Blackfoot Words

Introducing a database of Blackfoot lexical forms

Natalie Weber, Evan Hochstein, Pinyu Hwang, Nico Kidd, Diana Kulmizev, and Hannah Morrison (Yale University)

October 15, 2021
53rd Algonquian Conference
Overview of Blackfoot Words

● relational database of words and phrases, and their subparts
● 62,693 lexical forms have been digitized to date
● from 26 sources
 ○ all four major dialects
 ○ timespan: 1743–2017
● Version 1 includes 7 of 26 sources

(for Blackfoot: Frantz 2017; Frantz & Russell 2017)
Motivation

1. Research needs
 ○ Blackfoot is unusual w.r.t. Algonquian language family
 i. Contains *archaisms* and *innovations* (Berman 2006; Goddard 1994, 2018)
 ii. Many unknowns, incl. variation, morphological composition of words
 ○ Each source contains only a subsets of the total number of lexical items

2. Teaching needs
 ○ Aging speaker population
 i. ~5,000 reasonably fluent speakers (= 15% population) (Genee & Junker 2018)
 ii. Language status: “shifting” (Canada), “moribund” (U.S.) (Ethnologue; Eberhard et al. 2021)
 ○ Active language maintenance (e.g. Piegan Institute in MT, language classes, etc.)
Purpose

To create an accessible, organized resource which can potentially support research projects as well as community-based language maintenance projects.

Two problems

● older sources are difficult to access or discover
● variation across sources means it is unclear when two words are the “same”

Specific aims:

1. to provide access to legacy sources by *digitizing* the inflected forms within
2. to provide links between instances of the “same” lexical form
Overview of talk

1. Data
2. Challenges & Decisions
3. Database Structure
4. Accessing the Database
5. Methods
6. Current & Future Projects
Data
Data: Overview

- Data includes variation in:
 - Dialect
 - Source (type)
 - Grammar (amount of complexity)
 - Orthographies
Data: Dialects

- Differences in:
 - pronunciation
 - morphology
 - lexical items (words)

- Not all sources specify dialect or speakers

(Map by Kevin McManigal)

(Bliss & Ritter 2009; Naoki 2014; Frantz & Russell 2017; Taylor 1969)
Data: Sources

● most are published, all are typeset
● almost 300-year span
 ○ oldest: Isham’s (1743) wordlist of 10 numerals
 ○ most recent: *Blackfoot Grammar* (Frantz 2017)
● wide range of authors
 ○ missionary linguists
 ○ explorers for fur trading companies
 ○ ethnologists/anthropologists
 ○ philologists/linguists
 ○ amateur enthusiasts
● most sources with 1,000+ records document Aamsskáápipikani (So. Piegan)
● many different types (grammars, dictionaries, wordlists)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

nitūs'sūmmosi

‘I see myself.’ (Tims 1889)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

\[\text{nitũs'sũmmosi} \]

\(\text{ss thus } – ūmm – \text{watch.ta} \)

\('I see myself.'\)

(Tims 1889)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

nitũs'sũmmosì

\[\text{ss} - \text{ũmm} \]
\[\text{thus} - \text{watch.ta} \]

‘I see myself.’ (Tims 1889)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

nitū'sūmmosi

`nitū'sūmmosi`

ss –ūmm
thus –watch.ta

TA stem

final

–osi
–refl.ai

‘I see myself.’ (Tims 1889)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

nitũs'sũmmosí

\[
\begin{array}{ccc}
ss & -ũmm & -osi \\
thus & -watch.ta & -refl.ai \\
\end{array}
\]

Al stem

“I see myself.” (Tims 1889)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

nitūs'sūmmosi

‘I see myself.’ (Tims 1889)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

nitűs'sũmmosi

\[
\begin{align*}
\text{ũ–} & \quad \text{ss} & \quad -\text{ũmm} & \quad -\text{osi} \\
\text{ipfv–} & \quad \text{thus} & \quad -\text{watch.ta} & \quad -\text{refl.ai}
\end{align*}
\]

