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Appendix D gives the construction of the optimal sensitivity path under `∞ bounds.

Appendix E gives a construction of a submodel satisfying Appendix C.1, verifies the con-

ditions in Appendix C in the misspecified IV model, and collects auxiliary results used in

Appendix C.

D Optimal sensitivity under `∞ bounds

In this case, Equation (22) can be written as

min
k
k′Σk/2 s.t. ‖B′k‖∞ ≤ B/M and H = −k′Γ. (S1)

Using the linear transformation T defined in Equation (24), the Lagrangian for this problem

can be written as

min
κ
κ′Sκ/2 +

∑
i∈I

(λ+,i(κi − b)− λ−,i(κi + b)) + µ′(H ′ +G′κ).

where κ = T ′−1k, S = TΣT ′, b = B/M , G = TΓ, and I = {dg − dγ, . . . , dg} indexes the last

dγ elements of κ.

The first-order conditions are given by

i ∈ IC : e′iSκ+ e′iGµ = 0

i ∈ I : e′iSκ+ e′iGµ+ λ+,i − λ−,i = 0
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The complementary slackness conditions are λ+,i(κi − b) ≥ 0 and λ−,i(κi + b) ≤ 0 for i ∈ I,

and the feasibility constraints are λ+,i, λ−,i ≥ 0 for i ∈ I, and H ′ = −G′κ.

Let A denote the subset of I for which |κi| = b, and let AC = {1, . . . , dg} \ A. If i ∈ A,

then either κi = b, so that λ−,i = 0, and hence e′iSκ+ e′iGµ = −λ+,i ≤ 0, or else κi = −b, so

that λ+,i = 0, and hence e′iSκ+ e′iGµ = λ−,i ≥ 0, so that

sign(κi)(e
′
iSκ+ e′iGµ) ≤ 0, i ∈ A.

If i ∈ AC , whether i ∈ I, we have

e′iSκ+ e′iGµ = 0 i ∈ AC .

Combining this with the feasibility constraint, we can write the conditions compactly as(
0 G′AC

GAC SACAC

)(
µ

κAC

)
=

(
−H ′ −G′AκA
−SACAκA

)
.

This implies

µ = (G′ACS
−1
ACAGAC )−1(H ′ + (G′A −G′ACS

−1
ACACSACA)κA),

κAC = −S−1
ACACGACµ− S

−1
ACACSACAκA.

Consequently, if we’re in a region in where the solution path is differentiable with respect to

b, we have

∂

∂b
κA = sign(κA)

∂

∂b
µ = (G′ACS

−1
ACAGAC )−1(G′A −G′ACS

−1
ACACSACA) sign(κA)

∂

∂b
κAC = −S−1

ACACGAC
∂

∂b
µ− S−1

ACACSACA sign(κA).

The differentiability of path is violated if either (a) the constraint |κi| ≤ b is violated for

some i ∈ AC ∩ I if κ(b) keeps moving in the same direction, and we add i to A at a point

at which this constraint holds with equality; or else (b) the derivative e′i(Sκ+Gµ) for some

i ∈ A reaches zero. In this case, drop i from A. In either case, we need to re-calculate the

directions in the preceding display using the new definition of A.

Based on the above arguments, and the fact that for b large enough, the optimal sensitivity

is κ = −S−1G(G′S−1G)−1H ′, we can derive the following algorithm, similar to the LAR-

LASSO algorithm, to generate the path of optimal sensitivities κ(b):
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1. Initialize µ = (G′S−1G)−1H ′, κ = −S−1Gµ, b = ‖κI‖∞, and A = argmaxi∈I |κi|.

2. While (|A| < dg − dθ + 1):

(a) Calculate directions:

(κ∆)A = sign(κA)

µ∆ = (G′ACS
−1
ACAGAC )−1(G′A −G′ACS

−1
ACACSACA) sign(κA)

(κ∆)AC = −S−1
ACACGACµ∆ − S−1

ACACSACA sign(κA).

(b) Set step size to d = min{d1, d2}, where1

d1 = min{d > 0: e′i(Sκ+Gµ)− de′i(Sκ∆ +Gµ∆) = 0, i ∈ A}

d2 = min{d > 0: |κi − dκ∆,i| = b− d, i ∈ AC ∩ I}

Take step of size d: κ 7→ κ− dκ∆, µ 7→ µ− dµ∆, and b 7→ b− d.

(c) If d = d1, drop argmin(d1) from A, and if d = d2, then add argmin(d2) to A.

