1. Let \(a_n \) be the number of ways to fill a \(2 \times n \) checkboard using any combination of \(1 \times 1 \) and \(1 \times 2 \) dominoes.

 (a) Find \(a_1, a_2, \) and \(a_3 \).

 (b) Find a recurrence relation for \(a_n \).

 (c) Find \(a_{10} \).

2. You are planning the first round of a 1v1 basketball tournament. Let \(a_n \) be the number of ways to pair \(2n \) people up for their first match.

 (a) What are \(a_1, a_2, a_3 \)?

 (b) Find a recurrence relation for \(a_n \).

 (c) Try to solve this recurrence.

 (d) Try to explain why this solution makes sense via a different argument.

3. How many ways are there to climb a flight of \(n \) stairs if we can take jumps of size either 1, 2, or 3 steps at once? (Find a recurrence and try to solve it [with the help of a calculator of some kind!])

4. Use the formula for the Fibonacci numbers to finish the following sentence (and try to prove it): “If \(n > 5 \), then \(F_n \) is whatever integer is closest to \(Ax^n \)" (Find values \(A \) and \(x \) that make this true!)

5. Take a piece of paper and draw lines on it so that each pair of lines intersect, but no three lines intersect in a single point. Let \(a_n \) be the number of different regions of the paper left after drawing \(n \) lines.

 (a) Draw pictures for \(n = 1, 2, 3 \).

 (b) Compute \(a_1, a_2, a_3 \).

 (c) Find a recurrence relation for \(a_n \).

 (d) Solve it.

6. Here’s a “double recurrence!” (i.e., we have two sequences that are related to each other!) For this, let \(a_1 = b_1 = 1 \). Then to find the next numbers, let \(\frac{a_n}{b_n} = \frac{1}{1 + \frac{a_{n-1}}{b_{n-1}}} \). So \(\frac{a_2}{b_2} = \frac{1}{1 + \frac{1}{1}} = \frac{1}{2} \), which implies \(a_2 = 1 \) and \(b_2 = 2 \).

 (a) Find a recurrence relations for \(a_n \) and \(b_n \) in terms of \(a_{n-1} \) and \(b_{n-1} \).

 (b) Use this to find \(a_{10} \).

7. You have three types of tiles: \(1 \times 1 \) tiles, \(2 \times 1 \) tiles, and L shaped tiles of area 3 (these are \(2 \times 2 \) tiles missing a square). Let \(T(n) \) denote the number of ways you can use these tiles to tile a \(2 \times n \) checkerboard.

 (a) Find \(T(1), T(2), T(3) \).

 (b) Find a recurrence relation for \(T(n) \).

 (c) Find a formula for \(T(n) \).

8. Let \(B(n) \) denote the size of the biggest entry in the \(n \)th row of Pascal’s triangle. So for instance \(B(0) = B(1) = 1, B(2) = 2, \) and \(B(4) = 6 \).

 (a) Argue that \(B(n) \leq B(n+1) \)

 (b) Argue that \(2B(2n+1) \leq B(2n + 2) \)

 (c) Argue that \(2^{(n-1)/2} \leq B(n) \)

 (d) On the other hand, use a different argument to show \(B(n) \leq 2^n \)

 (e) Try to improve or generalize these results.
A triangulation of a convex \(n \)-gon is a way to draw \(n - 2 \) non-overlapping cords in order to cut it up into triangles. For example, the following picture shows all 42 triangulations a convex 7-gon. Let \(T(n) \) denote the number of triangulations of a convex \(n \)-gon. (Note, order and such really matters for triangulations. So \(T(7) = 42 \))

(a) Find \(T(3), T(4), \) and \(T(5) \) by drawing out all the options.
(b) Try to find a recurrence for \(T(n) \) [it’s a bit tricky-looking, and hard to solve!]
(c) Use it to find \(T(10) \).

Figure 1: All 42 triangulations of the 7-gon