“I see myself.” (Tims 1889)
Data: Grammar

- Polysynthetic language with “clausal” words (Bliss 2013; Weber 2020, 2021)
- Stems can be recursive (Bloomfield 1946)
- Stems combine with many preverbs
- “Maximal stem” (our term): all material except for inflectional affixes

nitūs'sūmmosī

\[
\begin{array}{cccccc}
\text{nit}- & \text{ū}- & \text{ss} & -\text{ūmm} & -\text{osi} \\
1- & \text{ipfv}- & \text{thus} & -\text{watch.ta} & -\text{refl.ai} \\
\end{array}
\]

‘I see myself.’ (Tims 1889)
Data: Orthography

- saahkómaapi ‘boy’ Frantz & Russell (2017: 232)
- Sah komape ‘Boy’ Catlin (1842)
- sacoomahpa ‘boy’ Latham (1846)
- sa-ko'-ma-pi ‘boy’ Hayden (1863)
- sok ko mA pe ‘a boy’ Lanning (1882)
- Sarkomâpi ‘Boy’ Lacombe (1886)
- sõk-u-ma-pi ‘boy’ Tims (1889)
- saxkúmapi ‘boy’ Uhlenbeck (1938)
Challenges & Decisions
Challenges & Decisions

- **Tokenization**: breaking data into meaningful linguistic units
- **Phonemicization**: standardizing orthographic variants
- **Lemmatization**: determining abstract forms of linguistic units
Challenges & Decisions: Tokenization

- Tokenize at all linguistically relevant levels (words, stems, morphemes)

Inflected word:

niτū'sǔmmosi ‘I see myself’
(Tims 1889)

(inflection: nit- ‘1’)

<table>
<thead>
<tr>
<th>Tokenization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max stem:</td>
</tr>
<tr>
<td>Category:</td>
</tr>
<tr>
<td>Precedence:</td>
</tr>
<tr>
<td>Stem:</td>
</tr>
<tr>
<td>Category:</td>
</tr>
<tr>
<td>Precedence:</td>
</tr>
<tr>
<td>Min stem:</td>
</tr>
<tr>
<td>Category:</td>
</tr>
<tr>
<td>Precedence:</td>
</tr>
</tbody>
</table>
Challenges & Decisions: Phonemicization

- (Extreme) variation in data, within and between sources

- sok ko mA pe ‘a boy’ Lanning (1882)
- sar komâpi ‘Boy’ Lacombe (1886)
- sǒk-u-ma-pi ‘boy’ Tims (1889)
- saxkúmapi ‘boy’ Uhlenbeck (1938)
Challenges & Decisions: Lemmatization

- Phonemicized at an abstract lemma level
- Lemmas link all instances of the same stem or morpheme

English	Pronunciation	Source
‘a boy’	sok ko mA pe	Lanning (1882)
‘Boy’	Sarkomâpi	Lacombe (1886)
‘boy’	sōk-u-ma-pi	Tims (1889)
‘boy’	saxkúmapi	Uhlenbeck (1938)

271 saahkómaapi
NA
‘boy’
Challenges & Decisions: Lemmatization

Inflected word: **nitũs'sũmmosi ‘I see myself’** (Tims 1889)
(*inflection: nit- ‘1’*)

Tokenization

<table>
<thead>
<tr>
<th>Max stem:</th>
<th>[ũ-] [s'sũmmosi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category:</td>
<td>[preverb] [VAI]</td>
</tr>
<tr>
<td>Precedence:</td>
<td>1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stem:</th>
<th>[[s'sũmm] -osi]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category:</td>
<td>[[VTA] fai]</td>
</tr>
<tr>
<td>Precedence:</td>
<td>1 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Min stem:</th>
<th>[s's] ũmm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category:</td>
<td>[init fta]</td>
</tr>
<tr>
<td>Precedence:</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Lemmatization

Stems

- **aissammohsi**: VAI ‘s.o. sees themself’
- **ssammohsi**: VAI ‘s.o. sees themself’
- **ssamm**: VTA ‘s.o. sees s.o.’

