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Abstract

We derive optimal time-dependent adjustment rules from Shannon’s (1948) Information
Theory. In a continuous-time LQ prediction problem with a costly rate of information acquisition-
processing, the optimal prediction evolves smoothly, but jumps at an optimally chosen frequency,
when fresh information accrues. A more volatile and persistent target raises the information rate
required to maintain a sampling frequency. This cost-e8ect moderates and may even reverse the
bene9t-e8ect on the value of information, so optimal inertia is unresponsive to and nonmonotonic
in the predictability of the environment. Conventional models with a 9xed cost per observation
imply no such cost-e8ect, so inertia rises quickly in the predictability of the environment.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Many important economic decisions are taken infrequently and discretely. Microe-
conomic empirical evidence shows—virtually without exceptions—that retail prices,
wages, investment in structures and equipment, hiring/9ring of workers and purchases
of consumer durables are ‘sticky’. This inertia does not wash out in aggregation. The
typical spectrum of a macroeconomic time series concentrates most power at low fre-
quencies. Sims (1998) estimates on US post-war data an identi9ed VAR including
seven classic macroeconomic variables. The impulse responses show that most vari-
ables respond immediately to ‘own’ shocks and only with visible delay to shocks
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to other variables. The important macroeconomic consequences of stickiness are well
known.

The search for explanations has drawn attention toward di8erent forms of adjustment
costs, which generate inertia as a rational behavior. Existing theories can be broadly
classi9ed into two main categories: state-dependent rules—the agent acts when a state
variable a8ecting payo8s drifts too far away; and time-dependent rules—the agent acts
on a predetermined time schedule. The former have been investigated at length, both
from a decision-theoretic viewpoint and in terms of their aggregation properties (see
Sheshinski and Weiss, 1993 for results on pricing). The latter are typically more ad hoc
and less rigorously modelled; yet, they have become the overwhelmingly popular av-
enue to introduce nominal rigidities in equilibrium macroeconomic models. Typically,
a behavioral rule incorporating infrequent adjustment of nominal variables is introduced
exogenously as a matter of convenience. The best known examples are staggered wage
contracts and Calvo (1983) staggered price-setting, which is a staple of the so-called
New New-Keynesian Synthesis (Clarida et al., 1999). Any such rule is obviously sub-
ject to the Lucas (1976) critique, but it is justi9ed as a reasonable approximation when
performing local dynamic analysis.

This paper addresses optimal time-dependent adjustment rules. We investigate new
reasons why such rules may be optimal and relatively invariant to changes in the
economic environment. We generate optimal inertia from the frictions in the acquisi-
tion and/or processing of salient information that have been identi9ed in Information
Theory. Beginning with Shannon’s (1948) seminal article, this 9eld has a8orded great
theoretical and practical advances in our understanding of information Jows. In par-
ticular, this theory provides a measure of the rate of data acquisition and processing
which is at once founded on natural axioms, empirically operational, and analytically
convenient. As the economics literature explores various modeling possibilities in a
similar direction, it appears natural to 9rst turn to the 9eld that has been studying
these very issues for the last 50 years.

In the light of his empirical 9ndings of macroeconomic inertia, Sims (1998) 9rst
proposed the observation of data relevant to decision-making through channels of lim-
ited transmission rate as a possible explanation for inertial behavior adopted by rational
economic agents. His key observation is the following: observing a real-valued process
either with no noise, or with noise integrated of the same order as the process, implies
an in9nite rate of information transmission in the sense of Shannon (1948), which is
physically unattainable. Therefore, some form of smoothing of the data, observationally
similar to inertial behavior, is necessary. Sims (2003) applies this idea to a Permanent
Income model of optimal consumption. In this paper, we exploit a similar insight, but
in a di8erent direction: the information rate constraint on decision-making is met by
observing and processing infrequently new information, rather than by smoothing it on
the frequency domain.

The 9rst contribution of this paper is the formulation of a tractable and classic
decision problem incorporating the informational frictions emphasized by Shannon. We
introduce a costly rate of information acquisition and/or processing into an otherwise
standard linear-quadratic optimal prediction problem—a canonical model for a large
class of economically relevant situations, such as pricing, hiring/9ring, investment and
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portfolio allocation. The information Jow is measured in terms of Shannon’s axiomatic
metric. Changing the prediction or the economic ‘action’ is costless; but, due to the
cost of acquiring and processing information, the decision maker optimally samples
the source of noisy information about the target process only infrequently. Hence, he
obtains fresh information only infrequently, and accordingly adjusts his action in a
lumpy way. In between discrete adjustments, he optimally sets a smooth time path
for his action, a path that is pre-determined at the time of the last observation and
updating. Inertia emerges not as complete inactivity, but rather as a smoothly changing
and perfectly predictable behavior, which responds to random news only infrequently,
thus with delay.

For illustration, consider the example of a monopolistically competitive 9rm, con-
tinuously setting the price for its product variety based on its estimate of a stochastic
state of demand. This is the most important application of time-dependent adjustment
in the current macroeconomic literature. The 9rm can obtain noisy estimates of the
current state of demand, which it must then process and incorporate into its new price.
But, it can only acquire and process information at a 9nite rate, to be allocated to a
variety of tasks, including price-setting. Due to the (opportunity) cost of the required
information capacity per unit time, the 9rm optimally chooses to obtain and to process
this information only infrequently. At such discrete times, say every quarter, the 9rm
optimally formulates a new, radically di8erent price, and a subsequent deterministic
pricing plan for the next 3 months. This plan is valid until the next adjustment, and is
based entirely on the expected evolution of demand in the absence of new information.
For example, price plans formulated in November take into account the holiday season,
but do allow for price variation within the quarter. The price plans are reformulated
in February, and so forth. The price keeps changing in a predictable manner, only to
jump occasionally at every cycle.

The second and main contribution of this paper is a review of the Lucas critique in
this context. We study the response of optimal inertia to changes in the predictabil-
ity of the environment. If demand innovations become more volatile and persistent,
then the price-setting task of the 9rm becomes informationally more demanding. How
does the 9rm’s optimal price-adjustment policy change? There are two forces at play, a
(marginal) bene)t-e9ect and cost e9ect. As expected, the bene9t of additional informa-
tion rises, as the state of demand is less predictable if not tracked closely. But also the
cost of information acquisition and processing rises, for a given sampling frequency;
absorbing new information about the state of demand (say) once a month is informa-
tionally more challenging when news are more variable and persistent. The cost-e8ect
moderates and may even reverse the bene9t-e8ect. So the 9rm’s optimal inertia is
typically non-monotone and inelastic in the predictability of demand. A more variable
demand may induce even more inertia, because devoting more information capacity to
track it may not be worth the e8ort: the 9rm is ‘paralyzed by complexity’. More gen-
erally, optimal inertia is relatively unresponsive to changes in the environment, except
for extreme values of parameters.

In contrast, the models of optimal time-dependent or state-dependent policies that
have appeared to date in the economic literature assume adjustment costs as functions
either of the frequency and precision of sampling (e.g. Caballero, 1989), or of the
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frequency and size of adjustment (from the Marginal q theory of investment to the en-
tire S,s literature), but not of the randomness of the environment. Only the bene9t-e8ect
is present, thus optimal adjustment tends to be more aggressive when the environment
is less predictable, in particular when innovations are more persistent. We show that
in a model of this type the optimal policy is extremely responsive to changes in pro-
cess parameters, because the moderating cost e8ect is missing. Exogenously speci9ed
time-dependent rules, such as those of Calvo (1983) or Gabaix and Laibson (2001),
once explicitly modelled may react very di8erently to policy changes, depending on
their microfoundations. In a sense, our approach provides a justi9cation for a higher
adjustment cost function in a less predictable environment.

Our 9nding of non-monotone inertia suggests, speci9cally for the pricing example,
that the undesirable real e8ects of ‘money surprises’ due to the signal extraction prob-
lem (Lucas, 1972) may be exacerbated when the information structure is explicitly
modelled. Firms have many things to pay attention to, hence they may settle for more
inertial price plans when monetary policy becomes less aggressive. An interest rate
smoothing term in a Taylor rule may help 9rms predict the time path of demand,
and thus reduce the real e8ects of monetary policy. On the other hand, we also 9nd
that price inertia is very unresponsive to changes in the economic environment, due to
the moderating e8ect on information costs. This suggests that in this world the Lucas
critique has not much bite to begin with, and that an exogenous time-dependent price
adjustment rule may be a quite accurate approximation.