The solution path k(B) is then obtained as k(B) = T ′κ(bM).

E Additional asymptotic results

E.1 Construction of a submodel satisfying Assumption C.1

We give here a construction of a submodel satisfying Assumption C.1 under mild conditions

on the class P . The construction follows Example 25.16 (p. 364) of van der Vaart (1998).

Lemma E.1. Suppose that g(wi, θ) is continuously differentiable almost surely in a neigh-

borhood of θ∗ where EP0g(wi, θ
∗) = 0, and that, for some ε > 0,

EP0 sup
‖θ−θ∗‖≤ε

|g(wi, θ)g(wi, θ)
′| <∞ and EP0 sup

‖θ−θ∗‖≤ε

∥∥∥∥ d

dθ′
g(wi, θ)

∥∥∥∥ <∞.
Let

πt(wi) = C(t)h(t′g(wi, θ
∗)) where h(x) = 2 [1 + exp (−2x)]−1

with C(t)−1 = EP0h(t′g(wi, θ
∗)). This submodel satisfies Assumption C.1, and the bounds on

the moments in the above display hold with P0 replaced by Pt.

1If |A| = |I|, set d = M .
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Proof. Quadratic mean differentiability follows from Problem 12.6 in Lehmann and Romano

(2005), so we just need to show that (35) holds, and that the derivative is continuous in a

neighborhood of (t′, θ′)′ = (0′, θ∗′)′. For this, it suffices to show that each partial derivative

exists and is continuous as a function of (t′, θ′)′ in a neighborhood of (0′, θ∗′)′, and that the

Jacobian matrix of partial derivatives takes the form (35) at (t′, θ′)′ = (0′, θ∗′)′ (see Theorem

4.5.3 in Shurman, 2016).

To this end, we first show that C(t) is continuously differentiable, and derive its derivative

at 0. It can be checked that h(x) is continuously differentiable, with h(0) = h′(0) = 1, and

that h(x) and h′(x) are bounded. We have, for some constant K,∣∣∣∣ ddtj h(t′g(wi, θ
∗))

∣∣∣∣ = |h′(t′g(wi, θ
∗))gj(wi, θ

∗)| ≤ K|gj(wi, θ∗)|

so, since EP0|gj(wi, θ∗)| <∞, we have, by a corollary of the Dominated Convergence Theorem

(Corollary 5.9 in Bartle, 1966),

d

dtj
EP0h(t′g(wi, θ

∗)) = EP0

d

dtj
h(t′g(wi, θ

∗)) = EP0h
′(t′g(wi, θ

∗))gj(wi, θ
∗).

By boundedness of h′ and the Dominated Convergence Theorem, this is continuous in t.

Thus, C(t) is continuously differentiable in each argument, with

d

dtj
C(t) = − [EP0h(t′g(wi, θ

∗))]
−2
EP0h

′(t′g(wi, θ
∗))gj(wi, θ

∗)

which gives
[
d
dtj
C(t)

]
t=0

= EP0gj(wi, θ
∗) = 0.

Now consider the derivative of

EPtg(wi, θ) = EP0g(wi, θ)πt(wi) = C(t)EP0g(wi, θ)h(t′g(wi, θ
∗))

with respect to elements of θ and t. We have, for each j, k

d

dtj
gk(wi, θ)h(t′g(wi, θ

∗)) = gk(wi, θ)h
′(t′g(wi, θ

∗))gj(wi, θ
∗).

This is bounded by a constant times |gk(wi, θ)gj(wi, θ∗)| by boundedness of h′. Also,

d

dθj
gk(wi, θ)h(t′g(wi, θ

∗))

is bounded by a constant times d
dθj
gk(wi, θ) by boundedness of h. By the conditions of
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the lemma, the quantities in the above two displays are bounded uniformly over (t′, θ′)′ in a

neighborhood of (θ∗′, 0′)′ by a function with finite expectation under P0. It follows that we can

again apply Corollary 5.9 in Bartle (1966) to obtain the derivative of EP0g(wi, θ)h(t′g(wi, θ
∗))

with respect to each element of θ and t by differentiating under the expectation. Furthermore,

the bounds above and continuous differentiability of g(wi, θ) along with the Dominated

Convergence Theorem imply that the derivatives are continuous in (t′, θ′)′.