Morphemes

- **a-**: pv ‘ipfv’
- **-ohsi**: VAI fai, ‘refl’
- **ss-**: init ‘thus’
- **-amm**: fta ‘watch’
Database Structure
Database Structure

● Structure emerged as a response to challenges seen in previous slides
● Structure captures
 a. hierarchical structure of stems
 b. abstract relationships between stems and their counterparts
● Separates the original source data from the lab’s analysis
Tables

1. Sources
 ● Bibliographic information as well as notes on dialect, orthography, provenance

2. Words
 ● Unit of record is lexical phonological forms
 ● Phrases are “chunked” into word tokens

 ● Where the lab imposed tokenization (“chunking”) on the forms in the words table
 ● Uses the source orthography

5. Lemmas
 ● Abstraction over multiple tokens of the same stem/morpheme across sources and orthographies
 ● Uses a standardised orthography (Frantz 1978, 2017)
Accessing the Database
Accessing the Database

All software used to create the database is free and open-source.

The full database is open-access and downloadable.

- Project website: https://www.blackfootwords.com/
- Interactive spreadsheet API (NocoDB): https://www.blackfootwords.com/view/
- MySQL database and API hosted on Yale Spinup
- Downloadable (mysqldump) via Zenodo (coming soon!)
- Paper describing the database structure (ask us!)
Blackfoot Words is a database of lexical forms in Blackfoot (Algonquian). By “lexical forms” we mean inflected words, stems, and morphemes. These have been collected and digitized from many different written sources. We created the database and this website to provide access to a large amount of lexical data for the Blackfoot communities and for language researchers.

Version 1 of the database includes lexical forms from legacy language documentation materials, including grammars, dictionaries, and wordlists, from the years 1743-2017.

Check out our How-to section to learn how to log in and View the database. Developers who are familiar with MySQL can Download the full database from Zenodo.

We have bibliographic information for all of the Sources in the database, as well as links to download pdfs of sources in the public domain.

The database was created by the Blackfoot Lab at Yale with the support of many others. The project is maintained by Natalie Weber. The language and words belong to the Blackfoot Nations.

Land acknowledgement

The database is hosted on a Yale-affiliated server. Yale University acknowledges that indigenous peoples and nations, including Mohegan, Mashantucket Pequot, Eastern Pequot, Schaghticoke, Golden Hill Paugussett, Niantic, and the Quinnipiac and other Algonquian speaking peoples, have stewarded through generations the lands and waterways of what is now the state of Connecticut. We honor and respect the enduring relationship that exists between these peoples and nations and this land.
NocoDB (cont.)
<table>
<thead>
<tr>
<th>#</th>
<th>A Source</th>
<th>A OriginalWord</th>
<th>A OriginalTranslation</th>
<th>A LabWordCategory</th>
<th>LabStem (from Stems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASG1848</td>
<td>ahkeya</td>
<td>woman</td>
<td>N</td>
<td>ahkeya</td>
</tr>
<tr>
<td>2</td>
<td>ASG1848</td>
<td>akuia</td>
<td>woman</td>
<td>N</td>
<td>akuia</td>
</tr>
<tr>
<td>3</td>
<td>ASG1848</td>
<td>owotan okitz</td>
<td>nails</td>
<td>N</td>
<td>owotan okitz</td>
</tr>
<tr>
<td>4</td>
<td>AT1967</td>
<td>payónixkaasi</td>
<td>when, if it gets broken</td>
<td>V</td>
<td>payónixkaa</td>
</tr>
<tr>
<td>5</td>
<td>AT1967</td>
<td>payónixkaawa</td>
<td>it is broken</td>
<td>V</td>
<td>payónixkaa</td>
</tr>
<tr>
<td>6</td>
<td>AT1969</td>
<td>ayóxkotokaasiyaawawa</td>
<td>they became rocks</td>
<td>V</td>
<td>ayóxkotokaasiyaawa</td>
</tr>
<tr>
<td>7</td>
<td>AT1969</td>
<td>iiksikimmapiipitsiwa</td>
<td>he is always very kind, he is a very kind person</td>
<td>V</td>
<td>iiksikimmapiipitsi</td>
</tr>
<tr>
<td>8</td>
<td>AT1969</td>
<td>maan?ssi?wa</td>
<td>he is young, he is new</td>
<td>V</td>
<td>maan?ssi</td>
</tr>
</tbody>
</table>
NocoDB (cont.)