Our optimal time-dependent rule is observationally di8erent from Calvo (1983), be-
cause here adjustment takes place at all times, not only upon observations (when it
is discrete, as in Calvo), and takes into account the mean reversion of the underlying
stochastic process. In this sense, it is closer to the ad hoc price-setting rule proposed by
Mankiw and Reis (2002). They assume that each 9rm formulates a pricing plan, that
is revised only infrequently to incorporate all the new information that emerged since
the last adjustment, and observed without noise. They show that a ‘sticky-information’
Phillips curve emerges, whose predictions for the timing and persistence of the real
e8ects of monetary policy and for inJation inertia match the data much more closely
than the New New-Keynesian Phillips curve. Strictly speaking, their pricing rule is
inconsistent with our microfoundations, which imply that the (necessarily) noisy in-
formation obtained only at the time of adjustment is incorporated into the new ‘time
plan’, valid for the next interval of inertia. But, it is reasonable to expect that the
aggregate implications will be similar.

Limited information processing capacity has played a role in the study of organiza-
tions. van Zandt (1999), who also surveys the pertinent literature, assumes that each
member of an organization can perform at most a given number of arithmetic opera-
tions per unit time, and has 9nite memory. The question is how should organizations be
designed to process optimally information toward a centralized 9nal decision. Unlike
the present paper, this approach relies on bounded rationality and chooses a di8erent
type of processing constraint in designing the informational friction.

Section 2 introduces the prediction problem, Section 3 illustrates the basic results
from Information Theory behind our information constraints, Section 4 sets up the
two models of optimal sampling, Section 5 presents the comparative statics e8ects of
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changes in parameters of the decision problem on the optimal degree of inertia and
Section 6 concludes.

2. A continuous prediction problem with infrequent sampling

2.1. Setup

A decision maker (DM) aims to predict continuously over a time horizon t ∈ [0;∞)
a ‘target’ Ornstein–Uhlenbeck process 〈X 〉:

dXt = −�Xt dt + � dWt; (2.1)

where �¿ 0; �¿ 0; X0 ∼ N(x0; 	−1
0 ) for some x0 ∈R; 	0¿ 0, and 〈W 〉 is a Wiener

process. By a result in Karlin and Taylor (1981), the unconditional distribution of
Xt is

Xt ∼ N(x0e−�t ; h−1
t );

where

! ≡ 2�
�2 ;

ht ≡ !
1 − e−2�t : (2.2)

This process 〈X 〉 is stationary, with

Xt
d→X∞ ∼ N(0; !−1):

Hence, ! is a measure of predictability of this process: the lower the variance of
innovations �2 and the higher the mean-reversion of the process �; the higher the
asymptotic precision ! of Xt and the easier to forecast the value of Xt based only on
initial conditions X0 ∼ N(x0; 	−1

0 ). As � ↓ 0, clearly ! ↓ 0, so the process becomes
non-stationary (a random walk) and unpredictable in the long run without additional
information. In the short run, by Hopital lim�↓0 ht = 1=(t�2).

The DM observes the realizations of the target 〈X 〉 with noise. Speci9cally, for each
t, he can observe a signal Yt such that

Yt = Xt + Zt;

where Zt is a draw from an N(0; �−1) random variable. Every draw is i.i.d. and inde-
pendent of the process 〈W 〉. The DM observes 〈Y 〉 every �¿ 0 periods. For �¿ 0,
observations are countable and the sample number is denoted by � = 1; 2 : : : ; so that
the �th sample Y�� occurs at calendar time t = ��. For the time being, we take �¿ 0
as given; later, we will analyze the choice of �. The two extreme cases are � → 0,
equivalent to continuous observations, and � → ∞, equivalent to no observation at all.

The information Jow from observing Y�; Y2�; : : : generates a 9ltration {F(�)
t } on the

underlying probability space. Here F
(�)
t is the �-algebra generated by {Y�; Y2�; : : : ; Y��}
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where � is the largest integer such that ��6 t. 1 The DM then chooses an {F(�)
t }-

adapted action process 〈a〉 to minimize the average MSE per unit time:

L(�) = inf
〈a〉

lim
T→∞

E
[ ∫ T

0 (at − Xt)2 dt
T

∣∣∣∣∣F(�)
0

]
;

where for simplicity F
(�)
0 is the null �-algebra, so the 9rst observation arrives at time

� (not at time 0). As standard in these problems, the realization of the loss is either
unobserved or observed with suScient delay that the information about 〈X 〉 that it
contains is not useful to the current or future prediction.

2.2. Optimal prediction

Given the quadratic loss function, the best prediction a∗
t is the conditional expectation

of the target and the resulting loss is the conditional variance. Let t = (� + s)� for
s∈ [0; 1). Then the optimal prediction at time t is a∗

(�+s)� = E[X(�+s)�|F(�)
(�+s)�], which

gives an expected ‘Jow’ loss V[X(�+s)�|F(�)
(�+s)�]. Note that at almost all times (�+s)�,

except when observing Y , the DM must formulate his conjecture on the observations
up to time �� and on the time elapsed since, s�. Intuitively, in between sampling
times, spaced � time apart, the unobserved process 〈X 〉 moves away undetected.

By a standard result in Kalman 9ltering and the independence of the target innova-
tions W , for all s∈ [0; 1):

X̂ (�+s)� ≡ E[X(�+s)�|F(�)
(�+s)�]

= e−�s�E[X��|F(�)
t ]

1
	(�+s)�

≡V[X(�+s)�|F(�)
(�+s)�]

= e−2�s�V[X��|F(�)
t ] + h−1

s�

= e−2�s�V[X��|F(�)
t ] + (1 − e−2�s�)V[X∞|F(�)

t ]: (2.3)

Hence, the variance of the target in between samples (for s∈ (0; 1)) conditional on
observations up to Y��, is a weighted average of the variance V[X��|F(�)

�� ] at the
moment of last observation, and of the asymptotic variance V[X∞|F(�)

�� ] = 1=! that
would be estimated in the long run, absent from new observations. The time s� elapsed
since the last received observation Y�� only a8ects the weights.

An important implication of (2.3) is that, in order to characterize the optimal predic-
tion and the resulting Jow loss at every point in time, we only need do so at sampling

1 Note that the notation Ft , without superscript (�) for the sampling policy, would be inappropriate: by
time t = �� one could have observed � observations every � periods, or 2� observations every �=2 periods,
etc., and the resulting 9ltrations would di8er.
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Fig. 1. A sample path of the target Xt and of the optimal prediction X̂ t for �= 1; �= 5; �= ln 2 (�= 0:5).
The sampling interval is � = 0:3, the optimal one with quadratic costs of the information rate implied by
the chosen parameter values.

times ��= �; 2�; : : : : The resulting average loss is

L(�) = lim
T→∞

∫ T
0 V[Xt |F(�)

0 ] dt
T

:

This model di8ers from both the continuous time and the discrete time version
of the Kalman 9lter: while the state evolution and the prediction (action at) occur
continuously, observations Y�� accrue infrequently. So at almost all times the DM bases
his prediction of Xt on information that is partly outdated. The DM exhibits inertia, in
that his optimal action evolves smoothly in the absence of new information, according
to a pre-determined adjustment plan, only to receive a random discrete innovation when
fresh information arrives at times �; 2�; : : : : Fig. 1 illustrates a typical sample path of
the target and of the corresponding optimal prediction, for a particular parameterization
of the model: �= 1; �= 5; �= ln 2 (corresponding to e−� = 0:5), and �= 0:3, which
is the optimal sampling interval for these parameters in the Costly Information rate
model of Sections 4 and 5.

This is a canonical model of many situations of economic interest. The quadratic
loss has the familiar interpretation of a second-order Taylor expansion of a full-Jedged
objective function. The cost of gathering and processing information (to be modelled
later) dominates the ‘menu’ cost of taking the action (here assumed to be zero), so
the DM settles on a time-dependent optimal adjustment policy. The sampling interval
� is the natural measure of inertia. We can think of the DM as setting a new course
of action a∗

�� at every sampling time ��, and starting from there a deterministic and
smooth action plan, valid until the next observation.



