Integers love (i) being ordered, (ii) induction, and (iii) modular arithmetic.

Modular arithmetic: We say “a is congruent to b mod n” to mean that a and b have the same remainder when divided by n. We write this as $a \equiv b \pmod{n}$.

- E.g., $18 \equiv 2 \pmod{4}$ and $13 \equiv 7 \pmod{6}$.
- If $a \equiv b \pmod{n}$ then $a + c \equiv b + c \pmod{n}$ and also $ac \equiv bc \pmod{n}$. You can treat “mod” like equals, but just be super careful not to divide!
- **Fermat’s little theorem:** If p is a prime number, then $a^p \equiv a \pmod{p}$.
- If p is a prime, and n a positive integer, then the exponent of p in $n!$ is $$\left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \cdots,$$
 where $\lfloor x \rfloor$ (the “floor of x”) is x rounded down.

1. Show $10x^3 + 4x + 3 = 16y$ has no integer solutions.
2. Show every odd square is 1 more than a multiple of 8.
3. What is the remainder of 10^{50} when you divide by 9?
4. Are there two powers of 2 with the same number of digits so that when you rearrange the digits of one, you can obtain the other?
5. Prove no polynomial with integer coefficients satisfies $p(7) = 5$ and $p(15) = 9$.
6. Find all positive integers n such that $n!$ ends in exactly 1000 zeros.
7. Is there a polynomial $f(x)$ with integer coefficients such that $f(n)$ is prime for every integer n?
8. Prove that in the product $P = 1! \cdot 2! \cdot 3! \cdots 100!$, one of the factors can be erased so that the remaining product is a perfect square.
9. Prove that if $n \geq 3$ prime numbers form an arithmetic progression, then the common difference of the progression is divisible by every prime less than n.
10. Prove that if $1 < n$, then n doesn’t divide $2^n - 1$.

*Some material taken from *Putnam and Beyond* by Razvan Gelca and Titu Andreescu and also *Mathematical Puzzles: A Connoisseur’s Collection* by Peter Winkler.*
11. The Fibonacci numbers are defined as \(F_1 = F_2 = 1 \) and for all \(n \geq 1, F_n + F_{n+1} = F_{n+2} \). Find a Fibonacci number that is divisible by 20.

12. Prove \(x^2 = y^3 + 7 \) has no integer solutions.

13. Prove that among any three distinct integers we can find two, say \(a \) and \(b \), such that the number \(a^3b - ab^3 \) is a multiple of 10.

14. Show that for any positive integers \(a \) and \(b \), the product \((36a + b)(a + 36b)\) is never a power of 2. (Asia-Pacific math olympiad 1998)

15. For any prime number \(p > 17 \), show that \(p^{32} - 1 \) is divisible by 16320.

16. Find the integers \(n \) for which \((n^3 - 3n^2 + 4)/(2n - 1)\) is an integer.

17. Prove that the expression

\[\frac{\gcd(m, n)}{n} \binom{n}{m} \]

is an integer for all \(n \geq m \geq 1 \).

18. Find all functions \(f : \mathbb{N} \to \mathbb{N} \) satisfying

\[f(n) + 2f(f(n)) = 3n + 5, \quad \text{for all } n \in \mathbb{N}. \]

19. Suppose \(p > 5 \) is a prime and that \(n \) has exactly \(p - 1 \) of its digits equal to 1. Prove that \(n \) is divisible by \(p \).

20. Prove that the sequence \(2^n - 3 \) has an infinite subsequence whose terms are all pairwise relatively prime.

21. Let \(n > 1 \) be a positive integer. Prove that \((x+1)^n - x^n = ny \) has no positive integer solutions.

22. Let \(k \) and \(n \) be integers with \(0 \leq k \leq n^2/4 \). Assume \(k \) has no prime divisor greater than \(n \). Prove that \(n! \) is divisible by \(k \).

23. Show that each positive integer can be written as the difference of two positive integers having the same number of prime factors.

24. Let \(n > 2 \). Show that \(n(n-1)^4 + 1 \) isn’t prime.

25. Find all positive integer solutions to \(2^x \cdot 3^y = 1 + 5^z \).

26. Let \(x_n \) be some sequence satisfying the recurrence \(x_{n+1} = 5x_n - 6x_{n-1} \). Prove infinitely many terms of the sequence are composite.

27. Prove that if \(n \geq 3 \) prime numbers form an arithmetic progression, then the common difference of the progression is divisible by every prime less than \(n \).

28. Find all prime numbers \(p \) such that when divided by every prime number \(q < p \), the remainder is always square-free.\(^1\)

\(^1\)An integer is square-free iff 1 is the only square dividing it.