Single-record view (from the Words table)
NocoDB (cont.)

<table>
<thead>
<tr>
<th>#</th>
<th>A LabLemma</th>
<th>A LabLemmaCategory</th>
<th>A LabLemmaTransformation</th>
<th>Lemmas => Morphemes</th>
<th>Lemmas => Stems</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>apooni</td>
<td>VTI</td>
<td>s.o. shatter s.t.</td>
<td></td>
<td>opóóní</td>
</tr>
<tr>
<td>5</td>
<td>apoonistoo</td>
<td>VTI</td>
<td>s.o. will smash s.t.</td>
<td></td>
<td>opoonistoo</td>
</tr>
<tr>
<td>6</td>
<td>poon-</td>
<td>init</td>
<td>break, smash</td>
<td>payóón-</td>
<td>payóón-</td>
</tr>
<tr>
<td>7</td>
<td>poonihkaa</td>
<td>VII</td>
<td>s.t. is, gets broken</td>
<td>payóónixkaa</td>
<td>payóónixkaa</td>
</tr>
<tr>
<td>8</td>
<td>pott-</td>
<td>init</td>
<td>fly</td>
<td>pott-</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>potta</td>
<td>VAI</td>
<td>fly</td>
<td>pottlá</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>pottaahkomo</td>
<td>VTA</td>
<td>s.o. scare the wildfowl into flight for s.o.</td>
<td>pottaáhkomoo</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>saay-</td>
<td>init</td>
<td>lie</td>
<td>saay-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>saayí</td>
<td>VAI</td>
<td>s.o. lies</td>
<td>saayí</td>
<td></td>
</tr>
</tbody>
</table>
NocoDB (cont.)

(The **Lemmas** table)

<table>
<thead>
<tr>
<th>A LabLemmaTranslation</th>
<th>break, smash</th>
</tr>
</thead>
</table>

- **Lemmas** => **Morphemes**
 - **payóón-** (Primary Key : morph-007)
 - **payóón-** (Primary Key : morph-010)
NocoDB (cont.)

<table>
<thead>
<tr>
<th>Morphemes: payóón-</th>
</tr>
</thead>
<tbody>
<tr>
<td>A LabMorpheme</td>
</tr>
<tr>
<td>payóón-</td>
</tr>
<tr>
<td>A LabMorphemeCategory</td>
</tr>
<tr>
<td>initial</td>
</tr>
<tr>
<td>☰ Stems <= Morphemes</td>
</tr>
<tr>
<td>payóónixkaa (Primary Key: stem-006)</td>
</tr>
<tr>
<td>☰ Lemmas <= Morphemes</td>
</tr>
<tr>
<td>poon- (Primary Key: lemma-106)</td>
</tr>
</tbody>
</table>
NocoDB (cont.)

Sorting (below) and **column/field selection** (right)
NocoDB (cont.)