2010 G. Moscarini / Journal of Economic Dynamics & Control 28 (2004) 2003–2035

Our leading example is particularly relevant for macroeconomic models where ad hoc
staggered price adjustment makes money non-neutral. A monopolistically competitive
9rm faces demand qt = q(pt; Xt) for the variety of the goods it produces with linear
technology, where pt is the price of output in units of labor and Xt is a demand shock.
The 9rm chooses in continuous time a price process pt that maximizes average expected
pro9ts limT→∞ {T−1E[

∫ T
0 q(pt; Xt)(pt − 1) dt]}, where the expectation is taken over

the 9rm’s current beliefs about the state of demand Xt . The 9rm pays no menu cost to
change its price. Every � periods, the 9rm observes an estimate of demand Y��=X��+
Z��, updates its beliefs, and chooses the optimal price p∗(X̂ ��; 	��), which depends
only on mean X̂ �� and variance 	−1

�� because of the Gaussian structure. Henceforth,
the 9rm sets a smooth price plan p∗(e−�s�X̂ ��; 	(�+s)�) for the next period of time
of length �, and implements it mechanically until the new cycle, when the price is
revised to p∗(X̂ (�+1)�; 	(�+1)�) = lims↑1p∗(X̂ (�+s)�; 	(�+s)�). The price is never 9xed,
but responds almost always with delay to changes in fundamentals X .

2.3. Filtering

In order to formulate the optimal prediction a∗
t at every point in time, the DM must

compute the posterior probability distribution of Xt at times ��=�; 2�; : : : ; conditional
on the history of observations {F(�)

t }. Extrapolating from Karlin and Taylor (1981,
pp. 345–346), we may write the discrete time process at sampling times t = ��, as an
AR(1):

X�� = e−��X(�−1)� + ���; (2.4)

where ��� = �
∫ ��

(�−1)� e�(s−��) dWs ∼ N(0; h−1
� ). {���} is clearly an i.i.d. sequence.

Similarly,

Y�� = X�� + Z��; (2.5)

where Z�� ∼ N(0; �−1) is i.i.d. and independent of ���.
For 9xed �¿ 0, system (2.4)–(2.5) is a pair of linear stochastic di8erence equations

driven by Gaussian white noise, a state-space representation of target and observations,
which can be analyzed via the Kalman 9lter. By the conjugate property of the normal,
the posterior X��|F(�)

�� is normal with mean X̂ �� and precision 	��. At sampling times,
��=�; 2�; : : : these two moments evolve as follows. First, the new precision is given
by

	�� = h� − h2
�e−2��

e−2��h� + 	(�−1)�
+ �

=
!	(�−1)�

!e−2�� + 	(�−1)�(1 − e−2��)
+ �; (2.6)

where the 9rst equality follows from the so-called information )lter version of the
Kalman 9lter (Elliott et al., 1995, Chapter 4, Theorem 5.1), the second uses simple
algebraic manipulations and the de9nition of h�. Note that the 9rst equality can be
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rewritten as
1

V[X��|F(�)
�� ]

=
1

e−2��

	(�−1)�
+ 1

h�

+ �

=
1

V[e−��X(�−1)� + ���|F(�)
(�−1)�]

+
1

V[Zt]

=
1

V[X��|F(�)
(�−1)�]

+
1

V[Zt |F(�)
(�−1)�]

:

The new posterior precision of X�� is the precision of the same value X�� based on
past information, plus the precision of the noise in observing the new noisy signal
Y�� = X�� + Z��.

Given this updated precision, the new posterior expectation is

X̂ �� = e−��X̂ (�−1)� +
�
	��

(Y�� − e−��X̂ (�−1)�); (2.7)

namely, the last updated expectation discounted by the time change, e−��X̂ (�−1)� =
E[X��|F(�)

(�−1)�], plus the deviation between the new observation Y�� and this dis-

counted expectation e−��X̂ (�−1)�, multiplied by a gain �=	��. The initial conditions
are 	0 and X̂ 0 =X0 + Z0. The corresponding mean and precision at all other times t=
(�+ s)�; s∈ (0; 1) are obtained by applying (2.3).

Since the objective function is an average expected loss, and an average of the
posterior variances, it is of particular interest to characterize the long-run behavior of the
posterior precision and its dependence on the sampling interval. As � → 0, the process
〈X 〉 is observed continuously. The path of posterior precision is discontinuous at time
0, where it exhibits a jump of magnitude �: from Eq. (2.6), lim�→0 	� =	0 + �¿	0.
Intuitively, an observation of 9xed precision � is obtained in any in9nitesimal time
interval. Thus, the posterior precision of the target undergoes a discrete jump � for every
instant, and is in9nite at any t ¿ 0: by large numbers, the process can be estimated
perfectly with an in9nite sequence of informative observations obtained in [0; t]. Only
if � were proportional to � we would obtain the familiar updating equation for the
continuous time normal learning model, 	̇t = �, where posterior precision explodes
linearly in time.

As � → ∞, the process X is never observed, and posterior precision converges to
a constant: again from (2.6), lim�→∞ 	�� = !+ � for every �.

For every other interval length �∈ (0;∞), we have the following general character-
ization.

Lemma 1 (Dynamics of the posterior precision). For every )xed non-degenerate sam-
pling interval �∈ (0;∞)¡∞, and every 	0¿ 0; �¿ 0; !, and �, as the number
of observations � grows unbounded, the posterior precision 	�� at sampling times
��= �; 2�; : : : converges monotonically to

lim
�→∞	�� = �(��|�; !) ≡ !+ �

2
+

√(
!+ �

2

)2

+
!�

e2�� − 1
:
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Fig. 2. Steady-state asymptotic posterior precision �(��|�; !) and information rate Î(�) (in bits per unit
time) as a function of �, for � = 1; � = 5; � = ln 2 (� = 0:5).

This global attractor satis)es �(0+ |�; !)=∞; �(∞|�; !)=!+�¿ 0; �′(��|�; !)¡
0¡�′′(��|�; !); �′(0 + |�; !) = −∞; �′(∞|�; !) = 0. Finally, �(��|�; !) increases
with ! and �, and decreases in � given !, that is as � and �2 rise proportionally. In
between sampling times, for any s∈ (0; 1), precision equals:

	(�+s)� =
[

e−2�s�

	��
+

1 − e−2�s�

!

]−1

and therefore converges to [(e−2�s�=�(��|�; !)) + (1 − e−2�s�=!)]−1 as � grows un-
bounded.

The upper panel of Fig. 2 illustrates the shape of the 9xed point � as a function of
the sampling interval �, for � = 1; � = 5; � = 0:34, as in Fig. 1 (but now � varies
between 0 and 2).

2.4. Average prediction loss from a given sampling policy

Using the asymptotic properties of the posterior precision, we can obtain a simple
closed-form expression for the loss function.



G. Moscarini / Journal of Economic Dynamics & Control 28 (2004) 2003–2035 2013

Fig. 3. Average expected loss L(��|�; !) as a function of �, for �= 1; �= 5; �= ln 2 (�= 0:5). The upper
horizontal line equals L(∞|�; !) = !−1.

Proposition 1 (The average prediction loss). For every )xed non-degenerate sampling
interval �∈ (0;∞)¡∞, and every 	0¿ 0; �¿ 0; !, and �, the time-0 expected
average loss from the optimal prediction policy 〈a∗〉 equals

L(��|�; !) =
1
!

(
1 − 1 − e−2��

2��

)
+

1 − e−2��

2��
1

�(��|�; !)
; (2.8)

which is strictly increasing and concave in �, with L(0|�; !)=0 and L(∞|�; !)=1=!.
For given �; L(��|�; !) is strictly decreasing in ! and � given �, and increasing in
� given !.

The expected average loss is a weighted average of the asymptotic variance 1=!
and of the posterior variance 1=� at sampling times of the target, with weight on the
former increasing in � as sampling becomes less and less frequent. The concavity of
the indirect loss function implies increasing returns to sampling. Fig. 3 illustrates the
shape of the prediction loss L as a function of the sampling interval �, in our previous
baseline parameterization �= 1; � = 5; �= ln 2.

In order to close the model, we need to describe the optimal sampling decision. The
DM would like to sample the observation process continuously (�=0), as its expected
average total loss would fall to a minimum (L(0)=0). The following section motivates
infrequent sampling via a limited information capacity constraint. We then compare the
implications of this model to those derived from imposing an exogenous cost function
for sampling.
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3. Information rate in information theory

3.1. De)nition

The novel element in this paper is the speci9cation of the technological constraint
on the rate at which payo8-relevant information may be obtained and processed. The
constraint is speci9ed in terms of a physical measure, available for any source of
(statistical) information at some cost to the DM. The de9nition of such a reasonable
notion of quantity of information, independent of preferences and depending only on
the means of communication and processing available, is a major achievement of In-
formation Theory, an applied mathematical discipline that has secured great practical
advances in communication and information technology. It is useful to 9rst recall a
few basic notions from this 9eld (see Ash, 1965). The basic model of communication
is represented as follows:

Noise

⇓
Input X ⇒ Encoder ⇒ Channel ⇒ Decoder ⇒ Output Y:

Formally, the channel is a conditional probability distribution P(Y |X ), yielding the
chance of output Y given input X . The ex ante occurrence of possible inputs from the
point of view of the 9nal observer is also described by a distribution P(X ). Information
transmission is noiseless when P(Y |X ) is degenerate, so that the input is transmitted
exactly, otherwise it is noisy and always entails some error.