Thus, EPtg(wi, θ) is differentiable with respect to each argument of t and θ, with the

partial derivatives continuous with respect to (θ′, t′)′. It follows that (t′, θ′)′ 7→ EPtg(wi, θ) is

differentiable at t = 0, θ = θ∗. To calculate the Jacobian, note that

d

dt′
EPtg(wi, θ) = C(t)EP0g(wi, θ)g(wi, θ

∗)′h′(t′g(wi, θ
∗)) + EP0g(wi, θ)h(t′g(wi, θ

∗))
d

dt′
C(t).

Evaluating this at t = 0, θ = θ∗, the second term is equal to zero by calculations above, and

the first term is given by EP0g(wi, θ
∗)g(wi, θ

∗). For the derivative with respect to θ at θ = θ∗,

t = 0, this is equal to Γθ∗,P0 by definition. Thus, Assumption C.1 holds. Furthermore, the

bounds on the moments of g(wi, θ) hold with Pt replacing P0 by boundedness of πt(wi).

E.2 Example: misspecified linear IV

We verify our conditions in the misspecified linear IV model, defined by the equation

gP (θ) = EP (yi − x′iθ)zi = c/
√
n, c ∈ C

where C is a compact convex set, yi is a scalar valued random variable, xi is a Rdθ valued

random variable and zi is a Rdg valued random variable, with dg ≥ dθ. The derivative matrix

and variance matrix are

Γθ,P =
d

dθ′
gP (θ) = −EP zix′i, Σθ,P = varP ((yi − x′iθ)zi).

Let Θ ⊂ Rdθ be a compact set and let h : Θ→ R be continuously differentiable with nonzero

derivative at all θ ∈ Θ. Let ε be given and let P be a set of probability distributions P for

(x′i, z
′
i, yi)

′. We make the following assumptions on P .

Assumption E.1. For all P ∈ P, the following conditions hold.

1. For all j, EP |xi,j|4+ε < 1/ε, EP |zi,j|4+ε < 1/ε and EP |yi|4+ε < 1/ε.

2. The matrix EP zix
′
i is full rank and ‖EP zix′iu‖/‖u‖ > 1/ε for all u ∈ Rdg\{0} (i.e. the

singular values of EP zix
′
i are bounded away from zero).
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3. The matrix Σθ,P = varP ((yi − x′iθ)zi) satisfies u′Σθ,Pu/‖u‖2 > ε for all u ∈ Rdg\{0}
and all θ such that there exists c ∈ C and n ≥ 1 such that EP (yi − x′iθ)zi = c/

√
n.

Note that, applying Cauchy-Schwartz, the first condition implies EP |v1v2v3v4|1+ε/4 < 1/ε

for any v1, v2, v3, v4 where each vk is an element of xi, zi or yi. In particular, zi(yi− x′iθ) has

a bounded 2 + ε/2 moment uniformly over θ ∈ Θ and P ∈ P .

We first verify the conditions of Section C.5. To verify the conditions of Theorems C.5

and C.6 (which show that the plug-in optimal weights k̂ = k(δ, Ĥ, Γ̂, Σ̂) lead to CIs that

achieve or nearly achieve the efficiency bounds in Theorem C.1 and Theorem C.2), we must

verify Assumptions C.2, C.3, C.5 and C.6.

Let

θ̂initial =

(
n∑
i=1

zix
′
iWn

n∑
i=1

xiz
′
i

)−1 n∑
i=1

zix
′
iWn

n∑
i=1

ziyi

where Wn = WP + oP (1) uniformly over P ∈ P and WP is a positive definite matrix with

u′WPu/‖u‖2 bounded away from zero uniformly over P ∈ P . Let Ĥ = Hθ̂ where Hθ is the

derivative of h at θ. Let

Γ̂ = − 1

n

n∑
i=1

zix
′
i, Σ̂ =

1

n

n∑
i=1

ziz
′
i(yi − x′iθ̂initial)

2.

First, let us verify Assumption C.3. Indeed, it follows from a CLT for triangular arrays

(Lemma E.7 with vi = u′n [zi(yi − x′iθ)− Ezi(yi − x′iθ)] with un an arbitrary sequence with

‖un‖ = 1 all n) that

sup
u∈Rdg

sup
t∈R

sup
(θ′,c′)∈Θ×C

sup
P∈Pn(θ,c)

∣∣∣∣∣P
(√

nu′(ĝ(θ)− gP (θ))√
u′Σθ,Pu

≤ t

)
− Φ (t)

∣∣∣∣∣→ 0

(note that u can be taken to satisfy ‖u‖ = 1 without loss of generality, since the formula inside

of the probability statement is invariant to scaling). Note that this, along with compactness

of C, also implies that 1√
n

∑n
i=1 zi(yi − x′iθ) =

√
nĝ(θ) = OP (1) uniformly over θ and P with

P ∈ P(θ, c) for some c.