Filtering (above)
Methods
Methods

Four phases:

1. Discovery (tool: HathiTrust)
2. Digitization (tool: Google Drive)
3. Analysis of Maximal Stems, Lemmas
4. Analysis of Non-Maximal Stems, Morphemes, Lemmas

- Always double-checked by a student, then by lab director
- Different sources progress at different rates
- Batch import into database after stages 3 and 4
Phase 2: Digitization

<table>
<thead>
<tr>
<th>Source</th>
<th>Page</th>
<th>Speaker</th>
<th>Dialect</th>
<th>Word_ID</th>
<th>OriginalWord</th>
<th>WordTranslation</th>
<th>OriginalCategory</th>
<th>OriginalUR</th>
<th>LabWordCategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT1969</td>
<td>154</td>
<td>Dave Melting Tallow (North Piegan)</td>
<td>Aamsskáápipikani (Southern Piegan)</td>
<td>word:AT1969:1511</td>
<td>koxkátsinnawanists</td>
<td>our legs</td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>AT1969</td>
<td>144</td>
<td>Margaret Many Guns (may be North Piegan)</td>
<td>Aamsskáápipikani (Southern Piegan)</td>
<td>word:AT1969:1600</td>
<td>innáápiinowan</td>
<td>candy</td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>AT1969</td>
<td>31</td>
<td>Tom Many Guns</td>
<td>Aamsskáápipikani (Southern Piegan)</td>
<td>word:AT1969:1941</td>
<td>apsáloka</td>
<td>Crow</td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>AT1969</td>
<td>88</td>
<td>Tom Many Guns</td>
<td>Aamsskáápipikani (Southern Piegan)</td>
<td>word:AT1969:1604</td>
<td>innöösopaaʔtsis</td>
<td>bench (literally 'long seat')</td>
<td></td>
<td>Innoolsopaaʔtisi</td>
<td>N</td>
</tr>
</tbody>
</table>
Phase 2: Digitization

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>dance in the sun dance</td>
<td>AI+O -imaa- 'pseudo-intransitive on indefinite animate objects'; no related TA stem</td>
<td>-itapl:Skatimaa-</td>
<td></td>
<td>án?nuxkay kòo?kúsi áaakitse••n?ixkyo?pa</td>
<td>tonight we will sing and sing</td>
</tr>
<tr>
<td>reflect, count</td>
<td></td>
<td>okaki</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>burn up</td>
<td>II -itii- 'with heat, accompanied by heat'</td>
<td>-Ittokiniti-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with, along, by</td>
<td>anaphoric preverb</td>
<td>i:/oSt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blood</td>
<td>Dep</td>
<td>-aaYapan-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>be much</td>
<td>II -o- 'stative'</td>
<td>-a:kawo-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>be much</td>
<td>AI -i(mm)- 'stative'</td>
<td>-a:kayl-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hit-</td>
<td>my</td>
<td>pro. poss.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase 3: Analysis of maximal stems, lemmas