The measure of uncertainty is a function over probability measures derived from
four natural axioms. Suppose X may take one of M values with chances p1; : : : ; pM .
Denote the uncertainty associated to X by H (p1; : : : ; pM ). The axioms are: (A1)
H (1=M; 1=M : : : 1=M) ≡ f(M) is increasing in M ; (A2) f(ML) = f(M) + f(L); (A3)
The grouping axiom: let R ≡ "ri=1pi; Q = 1 − R for some r ¡M , and require

H (p1; : : : ; pM ) = H (R;Q) + R · H (p1=R; : : : ; pr=R) + Q · H (pr+1=Q; : : : ; pM =Q);

and 9nally (A4) H (p; 1 − p) is continuous in p. Shannon (1948) proved that the
unique function satisfying all four axioms is the Entropy function H (p̃) = H (X ) =
−k"pi logb pi for any k ¿ 0; b¿ 1. Axioms (A1)–(A3) and the entropy function have
several natural interpretations, and both can be extended to continuous and conditional
distributions.

Based on this metric of uncertainty, the measure of information transmitted by the
channel is de9ned as the reduction in entropy attained by observing the input process:
I(X |Y ) = H (X ) − H (X |Y ). If the logarithm is base 2, the information is measured in
bits.

Finally, the channel capacity is the supremum of I(X |Y ) over prior distributions
of the input X , i.e. the maximum amount of information per unit time the channel
may transmit. The Fundamental Theorem of Information Theory states that there exists
a code (encoder and decoder, namely a ‘language’) that achieves the transmission of
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information at full capacity with an arbitrarily small chance of error. Conversely, any
transmission at rate exceeding capacity entails a non-negligible error. 2

3.2. Measuring information processing capacity

The frictions that human beings face in communication and information acquisition
have to do with understanding information as much as with transmitting or receiving it
correctly. A good proxy for understanding received information is information process-
ing. In this respect, Information Theory appears to be a promising avenue. Although
this theory is concerned with information transmission, the measure of information
that it introduces can also be used to gauge the speed of some types of information
processing.

To illustrate this point, consider the following example, relative to how the reader
can measure his or her own capacity to process and understand information written
in English, such as the content of this paper. Given any word, say ‘inertia’, one can
think of the word following it in the text as a random variable w, taking values {wi}
in a Dictionary and in punctuation signs. The probability pi of each realization wi is
the frequency with which wi follows ‘inertia’ in existing English language. Therefore,
the entropy of the word following ‘inertia’ in English is I (inertia) = −"ipi logpi,
with the convention 0 × log 0 = 0 standard in this Theory. Reading and understanding
the word w after ‘inertia’ amounts to completely resolving the uncertainty associated
with w, thereby processing an amount of information equal to I (inertia). The same
procedure can be used to compute the entropy of the very 9rst word in a text. Just take
the relative frequency with which each word appears 9rst in an English text. Once the
total amount of information contained in (say) a page of text has been computed by
summing the entropy of all words in the page, I = "wI(w), the time T taken by the
reader to read and understand that page provides an estimate of his or her information
processing rate in bits/second, namely I=T . This is one interpretation of the constraint
on decision-making introduced in this paper. From a formal viewpoint, it is immaterial
whether our agent faces a cost of increasing his rate of information acquisition or
processing.

3.3. Information rate in Kalman )ltering

In a continuous Gaussian setting like the one analyzed here, the Fundamental
Theorem requires an exogenous limitation on the variability of the input (the ‘power’
of the source), of the type Pr(

∫ 1
0 X

2
t dt6M) = 1 for some M ¡∞. Only in this case

can channel capacity be computed and be shown to be positively related to M . Without

2 The idea is to transform the input X through a language (encoder), using short ‘words’ for frequent
inputs, and reserve longer, time-consuming words for infrequent inputs. The longer the ‘word’ attached to
each input, the more likely it is to identify it when transmitted with error. For instance, ‘exceedingly’ may
be transmitted as ‘exceedinghy’ with little possibility of confusion, while ‘too’ (which has a similar meaning
as ‘exceedingly’) can become ‘toe’, or ‘boo’, which are much harder to interpret. But longer words take
more time to transmit. The cost of precise encoding is delay. Real-world transmission of information (TV,
books, etc.) is governed by this theory but always occurs well below channel capacity.
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such a bound the information transmitted without error may achieve an in9nite rate,
which is physically impossible. This is the standard assumption made in all engineering
applications of Information Theory.

Since this type of almost-sure constraint cannot be justi9ed for economic time series,
and is violated by any unbounded variation process such as a di8usion, we abstract
from coding issues and exploit this fundamental insight of Information Theory. If
the input (X ) variability is not exogenously constrained at the source and the rate
of (noisy) information transmission and or/processing is to remain 9nite, then the
source of information must be sampled infrequently. We then envision the total rate of
information acquisition/processing as a scarce resource, that the DM may either acquire
through an upfront investment, or own as an individual skill to be allocated optimally
among various informational tasks.

The entropy of a Gaussian kernel is proportional to the log of its standard error.
Therefore, in the Gaussian context of this Kalman Filter, the information conveyed
by (or contained in) the noisy observation Y�� of X�� is one half of the reduction in
the log-variance of beliefs about the target. The additional information transmitted by
observation Y�� is therefore

I�� =
1

2�
log

V[X��|F(�)
(�−1)�]

V[X��|F(�)
�� ]

=
1

2�
log

	��
	�� − �

: (3.1)

The second equality derives from the measurement update equations of the Kalman
9lter (Elliott et al., 1995, 5.13), which express the posterior variance � time after the
latest observation V[X��|F(�)

�� ] = 	−1
�� as a function of the variance conditional only

on previous observations V[X��|F(�)
(�−1)�].

Using (2.6) to replace for 	�� we obtain

I�� =
1
2

log

!	(�−1)�

	(�−1)�(1−e−2��)+!e−2�� + �
!	(�−1)�

	(�−1)�(1−e−2��)+!e−2��

=
1
2

log
!	(�−1)� + �[	(�−1)�(1 − e−2��) + !e−2��]

!	(�−1)�

=
1
2

log
(

1 + �
	(�−1)�(1 − e−2��) + !e−2��

!	(�−1)�

)

=
1
2

log
(

1 + �
1 − e−2��

!
+ �

e−2��

	(�−1)�

)
:

This quantity has several intuitive properties. It is always positive for any 9nite pos-
terior precision 	(�−1)� held before observing Y��. It is decreasing in 	(�−1)�, as less
information is contained in each N(0; �−1)-error ridden observation Y�� the more pre-
cisely the target is predicted to begin with. In fact,

I�� → 1
2

log
(

1 + �
1 − e−2��

!

)
¿ 0 as 	(�−1)� → ∞:
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Even if the target is known exactly at time (�−1)�, it does drift away in the �-interval
before one obtains a new observation at time ��, which then always contains some
information. By the same token, I�� grows without bound as 	(�−1)� → 0. Also, I��
is zero for � = 0, as an observation ridden by noise of in9nite variance is useless; it
grows without bound in �, because a perfect observation of a real number Xt (when
� = ∞) contains an in9nite amount of information. Finally, given an initial precision
	0, the quantity of information contained in the 9rst observation after � time, as �
vanishes, converges to lim�→0 I� = 1

2 log (1 + (�=	0)).
The most important lesson is that the information contained in each observation

depends not only on the precision of the observation �, but also on the predictability
of the process, through ! and �, and on the prior probability distribution, through
	(�−1)�. A given observation contains more information, the less predictable is the
starting point and the subsequent evolution of what we are being informed about.

Information capacity is de9ned by Information Theory in terms of information rate,
per unit time. For � large enough, the posterior precision 	(�−1)� of the target is arbi-
trarily close to its steady state �(��|�; !). So for a given sampling policy, by continuity
of the information measure I�� in 	(�−1)�, the average information transmitted per unit
time by the last observation converges.

Proposition 2 (The asymptotic information rate). As the number of observations
grows unbounded, the information transmitted by each observation (the information
rate in between observations) converges to

lim
�→∞

I��
�

=
1

2�
log

(
�(��|�; !)

�(��|�; !) − �

)

=
1

2�
log


1 +

�
!

(1 − e−2��) +
e−2���=!

1+�=!
2 +

√(
1+�=!

