct for bias: the
bias-corrected and accelerated (BCa) bootstrap. In a rather complex way, it adjusts for both
bias and skewness in the bootstrap samples’ distribution.

The boot package in R provides the boot() function, which can bootstrap just about any
statistic.Once the bootstrap samples are created, the boot.ci() function will estimate the
desired confidence intervals. The price for such a general function is that its use is not very
intuitive. To use it requires writing a function that will calculate the statistic of interest and
also allows the statistic to be calculated over multiple datasets (i.e, the B bootstrap samples).
Below I provide syntax for creating bootstrap samples of the mean for the phone call data, as
well as calculating the CI from the bootstrapped samples.
1 # bootstrapping the phone call data
2 mean.boot <- function(data,r){return(mean(data[r]))}
3 phone.boot <- boot(data=phone.data, statistic=mean.boot, R=1000)
4 boot.ci(phone.boot, conf = 0.95, type = c("perc", "bca"))

Line 2, contains a function to calculate the mean. As there are multiple bootstrapped
datasets, I had to allow the data variable to be indexed (i.e., [r]). In line 3, I use the boot()

function with three arguments: (a) the dataset (data); (b) the statistic function (statistic);
and (c) the number of bootstrap samples (R). In line 4, I use the boot.ci() function to estimate
the 95% CI using the percentile and BCa methods.

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = phone.boot, conf = 0.95, type = c("perc",
## "bca"))
##
## Intervals :
## Level Percentile BCa
## 95% ( 0.6, 1.4 ) ( 0.6, 1.4 )
## Calculations and Intervals on Original Scale

As there was little bias in the parameter estimates, the percentile and Bca CIs are identical
out to the one digit after the decimal.

3 Example: Latent Variable Model with Non-Normal Data
For this example, I simulated (n = 300) observations for six variables with non-negligible
skewness and kurtosis.1 Histograms of all the variables are shown in Figure 3.

1R syntax for how I simulated the data is available on the book’s website.

boot()

boot.ci()

The boot() function
has a parallel

argument if your
computer has those
capabilities.
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Figure 3 Histograms of the six simulated variables.

I hypothesized there were two LVs in data, with X1 −X3 loading on the first and X4 −X6
loading on the second. I then fit the model to the data in lavaan. To create the bootstrapped
samples and calculate the CIs from them, I have to add two additional arguments when fitting a
model. The first is se="boot", which tells lavaan to use bootstrapping for the standard errors.
The second argument is bootstrap=1000, which indicates I want 1000 bootstrap resamples
(although the number does not have to be 1000).

# specification for the model with two latent variables
sample.model <- '
f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6
'
sample.fit <- cfa(model=sample.model, data=sample.data, se="boot", bootstrap=1000)
summary(sample.fit)

## lavaan (0.5-15) converged normally after 45 iterations
##
## Number of observations 300
##
## Estimator ML
## Minimum Function Test Statistic 11.590
## Degrees of freedom 8
## P-value (Chi-square) 0.170
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##
## Parameter estimates:
##
## Information Observed
## Standard Errors Bootstrap
## Number of requested bootstrap draws 1000
## Number of successful bootstrap draws 946

The summary results look very similar to the regular output, only now the Standard Errors line
says that they were estimated using bootstrapping. Moreover, the two lines below the Standard
Errors line indicate the number of bootstrap samples were requested and how many of those
requested were successfully drawn.

To obtain the bootstrapped confidence intervals, I have to use the parameterEstimates()

function with the boot.ci.type argument. If boot.ci.type="perc", it will return the percentile
confidence intervals and if boot.ci.type="bca.simple", it will return a simplified BCa confi-
dence interval that does not correct for skew.

parameterEstimates(sample.fit, level = 0.95, boot.ci.type="perc")