For Assumption C.2, we have

√
n
(
θ̂initial − θ

)
=

(
1

n

n∑
i=1

zix
′
iWn

1

n

n∑
i=1

xiz
′
i

)−1
1

n

n∑
i=1

zix
′
iWn

1√
n

n∑
i=1

zi(yi − x′iθ).

Since 1
n

∑n
i=1 zix

′
i converges in probability to −Γθ,P uniformly over P by Lemma E.8 and

1√
n

∑n
i=1 zi(yi−x′iθ) = OP (1) uniformly over P by the verification of Assumption C.3 above,
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it follows that this display is OP (1) uniformly over P and θ, as required. For the second part

of the assumption, we have

ĝ(θ̂initial)− g(θ) = − 1

n

n∑
i=1

zix
′
i(θ̂initial − θ) = Γθ,P (θ̂initial − θ) + (Γ̂− Γθ,P )(θ̂initial − θ).

The last term is uniformly oP (1/
√
n) as required since (θ̂initial − θ) = OP (1/

√
n) as shown

above and Γ̂−Γθ,P converges in probability to zero uniformly by a LLN for triangular arrays

(Lemma E.8). For the last part of the assumption, we have, by the mean value theorem,

h(θ̂initial)− h(θ) = Hθ∗(θ̂initial)
(θ̂initial − θ) = Hθ(θ̂initial − θ) +

(
Hθ∗(θ̂initial)

−Hθ

)
(θ̂initial − θ)

where θ∗(θ̂initial) − θ converges uniformly in probability to zero. Since θ 7→ Hθ is uniformly

continuous on θ (since it is continuous by assumption and Θ is compact), it follows that

Hθ∗(θ̂initial)
−Hθ converges uniformly in probability to zero, which, along with the verification

of the first part of the assumption above, gives the required result.

For Assumption C.5, the first two parts of the assumption (concerning uniform consis-

tency of Γ̂ and Ĥ) follow from arguments above. For the last part (uniform consistency of

Σ̂), note that

Σ̂ =
1

n

n∑
i=1

ziz
′
i(yi−x′iθ̂initial)

2 =
1

n

n∑
i=1

ziz
′
i(yi−x′iθ)2 +

1

n

n∑
i=1

ziz
′
i

[
(yi−x′iθ̂initial)

2−(yi−x′iθ)2
]
.

The first term converges uniformly in probability to Σθ,P by a LLN for triangular arrays

(Lemma E.8). The last term is equal to

1

n

n∑
i=1

ziz
′
i(x
′
iθ̂initial + x′iθ − 2yi)x

′
i(θ̂initial − θ).

This converges in probability to zero by a LLN for triangular arrays (Lemma E.8) and the

moment bound in Assumption E.1(1)

Finally, Assumption C.6 follows by Assumption E.1(2), and the condition that the deriva-

tive is nonzero for all θ.

We now verify the conditions of the lower bounds, Theorems C.1 and C.2. Given P0 ∈ P
with EP0g(wi, θ

∗) = 0, we need to show that a submodel Pt satisfying Assumption C.1 exists

with Pt ∈ P for ‖t‖ small enough. To verify this condition, we take P to be the set of all

distributions satisfying Assumption E.1, and we assume that θ∗ is in the interior of Θ.

Let Pt be the subfamily given in Lemma E.1. This satisfies Assumption C.1 by Lemma E.1
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(the moment conditions needed for this lemma hold by Assumption E.1(1)), so we just need

to check that Pt ∈ P for t small enough. For this, it suffices to show that EPt |xi,j|4+ε,

EPt |zi,j|4+ε, EPt |yi|4+ε, EPtzix
′
i and varPt(zi(yi − x′iθ)) are continuous in t at t = 0, which

holds by the Dominated Convergence Theorem since the likelihood ratio πt(wi) for this family

is bounded and continuous with respect to t.

E.3 Auxiliary results

This section contains auxiliary results used in Appendix C. Section E.3.1 shows that opti-

mizing length over a set of the form G = Rdθ × D is without loss of generality, as claimed

in Section C.5. Section E.3.2 contains a result on the continuity of the optimal weights with

respect to δ, Γ, Σ and H. Section E.3.3 states a law of large numbers and central limit

theorem for triangular arrays.