2

)2
+ �=!

e2��−1




≡ Î(�|�; �=!):

The asymptotic information rate Î(�|�; �=!) is decreasing in �, with Î(0|�; �=!) = ∞
and Î(∞|�; �=!)=0. For each �¿ 0; Î(�|�; �=!) is decreasing in ! given � (increasing
in �2 = 2�=! given �), decreasing in � given �2 = 2�=!, and increasing in �2 = 2�=!
given ! (in � and � keeping != 2�=�2 constant).

The lower panel of Fig. 2 illustrates the shape of the asymptotic information rate
Î(�|�; �=!) as a function of the sampling interval � for our usual parameterization.

4. The optimal sampling policy

In order to complete the description of the optimal sampling problem, we need to
specify the constraint on information acquisition/processing faced by the DM. Con-
tinuous sampling is the special case of periodic sampling (� = 0) which requires an
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in9nite information rate, which is physically impossible. Thus, we restrict attention
to discrete sampling policies, characterized by a sequence of positive intervals {��}.
Samples Yt = Xt + Zt are observed at times t = �1; �1 + �2; : : : and so forth. In the
previous sections we showed that the average expected loss L(��|�; !) and the rate
of information Î(�|�; �=!) are known in closed-form when the sampling interval �
is 9xed. From this point on, we restrict attention to periodic sampling policies with
9xed �¿ 0. Beyond its simplicity, this case has obvious independent interest. But, in
general, periodic sampling at 9xed � might not be optimal.

It is easy to rule out any variable sampling policy {��} which has a limit �∞. By
similar arguments to those illustrated earlier, if lim��=�∞ then the posterior precision
	t converges to �(��∞|�=!) (at each sampling time), so the average prediction loss
L would be the same as if one always sampled from the beginning at the same 9xed
frequency �∞. If the cost of sampling is weakly convex in �, then variable but con-
verging sampling intervals would raise the average cost without reducing the prediction
loss L. Hence, such a converging staggering policy {��} cannot be optimal. A similar
argument, however, does not apply to non-converging sampling policies, which in fact
might be optimal. We leave the characterization of the optimal (possibly aperiodic)
sampling policy for future research. 3

We impose two alternative types of constraints on the choice of a periodic sampling
policy �. First, we assume that the information rate Î(�|�; �=!) has a cost. Second,
following a fairly standard approach in applied economic models, we specify an ad
hoc cost function on the signal precision per unit time. We then show that optimal
inertia has quite di8erent comparative statics properties in the two models.

4.1. Optimal sampling with costly information rate

We treat the information rate as a costly input into the prediction of the process
〈X 〉. We will discuss shortly the possible interpretations of this cost. Since the average
loss depends only on ‘tail’ events as the sample number � grows unbounded, and the
information rate converges to Î = Î(�|�; �=!), we state the information rate constraint
in terms of Î . The average cost per unit time of the information rate Î is given by
an increasing and weakly convex function c(Î), with c(0) = 0. The DM chooses to
sample at the time interval that minimizes the sum of the average prediction loss and

3 One would expect a periodic sampling policy �¿ 0 to dominate a variable non-converging sampling
policy in a stationary environment, namely when the initial condition 	0 equals the 9xed point �(��|�; !)
for posterior precision. But 	0 is a datum of the problem, while �(��|�; !) depends on the endogenous
sampling interval �, so the optimal periodic policy starting from 	0 = �(��|�; !) is generically di8erent
than �. Alternatively, one may imagine time running from −∞ to +∞, the objective being to minimize
the average two-sided loss. In this case one might expect at any 9nite time the posterior precision to be in
steady state �(��|�; !), for any initial conditions 	−∞. However, convergence of the precision to a stable
9xed point depends on the nature of the sampling policy {��} itself. Furthermore, the average prediction
loss is concave in the sampling interval � for a 9xed � policy (Proposition 1). If this concavity is stronger
than the convexity of the costs in �, then by Jensen’s inequality introducing small periodic variability in
� might reduce the average loss. So a variable non-converging sampling policy may be optimal even in a
stationary environment.
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of the cost of the information rate:

�∗ = arg min
�∈ WR+

{L(��|�; !) + c(Î(�|�; �=!))} (4.1)

where WR+ is the extended positive real line, a closed set. Here �∗ = ∞ means that
the DM optimally chooses to never sample and to base his predictions only on prior
information, counting on the stationarity of the process. In this case the information
rate acquired and its cost are zero, and the average loss is 1=!. Conversely, �∗ = 0
means continuous sampling.

The continuity of the objective function ensures the existence of a minimizer in
WR+. By Proposition 1, the prediction loss L is concave in �. Therefore, a 9rst-order

condition is in general not suScient for problem (4.1). By Proposition 2 the information
rate Î , and thus its cost and the whole objective function in (4.1) explode as � → 0.
Therefore, the corner solution �∗ = 0 is not feasible.

Proposition 3 (Optimal periodic sampling with costly information): In the Costly In-
formation (CI) model (4.1), the optimal sampling interval �∗ always exists and is
strictly positive, possibly in)nite.

The cost function c(·) has several possible interpretations. In the 9rst, ‘market’ in-
terpretation, the DM can choose among a range of di8erent media, securing the arrival
of information at di8erent frequencies and thus providing di8erent amounts of infor-
mation. For example, he can subscribe to a monthly newsletter, to a broadband line
to navigate the web, to a cable TV station to watch the daily wrap up of the markets,
and so forth. The optimal frequency of information arrival, 1=�∗, is chosen in advance
by subscribing to the corresponding medium. Indeed, economic data accrue to house-
holds mostly through channels that transmit at 9xed frequencies. The acquisition of an
information rate is treated as an upfront investment, a choice of technology. The infor-
mation rate is best thought of as a ‘funnel’, a resource that cannot be reallocated over
time but only across tasks, by opening and closing the funnel capacity. The special
case of costless but bounded information rate

min
�∈ WR+

L(��|�; !) s:t: Î(�|�; �=!)6 Imax

obtains when the cost function c(Î) is Jat (zero marginal cost) up to some maximum
rate Imax, and then becomes vertical (in9nite marginal cost).

In the second, ‘opportunity cost’ interpretation, the DM must allocate his limited
information processing capacity to various tasks. For example, the 9rm must predict
demand and formulate a price, but also predict and hedge shocks to energy costs.
Implicit is a cost of time, but the eSciency units of time are measured in bits/second.

The main point of this paper is that the cost-of-information function c is not just
an ad hoc cost function de9ned only on sampling frequencies. An exogenous change
in the parameters of the target dynamics (� and �) a8ects both the bene9ts and the
cost of a given sampling frequency �, by changing the information transmitted per unit
time Î(�|�; �=!) for a given �. For example, reading the Wall Street Journal every
day in recent times of stock market turbulence is more time- and capacity-consuming
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because the quantity of information transmitted is higher for the given daily frequency,
and less capacity is left for reading novels or thinking about dinner. By contrast, a
‘pure’ sampling cost function is una8ected by these changes in the target parameters.
We address this case next.

4.2. Optimal sampling with costly samples

As a benchmark for comparison, consider a cost function de9ned on the sampling
frequency and/or the precision � of each observation Y��. This is the intuitive, albeit
ad hoc avenue followed in most economic models of information acquisition (e.g.,
Moscarini and Smith, 2001, 2002). Sampling n times in a T -time interval (once every
� = T=n periods) yields a string of observations Y�; Y2�; : : : ; Yn� = YT . A suScient
statistic for our prediction problem is the sample mean n−1"n�=1Y��, which is a normal
with mean n−1"n�=1X�� and variance 1=(n�) = �=(�T ).

Therefore, it is natural to de9ne a cost function on the number of equivalent ob-
servations per unit time n�=T , namely on the ratio �=�. We assume a cost -(�=�),
increasing and convex. Confronted with such a cost, the DM chooses to sample at
time interval:

�∗∗ = arg min
�∈ WR+

{
L(��|�; !) + -

( �
�

)}
: (4.2)

Once again, an unbounded cost function implies that the total loss is unbounded as
� → 0, so continuous sampling is suboptimal and �∗∗¿ 0. As before, it may still be
optimal not to sample at all (�∗∗ = ∞).

Proposition 4 (Optimal periodic sampling with costly sampling): In the Costly Sam-
pling (CS) model (4.2), the optimal sampling interval �∗∗ always exists and is strictly
positive, possibly in)nite.