## lhs op rhs est se z pvalue ci.lower ci.upper
## 1 f1 =~ x1 1.000 0.000 NA NA 1.000 1.000
## 2 f1 =~ x2 1.421 0.459 3.097 0.002 0.841 2.643
## 3 f1 =~ x3 1.613 1.092 1.477 0.140 0.856 4.932
## 4 f2 =~ x4 1.000 0.000 NA NA 1.000 1.000
## 5 f2 =~ x5 0.373 0.090 4.138 0.000 0.190 0.550
## 6 f2 =~ x6 0.719 0.193 3.720 0.000 0.390 1.131
## 7 x1 ~~ x1 0.943 0.257 3.678 0.000 0.521 1.517
## 8 x2 ~~ x2 0.992 0.227 4.377 0.000 0.519 1.439
## 9 x3 ~~ x3 0.943 0.246 3.832 0.000 0.313 1.264
## 10 x4 ~~ x4 1.028 0.422 2.438 0.015 -0.030 1.621
## 11 x5 ~~ x5 1.148 0.114 10.044 0.000 0.930 1.364
## 12 x6 ~~ x6 0.763 0.200 3.817 0.000 0.310 1.114
## 13 f1 ~~ f1 0.207 0.120 1.724 0.085 0.038 0.496
## 14 f2 ~~ f2 1.643 0.550 2.986 0.003 0.793 2.841
## 15 f1 ~~ f2 0.146 0.061 2.395 0.017 0.015 0.262

parameterEstimates(sample.fit, level = 0.95, boot.ci.type="bca.simple")

## lhs op rhs est se z pvalue ci.lower ci.upper
## 1 f1 =~ x1 1.000 0.000 NA NA 1.000 1.000
## 2 f1 =~ x2 1.421 0.459 3.097 0.002 0.826 2.615
## 3 f1 =~ x3 1.613 1.092 1.477 0.140 0.827 4.409
## 4 f2 =~ x4 1.000 0.000 NA NA 1.000 1.000
## 5 f2 =~ x5 0.373 0.090 4.138 0.000 0.195 0.559
## 6 f2 =~ x6 0.719 0.193 3.720 0.000 0.394 1.138
## 7 x1 ~~ x1 0.943 0.257 3.678 0.000 0.552 1.615
## 8 x2 ~~ x2 0.992 0.227 4.377 0.000 0.544 1.447
## 9 x3 ~~ x3 0.943 0.246 3.832 0.000 0.423 1.305
## 10 x4 ~~ x4 1.028 0.422 2.438 0.015 0.228 1.709
## 11 x5 ~~ x5 1.148 0.114 10.044 0.000 0.933 1.377
## 12 x6 ~~ x6 0.763 0.200 3.817 0.000 0.351 1.124
## 13 f1 ~~ f1 0.207 0.120 1.724 0.085 0.046 0.523
## 14 f2 ~~ f2 1.643 0.550 2.986 0.003 0.815 2.929
## 15 f1 ~~ f2 0.146 0.061 2.395 0.017 0.052 0.317

parameterEstimates()
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4 Writing the Results
When writing the results after using bootstrap resampling for the confidence intervals, follow
the guidelines already specified for that particular model. In addition, give the reason for using
the bootstrapping (i.e., what statistical assumptions were not met with the data), the type of
bootstrapped confidence interval used, and the number of bootstrap samples used.

5 Exercises
1 Use the abortion question data in the ltm package.

1.a Conduct an item factor analysis with one latent variable using the DWLS estimator
and obtain 1000 bootstrap samples.

1.b Calculate the 95% confidence intervals for all parameters using the percentile method.
1.c Calculate the 95% confidence intervals for all parameters using the simplified BCa

method.
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7 Exercise Answers
Exercise 1.a

library(ltm)
data(Abortion)
# rename items
names(Abortion) <- paste("I",1:4,sep="")

library(lavaan)
abortion.model <- '
LV =~ I1 + I2 + I3 + I4
'

abortionBoot.fit <- cfa(abortion.model, data=Abortion, std.lv=TRUE,
ordered=paste("I",seq(1:4), sep=""), se="boot", bootstrap=1000, estimator="DWLS")

Exercise 1.b

parameterEstimates(abortionBoot.fit, level = 0.95, boot.ci.type="perc")

Exercise 1.c

parameterEstimates(abortionBoot.fit, level = 0.95, boot.ci.type="bca.simple")
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