<table>
<thead>
<tr>
<th>WORD_ID</th>
<th>Word</th>
<th>Translation</th>
<th>LabStem</th>
<th>Stem_ID</th>
<th>LabStemCategory</th>
<th>LabLemma</th>
<th>Lemma_ID</th>
<th>LabLemmaTranslation</th>
<th>LabLemmaCategory</th>
</tr>
</thead>
<tbody>
<tr>
<td>word:AT1969: 0836</td>
<td>nàáxs娅</td>
<td>my grandparent</td>
<td>-àáxs</td>
<td>stem:1095</td>
<td>NDA</td>
<td>-aaahs</td>
<td>1</td>
<td>grandparent</td>
<td>NDA</td>
</tr>
<tr>
<td>word:EC1911: 006</td>
<td>ma-áhs</td>
<td>aunt, paternal (his grandmother)</td>
<td>-a-áhs</td>
<td>stem:3711</td>
<td>ND</td>
<td>-aaahs</td>
<td>1</td>
<td>grandparent</td>
<td>NDA</td>
</tr>
<tr>
<td>word:AT1969: 1491</td>
<td>naaʔyi</td>
<td>my mouth</td>
<td>-aaʔ</td>
<td>stem:1750</td>
<td>NDI</td>
<td>-aaao</td>
<td>2</td>
<td>mouth</td>
<td>NDI</td>
</tr>
<tr>
<td>word:AT1969: 1492</td>
<td>naaʔyi</td>
<td>my mouth</td>
<td>-aaʔ</td>
<td>stem:1751</td>
<td>NDI</td>
<td>-aaao</td>
<td>2</td>
<td>mouth</td>
<td>NDI</td>
</tr>
<tr>
<td>word:HH1885: 045</td>
<td>n’ahaban</td>
<td>my blood</td>
<td>-’ahaban</td>
<td>stem:4239</td>
<td>ND</td>
<td>-aaapan</td>
<td>3</td>
<td>blood</td>
<td>ND</td>
</tr>
<tr>
<td>word:AT1969: 1911</td>
<td>otáákiiʔsinʔa</td>
<td>womenfolk</td>
<td>-ákiʔsin</td>
<td>stem:2170</td>
<td>NA</td>
<td>-aakii'sin</td>
<td>4</td>
<td>womenfolk</td>
<td>NA</td>
</tr>
<tr>
<td>word:AT1969: 0837</td>
<td>nèèʔwa</td>
<td>my robe, my blanket</td>
<td>-èèʔ</td>
<td>stem:1096</td>
<td>NDA</td>
<td>-aiai</td>
<td>5</td>
<td>robe</td>
<td>NDA</td>
</tr>
</tbody>
</table>
Current & Future Projects
Current & Future Projects

1. Synchronic morphophonology (current; tokenization)
 Nisinoon project (Monica Macaulay and Hunter Lockwood)

2. Dialects and variation
 “Documenting variation in Niitsi’powahsin” SSHRC Insight Grant
 PIs: Inge Genee & Marie-Odile Junker

3. Historical change

4. Inflectional morphology and morphological parsers

Flexible structure, to accommodate future expansions?

- Adding fields: internal reconstruction, standardized glosses
- Adding sources: narratives, linguistic elicitation sessions
- etc.
Getting Started

- You don’t need to know about databases
- Digitization takes the longest
- Many students and hours!
- Google Drive is handy (collaborating remotely and [a]synchronously)
Nitsíkohtaahsi’takihpinnaan!

Thank you! (It makes our heart happy.)

Special thanks to:

● Yale Spinup (esp. Tenyo Grozev!)
● GreenGeeks
● Blackfoot Lab members, incl. Alex Smith from ULeth!
● Danny Hieber
● Inge Genee
● Monica Macaulay
● Hunter Lockwood
References

References

References

Current & Future Projects

Synchronic morphophonology

● Nisinoon (https://nisinoon.net/)

Dialects and variation

● “there is as much variation between speakers from the same reserve as there is between speakers from different reserves” (Frantz and Russell, 2017: xiii)
● Documenting variation in Niitsi’powahsin (Blackfoot)
[co-PIs: Inge Genee and Marie-Odile Junker]
Current & Future Projects

Historical change

● “Blackfoot is clearly the most divergent language in the Algonquian family” (Goddard:2018)
● Innovative sound changes “all contribute towards making Blackfoot vocabulary as a whole appear as un-Algonquian” (Michelson 1935: 142-143).
● “Indeed hitherto there has been a decided tendency to regard Blackfoot vocabulary as largely alien. I therefore state that nevertheless the amount of Blackfoot vocabulary that can be shown to be of Algonquian origin is much greater than supposed (I have several hundred etymologies which I think are certain), even if it is extremely difficult to enunciate phonetic shifts which “work” consistently’ (Michelson 1935: 143).

Inflectional morphology

● currently not included
● many similarities with other Algonquian languages
● also some innovations and archaisms (Goddard 2018)
● add morphological parsers?