5. Comparative statics: predictability and optimal inertia

5.1. The moderating e9ects of information-rate costs

We evaluate the two competing theories of time-dependent rules laid out in the
previous section—the Costly Information model (4.1) (from now on, CI) and the Costly
Sampling model (4.2) (from now on, CS)—on the basis of their comparative statics
predictions. Speci9cally, we illustrate the response of the optimal sampling frequencies
�∗; �∗∗ in the two models to changes in the persistence � and the volatility � of target
innovations. The predictability of the target process 〈X 〉 measures in some sense the
complexity of the tracking task and its informational demands. We distinguish three
cases:

1. When � rises, for a given �, namely when ! declines for a given �, the target
becomes less predictable both in the short and in the long run: both V[Xt |F(�)

0 ]=h−1
t

and V[X∞|F(�)
0 ] = 1=!= �2=2� rise.
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2. When � and ! = 2�=�2 decline for a given �, again the target becomes less
predictable both in the short and in the long run: both V[Xt |F(�)

0 ] = h−1
t and

V[X∞|F(�)
0 ] = 1=!= �2=2� rise. Now, 1=ht rises due to both � and !.

3. Finally, when � and � rise together, leaving the asymptotic variance 1=! unchanged,
the target becomes less predictable in the short run, as V[Xt |F(�)

0 ]=1=ht rises, while
it is equally predictable in the long-run by construction. That is, when the persistence
and volatility of innovations change so as to maintain the long-run behavior of the
target, the e8ect of volatility dominates in the short run.

The main qualitative di8erence between the CI model introduced in this paper, (4.1),
and the standard CS model, (4.2), is easily identi9ed. The parameters determining the
predictability of the target, � and � (hence !), a8ect the prediction loss L and produce
the same marginal bene)t e9ect in both cases. But these parameters also a8ect the
cost of the information rate—and hence produce a marginal cost e9ect—only in the
CI model. Namely, in the standard CS model there is a fundamental disconnection
between the diSculty of the decision problem and the cost of observations, which only
depend on the quality of the observations, not on those of the information they are
about. The CI approach, instead, explicitly recognizes that a given observation has a
di8erent informational content, depending not only on the use that one makes of the
information (on the loss function), but also on prior uncertainty and on the stochastic
properties of the environment.

Consequently, the two models may have quite di8erent comparative statics predic-
tions. In particular, it is natural to expect sampling in the CS model to be more
frequent the less predictable the target, because the marginal bene9t of sampling a less
predictable target at the same frequency � is higher, and the marginal cost is the same.
Conversely, sampling a less predictable target in the CI model might be prohibitively
expensive, so the higher marginal cost might outweigh the higher marginal bene9t. The
DM might be ‘paralyzed by complexity’, and the optimal sampling frequency 1=�∗ may
be non-monotone or even globally increasing in the predictability of the target. More
generally, we expect the optimal CI sampling interval �∗ to be much less sensitive to
parametric shifts than the optimal CS sampling interval �∗∗, due to the moderating
cost-e8ect.

5.2. Quantitative e9ects

In the CS model, the dependence of the optimal sampling interval �∗∗ on parameters
can be investigated and, to some extent, signed analytically. The signing part is not
possible in the CI model for �∗, due to algebraic complexity, although the relevant
expressions are all available in closed form. To contrast the two approaches most
clearly, we use numerical examples to illustrate the impact of the same changes in �
and � on �∗ and �∗∗, starting from the same baseline parametrization.

We 9rst transform � into the serial correlation parameter � = e−� corresponding
to a unit time interval. This innocuous monotone decreasing transformation makes it
easier to both visualize the e8ects of persistence of innovations, as it bounds the range
of � to (0; 1), and to interpret them, as � corresponds to the persistence parameter
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Fig. 4. Optimal sampling interval as a function of the volatility � of target innovations, given their persistence
� = e−�. Each curve corresponds to a di8erent given level of �.

most familiar to economists. In this reparameterization, the prediction problem is more
demanding, and the environment less predictable: the higher is �2 for a given �, the
lower is � for a given �, and the higher is � for a given != −log �=�2.

The cost function in the baseline parametrization is quadratic c(z)=-(z)=-0=z2=2 for
both models. We normalize the error precision to �=1, which is equivalent to choosing
the units of both processes and the scale of the loss function. Given the obtained values
for �∗, in each exercise we rescale the cost function in the CS model (through the
parameter -0) so that �∗ and �∗∗ are equal at the mid-point of the parameter range
considered: �=0:5; �=5. This rescaling makes comparisons between the scales of �∗

and �∗∗ visually easier. The e8ects of these three parametric shifts are illustrated in
Figs. 3–7 respectively. The e8ects of changes in a parameter is illustrated for a wide
range of given values of the other parameter held 9xed in each exercise.

5.2.1. Changes in the volatility of target innovations
Fig. 4 reports the optimal sampling intervals in the two models as a function of the

volatility of target innovations � for given persistence �=e−�. The larger �, the smaller
is !, which imply a more informationally demanding prediction problem. Each curve
corresponds to a given value of � from 0.0001, 0.01, 0:02 : : : to 0.98, 0.99, 0.9999.
The larger the �, and the smaller � is, the more persistent are target innovations, and
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the lower are the curves. The comparison between the two models reveals two clear
di8erences, which are both consistent with our general qualitative conjectures.

First, the optimal sampling interval �∗∗ in the CS model (4.2) (lower panel) is
monotone as expected: the higher is �, the lower is �∗∗, and more frequently is it
optimal to sample. By contrast, the optimal sampling interval �∗ in the CI model (4.1)
(upper panel) is non-monotone and hump-shaped. The intuition is simple, building
on Propositions 1 and 2. As target volatility � rises, the marginal bene9t of tracking
the target always rises. By Proposition 1, the loss function rises uniformly with �,
and therefore its slope rises in the sampling interval �. A more complex prediction
problem is addressed more aggressively, as the marginal bene9t of a sample is high
when the target is hard to predict without observations. Thus, �∗∗ always declines in
volatility �. But �∗ increases from zero with � up to a maximum, to then decline. A
‘simple’ prediction problem is not informationally demanding and can be sampled very
frequently. By Proposition 2, as � rises, the information rate of a given observation
frequency � rises with it, and so does its marginal cost. When this cost-e8ect dominates
the bene9t-e8ect, optimal inertia �∗ rises with �. As � explodes, the latter e8ect
eventually dominates, and inertia declines to zero once again.

The second clear di8erence is that, due to the same moderating cost-e8ect, inertia
�∗∗ in the CS model is much more sensitive to parametric changes than �∗ in the CI
model. The intuition is the same: the cost-e8ect always works against the bene9t-e8ect,
thus its addition can only be moderating.

The second result has important implications for economic applications. Analytical
convenience has made the Calvo-type adjustment rule quite popular to generate nominal
rigidities in monopolistically competitive macroeconomic models. However, the Lucas
critique (among others) applies to this practice, since the frequency of price adjustment
is invariant to changes in the stochastic process describing the environment, for example
to policy changes. The standard answer is that this invariance is a good approximation
when the environment is relatively stable. Our results indicate that the Lucas critique is
quite appropriate even for small parameter changes if infrequent adjustment Xa la Calvo
(1983) is motivated by a CS model. The same critique, however, has much less bite
in a Costly Information approach, which provides some 9rm grounds for the standard
rebuttal.

5.2.2. Changes in the persistence of target innovations
Fig. 5 reports the results of varying the persistence of target innovations � = e−�

for a given volatility �. The higher is �, the harder is the prediction problem. Now
both � and ! = 2�=�2 change together. The curves correspond to 9xed values of
�=1; 2; : : : ; 10. Inertia decreases in the persistence of target innovations in both models:
a more persistent target is harder to track both in the short and in the long run, and the
standard marginal bene9t e8ect prevails. However, once again inertia is widely more
sensitive to parameter changes in the CS model (lower panel). Recall that the sampling
cost function - is rescaled so that �∗ = �∗∗ = 0:3 for � = 5 and �= 0:5, so the scale
of the curves is the same in the middle of both graphs.

However, the results for the CI model (4.1) change if we make the marginal cost
vanish faster at zero. Fig. 6 reports the results with -(z) = c(z)=-0 = z3. Now, optimal
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Fig. 5. Optimal sampling interval as a function of the persistence �= e−� of target innovations, given their
volatility �. Quadratic information costs. Each curve corresponds to a di8erent given level of �.

inertia �∗ is non-monotone in and very inelastic to the persistence of innovations in the
CI model, while inertia �∗∗ in the CS model (4.2) is still quickly decreasing. Indeed,
�∗∗ is decreasing in � in any parameterization we tried, as one would expect. The
intuition should be familiar by now.

5.2.3. Changes in short-run volatility of the target
Finally, Fig. 7 reports the response of the optimal sampling intervals as we vary both

the persistence �= e−� and the volatility of target innovations � so as to maintain the
asymptotic variance of the process 1=! = �2=2� constant. The di8erent curves corre-
spond to values of ! ranging from 0.01 to 5. The higher is !, the higher are the curves
in both panels of Fig. 7. In this case, both models predict that as � rises (and � with
it) and the target becomes less predictable in the short run, while remaining equally
predictable in the long run, the optimal degree of inertia rises. The marginal gain
from tracking a target that is more variable in the short-run but not in the long run is
smaller. This result appears robust to the many parameterizations that we experimented
with.

This result seems to run counter to the previous intuition. Indeed, by Proposition
1, when � and � are proportionally higher, the prediction loss is closer to its 9xed
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Fig. 6. Optimal sampling interval as a function of the persistence �= e−� of target innovations, given their
volatility �. Cubic information costs. Each curve corresponds to a di8erent given level of �.

upper bound 1=!. Therefore, it is relatively Jat at a level near 1=! and inelastic
in the sampling frequency � (see Fig. 3). Sampling more or less frequently makes
little di8erence when the target is unpredictable at high frequencies, but relatively
under control at low frequencies. It appears that the e8ects of stronger mean-reversion
dominate in the short run. Once again, the moderating cost-e8ect in the CI model
makes inertia much less sensitive to this parametric shift (compare the scales of the
two panels).

We summarize our main 9ndings as follows.

• In the CS model (4.2), a target which is less predictable both in the short and in
the long run is sampled relatively more frequently. With Costly Information (4.1),
instead, inertia �∗ may be non-monotone or even decreasing in the predictability of
the target.

• The optimal degree of inertia is much more sensitive to changes in the environ-
ment with Costly Sampling than with Costly Information: the e8ects of parametric
changes on the level and on the cost of the information contained in each observation
moderates the e8ects on the marginal bene9t of adjustment.
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Fig. 7. The optimal sampling interval as a function of the volatility � and the persistence �= e−� of target
innovations, keeping the asymptotic variance of the target != 2�=�2 constant. Each curve corresponds to a
di8erent given level of !.

5.3. One more benchmark: state-dependent adjustment

As a further benchmark of comparison for the CI model (4.1), popular in the eco-
nomics literature, consider a problem in which information accrues freely, continu-
ously, and without noise (� = 0; � = ∞) to the DM, but there is a 9xed cost to
change the prediction at . As well known, such adjustment ‘menu’ costs give rise to
optimal state-dependent rules: the DM spends the 9xed cost to update his action when-
ever the target has drifted too far given the current action. Inertia has stochastic fre-
quency. Optimal (S; s) rules have been derived in a variety of contexts, but always with
non-stationary (standard or geometric Brownian Motion) target processes. The case of
a mean-reverting target has not been solved to date. Its complication arises from the
fact that the distribution of target increments depends on the current level. It seems
plausible, just like in the models solved so far, that a higher volatility of target inno-
vations (�) would raise the option value of waiting and the resulting optimal inertia.
However, it seems equally plausible that a stronger mean-reversion of target innova-
tions (higher �) would have the same e8ect and increase inertia, as deviations of the
target from its long-run value would disappear or be reversed with higher probability,
reducing the need for a costly frequent adjustment. This last prediction is similar to
that of the traditional CS model, and di8erent from the one of the CI model (4.1)
introduced in this paper.
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6. Concluding remarks

Over more than 50 years, since Shannon’s (1948) seminal article, Information The-
ory has uncovered general restrictions on the technology for information transmission,
acquisition, and processing. As the production, communication, and trade of information
services represent an ever-increasing share of post-industrial economies, these insights
bear increasing relevance to economic analysis, where such information-related activi-
ties and technologies are typically modelled in very ad hoc ways. This paper contains
the very 9rst attempt to embed a basic idea from Information Theory into an econom-
ically interesting decision problem. Compared to ad hoc adjustment rules proposed in
macroeconomic models, both of the time-dependent and state-dependent breeds, this
model introduces yet another type of behavior. Adjustment occurs continuously, but
almost always according to informationally simple and pre-determined time paths, that
get drastically revised infrequently with the incorporation of new information. The
comparative statics properties of this adjustment policy are also new. For example, a
sudden and unforeseen decline in the predictability of environment may make economic
decisions so costly in terms of the required information resources as to ‘scare’ agents
away from these decisions.

In the light of the model illustrated in this paper, we can think of the advent of the
Internet as a sudden increase in the information capacity available to economic agents,
which should be expected to reduce stickiness in the economy. Investors, rather than
being paralyzed by complexity, may now cope fruitfully with the massive amount of
data and news that Jows to them daily. While the pace of the di8usion of information
has certainly risen, the e8ective amount of additional valuable information transmitted,
as measured for example in bits per second, remains to be veri9ed.
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Appendix A

Proof of Lemma 1. The unique 9xed point of the recursion (2.6) solves

�=
�!

�(1 − e−2��) + e−2��!
+ �; (A.1)

�2 = �(!+ �) + �!
e−2��

1 − e−2�� ;
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�=�(��|�; !)

=
!+ �+

√
(!+ �)2 + 4!� e−2��

1−e−2��

2

=
!+ �

2
+

√(
!+ �

2

)2

+ !�
e−2��

1 − e−2��

=
!+ �

2
+

√(
!+ �

2

)2

+
!�

e2�� − 1

implying �(0 + |�; !) = ∞; �(∞|�; !) = !+ �.
Next,

�′(��|�; !) = − 1√(!+�
2

)2
+ !�

e2��−1

e2��!�
(e2�� − 1)2

= − e2��!�√(!+�
2

)2
(e2�� − 1)4 + !�(e2�� − 1)3

¡ 0;

so

�′(0 + |�; �; !) = −!�√
0

= −∞;

�′(∞|�; �; !) = − 1√(!+�
2

)2
+ 0

0 = 0:

Finally,

�′′(��|�; !)
�′(��|�; !)

=
d log [ − �′(��|�; !)]

d(��)

=
d

d(��)
log


 1√(!+�

2

)2
+ !�

e2��−1

e2��!�
(e2�� − 1)2




= 2 − 2
2e2��

e2�� − 1
− 1

2
1(!+�

2

)2
+ !�

e2��−1

−2e2��!�
(e2�� − 1)2

= − 2
e2�� + 1
e2�� − 1

+
e2��!�(!+�

2

)2
(e2�� − 1)2 + !�(e2�� − 1)
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=
1

e2�� − 1

[
−2(e2�� + 1) +

e2��!�(!+�
2

)2
(e2�� − 1) + !�

]

=
1

e2�� − 1
−2(e2�� + 1)

(!+�
2

)2
(e2�� − 1) − 2(e2�� + 1)!�+ e2��!�(!+�

2

)2
(e2�� − 1) + !�

=
1

e2�� − 1
−2(e2�� + 1)

(!+�
2

)2
(e2�� − 1) − (e2�� + 2)!�(!+�

2

)2
(e2�� − 1) + !�

¡ 0;

implying

�′′(��|�; !)¿ 0:

To investigate the stability of the di8erence equation (2.6), using the steady-state
equation (A.1) for �(��|�; !) (as a shorthand, �):

	�� − �=
!	(�−1)�

	(�−1)�(1 − e−2��) + !e−2�� − !�
�(1 − e−2��) + !e−2��

=0(	�)[	(�−1)� − �];

where

0(	�) =
!2e−2��

[	(�−1)�(1 − e−2��) + !e−2��][�(1 − e−2��) + !e−2��]
¿ 0:

Clearly

0(	�)6
!2e−2��

!e−2��[�(1 − e−2��) + !e−2��]

=
!=�

[1 − (1 − !=�)e−2��]

¡ 1

because we showed �=�(��|�; !)¿�(∞|�; �; !) =!+ �¿!. Also, 0(�)¿ 0 and
0 is continuous. Therefore, �(��|�; !) is a unique global attractor for the recursion.

The last result follows directly from the optimal prediction formulae.

Proof of Proposition 1. At any time t the Jow loss is E[(X̂ t−Xt)2|F(�)
t ]=V[Xt |F(�)

t ]
≡ 	−1

t , where 	−1
t is derived from 	−1

�� and �� is the time of the last observation
available at time t: ��6 t ¡ (�+1)�. The ex ante ‘Jow’ loss, using the Law of Iterated
Expectations and the fact that the 〈	〉 process is predictable, equals V[Xt |F(�)

0 ] =
E[V[Xt |F(�)

t ]|F(�)
0 ]=E[	−1

t |F(�)
0 ]=	−1

t . The total loss is the average integral of this
magnitude.

When sampling is infrequent (�¿ 0), at each observation and updating times t =
�� = �; 2� : : : the DM computes a new pair of conditional moments X̂ ��; 	��. The
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average loss in any interval between samples is therefore the average of the posterior
variance over the period in between samples:

L(�+1)� − L��
�

=
1
�

∫ (�+1)�

��
V[X��+s|F(�)

��+s] ds

=
1
�

∫ (�+1)�

��

[
e−2�(s−��)

	��
+

1 − e−2�(s−��)

!

]
ds

=
1
!

+
(

1
	��

− 1
!

)
1 − e−2��

2��
:

In this notation, the total average loss over the in9nite time horizon is

L(�) = lim
T→∞

LT
T
:

This limit, if it exists, is the same along any sequence of exploding times T . Fix any
integer k¿ 0 and let S = k�. Next, take the above limit for a sequence T = (n+ k)�
as n explodes. Since any initial loss over any 9nite initial period [0; S] is irrelevant:

L= lim
T→∞

LT − LS
T − S

= lim
n→∞

∑�=n+k
�=k [L(�+1)� − L��]

n�

= lim
n→∞

1
n

�=n+k∑
�=k

L(�+1)� − L��
�

= lim
n→∞

1
n

�=n+k∑
�=k

{
1
!

+
(

1
	��

− 1
!

)
1 − e−2��

2��

}

=
1
!

(
1 − 1 − e−2��

2��

)
+

1 − e−2��

2��
lim
n→∞

1
n

�=n+k∑
�=k

1
	��

:

Since the limit is independent of k, for every �¿ 0 we can take k large enough that
	�� is within � of its global attractor �, so 1=	�� is within �=[�(� − �)] of 1=� and
therefore (1=n)

∑�=n+k
�=k 1=	�� is within �=[�(� − �)] of 1=�, i.e. arbitrarily close to

1=�. Therefore,

lim
n→∞

1
n

�=n+k∑
�=k

1
	��

=
1
�
;

and the average expected loss of the optimal prediction policy equals the asymptotic
average loss per unit time:

L(��|�; !) =
1
!

− 1 − e−2��

2��

(
1
!

− 1
�(��|�; !)

)
which is (2.8).
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Now, take any pair of smooth positive functions {fi}i=0;1 such that f′
i(·)¡0¡f′′

i (·)
for i=0; 1. Let f2(�)=−f0(�)f1(�). Then f′

2(�)=−f′
0(�)f1(�)−f0(�)f′

1(�)¿ 0
and f′′

2 (�) = −f′′
0 (�)f1(�) − 2f′

0(�)f′
1(�) − f0(�)f′′

1 (�)¡ 0. Thus, to prove that
L(��|�; !) is increasing and concave in �, it suSces to show that both f0(�) =
(2��)−1(1 − e−2��) and f1(�) = !−1 − �−1(��|�; !) are positive, decreasing and
convex in ��.

For (2��)−1(1 − e−2��), clearly positive, one can verify that it is decreasing and
convex by taking two derivatives and using properties of the exponential function.
For !−1 − �−1(��|�; !), we know that it is positive because !¡�(��|�; !), and
decreasing because so is �(��|�; !). For its convexity, we need to show

�′′(��|�; !)
�2(��|�; !)

− 2
(�′(��|�; !))2

�3(��|�; !)
¿ 0

multiplying through by −�2(��|�; !)=�′(��|�; !)¿ 0:

−�
′′(��|�; !)
�′(��|�; !)

¿ 2
−�′(��|�; !)
�(��|�; !)

using the expressions derived in an earlier proof

1
e2�� − 1

[
2(e2�� + 1) +

!�(!+�
2

)2
(e2�� − 1) + !�

]

¿
2

!+�
2 +

√(!+�
2

)2
+ !�

e2��−1

1√(!+�
2

)2
+ !�

e2��−1

e2��!�
(e2�� − 1)2

=
1

e2�� − 1
2e2��

!+�
2

e2��−1
!� + e2��−1

!�

√(!+�
2

)2
+ !�

e2��−1

1√(!+�
2

)2
+ !�

e2��−1

=
1

e2�� − 1
2e2��

!+�
2

e2��−1
!�

√(!+�
2

)2
+ !�

e2��−1 + e2��−1
!�

(!+�
2

)2
+ 1

simplifying 1=(e2�� − 1) and rearranging

2(e2�� + 1) +
!�(!+�

2

)2
(e2�� − 1) + !�

¿
2e2��

!+�
2

e2��−1
!�

[√(!+�
2

)2
+ !�

e2��−1 +
(!+�

2

)]
+ 1

:

This is always true because the LHS is larger than 2e2�� and the RHS is smaller than
2e2��.
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Proof of Proposition 2.

Î(�|�; �=!) = lim
�→∞

I��
�

=
1

2�
log

(
1 + �

�(��|�; !)(1 − e−2��) + !e−2��

!�(��|�; !)

)

=
1

2�
log

(
1 +

�
!

(1 − e−2��) +
�e−2��

�(��|�; !)

)

=
1

2�
log

[
1 +

�
!

(
1 − e−2��

(
1 − !

�(��|�; !)

))]

=
1

2�
log


1 +

�
!

(1 − e−2��) +
�e−2��

!+�
2 +

√(!+�
2

)2
+ !�

e2��−1


 :

We want to show that this rate is decreasing in �. Let

Î(�|�; �=!) =
1

2�
log

(
�(��|�; !)

�(��|�; !) − �

)

=
1

2�
Q(�);

where Q(0) = 0; Q(∞) = log(1 + !=�)¿ 0,

Q′(�) =
1

2�

[
1

�(��|�; !)
− 1
�(��|�; !) − �

]
d�(��|�; !)

d�

=
�

2��(��|�; !)[�(��|�; !) − �]
!��e2��

(e2�� − 1)2
√(!+�

2

)2
+ !�

e2��−1

=
�!�2e2��

(e2�� − 1)2[�(��|�; !) + �
e2��−1 ]

√(!+�
2

)2
+ !�

e2��−1

¿ 0:

So Î(�|�; �=!) = Q(�)=� is decreasing as claimed in � if Q(�) is concave, or
Q′′(�)¡ 0. This inequality can be veri9ed using the above expression for Q′(�) with
lengthy and tedious (thus omitted) algebra.

The information rate Î(�|�; �=!) explodes as � → 0, because by Hopital

lim
�→0

Î(�|�; �=!) =
0
0

= lim
�→0

Î
′
(�|�; �=!)
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= lim
�→0

− �(
!+�

2 +

√(
!+�

2

)2
+

!�
e2��−1

)2

1 + �

!+�
2 +

√(
!+�

2

)2
+

!�
e2��−1

− 2�e2��!�
(e2��−1)2

2
√(!+�

2

)2
+ !�

e2��−1

= lim
�→0

�
1 + �

!+�
2 +

√(
!+�

2

)2
+

!�
e2��−1

×
�e2��!�

(e2��−1)2(
!+�

2 +
√

(!+�
2 )2 + !�

e2��−1

)2 √(!+�
2

)2
+ !�

e2��−1

ignoring all terms other than the exploding !�=(e2�� − 1)2

=lim
�→0

1

�!�

(e2��−1)2(√
!�

e2��−1

)2 √
!�

e2��−1

= lim
�→0

�√
!�(e2�� − 1)

= ∞:

Although continuous sampling leads to an in9nite steady-state precision �(0+) =
∞, which makes the informational content of each observation negligible, the infor-
mation rate per unit time explodes as sampling becomes continuous. In this sense,
continuous-time sampling and 9ltering is not a physically feasible operation.

At the other extreme:

lim
�→∞

Î(�|�; �=!) = lim
�→∞

1
2�

log
(
!+ �
!

)
= 0:

Next,
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=
− �
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1− !
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− 1
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(
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:
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Thus this partial derivative is negative as claimed provided that

!
9�(��|�; !)

9! ¡ 2�(��|�; !):

Using the expression for �(��|�; !) from Lemma 1

!


1

2
+

!+ �+ �
e2��−1

2
√(!+�

2

)2
+ !�

e2��−1


¡!+ �+ 2
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2
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+
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!
!+ �+ �

e2��−1

2
√(!+�

2

)2
+ !�

e2��−1

¡�+ 2

√(
!+ �

2

)2

+
!�

e2�� − 1

!
(
!+ �+

�
e2�� − 1

)
¡ 2�

√
!+ �+

4!�
e2�� − 1

+ (!+ �)2 +
4!�

e2�� − 1

−2!�− 3!�
e2�� − 1

¡
�
2

√
!+ �+

4!�
e2�� − 1

which is always true.
Finally, the negative dependence of the information rate Î(�|�; �=!) on � given !,

and on � and ! given �2 = 2�=! follows directly from simple di8erentiation and from
the previous result.
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