It will be convenient to state some of these results in the general setup of Donoho (1994),

Low (1995), and Armstrong and Kolesár (2018). Using the notation in Armstrong and

Kolesár (2018), the between class modulus problem is given by

ω(δ) = ω(δ;F ,G, L,K) = supL(g − f) s.t. ‖K(g − f)‖ ≤ δ, f ∈ F , g ∈ G, (S2)

where F and G are convex sets with G ⊆ F , L is a linear functional and K is a linear operator

from F to a Hilbert space with norm ‖ · ‖. In our case, this is given by (31) in the main

text, which fits into this setting with (θ′, c′)′ playing the role of f , Rdθ × C playing the role

of F , K given by the transformation (θ′, c′)′ 7→ −Γθ + c, and with the norm defined using

the inner product 〈x, y〉 = x′Σ−1y. The linear functional L is given by (θ′, c′)′ 7→ Hθ.

E.3.1 Replacing Rdθ ×D with a general set G

In Section C.5, we mentioned that directing power at sets that do not restrict θ is without

loss of generality when we require coverage over a set that does not make local restrictions

on θ. This holds by the following lemma (applied with U = Rdθ × {0}dg).

Lemma E.2. Let U be a set with 0 ∈ U such that F = F −U (i.e. F is invariant to adding

elements in U). Then, for any solution f̃ ∗, g̃∗ to the modulus problem

supL(g − f) s.t. ‖K(g − f)‖ ≤ δ, f ∈ F , g ∈ G + U ,

where K is a linear operator, there is a solution f ∗, g∗ to the modulus problem (S2) for F
and G with g∗− f ∗ = g̃∗− f̃ ∗. Furthermore, any solution to the modulus problem (S2) for F
and G is also a solution to the modulus problem for F and G + U .
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Proof. Let f̃ , g̃ + ũ be a solution to the modulus problem for F and G + U with g̃ ∈ G and

ũ ∈ U . Then f = f̃ − ũ, and g = g̃ is feasible for F and G and achieves the same value of the

objective function. Since it achieves the maximum for the objective function over the larger

set F × (G +U) and is in F ×G, it must maximize the objective function over F ×G. Thus,

f, g achieves the modulus for F and G and also for F and G + U . Since the modulus for F
and G is the same as the modulus over F and the larger set G + U , it also follows that any

solution to the former modulus problem is a solution to the latter modulus problem.

E.3.2 Continuity of optimal weights

We first give some lemmas under the general setup (S2).

Lemma E.3. For each δ, let (f ∗δ , g
∗
δ ) be a solution to the modulus problem (S2), and let

h∗δ = g∗δ − f ∗δ . Let δ0, δ1 be given, and suppose that ω is strictly increasing on an open

interval containing δ0 and δ1, and that a solution to the modulus problem exists for δ0 and δ1.

Then Kh∗δ0 and Kh∗δ1 are defined uniquely (i.e. they do not depend on the particular solution

(f ∗δ , g
∗
δ )) and

‖Kh∗δ0 −Kh
∗
δ1
‖2 ≤ 2|δ2

1 − δ2
0|

Proof. Let f0 = f ∗δ0 , f1 = f ∗δ1 and similarly for g0, g1, h0 and h1. Let h̃ = (h0 + h1)/2.

Note that h̃ = g̃ − f̃ where g̃ = (g0 + g1)/2 ∈ G and f̃ = (f0 + f1)/2 ∈ F by convexity.

Thus, ω(‖Kh̃‖) ≥ Lh̃ = [ω(δ0) + ω(δ1)]/2 ≥ min{ω(δ0), ω(δ1)}. From this and the fact that

ω is strictly increasing on an open interval containing δ0 and δ1, it follows that ‖Kh̃‖ ≥
min{δ0, δ1}.

Note that h1 = h̃ + (h1 − h0)/2 and 〈Kh̃,K(h1 − h0)/2〉 = ‖Kh1‖2/4 − ‖Kh0‖2/4 =

(δ2
1 − δ2

0)/4 (the last equality uses the fact that the constraint on ‖K(f − g)‖ binds at any δ

at which the modulus is strictly increasing). Thus,

δ2
1 = ‖Kh1‖2 = ‖Kh̃‖2 + ‖K(h1 − h0)/2‖2 + (δ2

1 − δ2
0)/2

≥ min{δ2
0, δ

2
1}+ ‖K(h1 − h0)/2‖2 + (δ2

1 − δ2
0)/2.

Thus, ‖K(h1 − h0)‖2/4 ≤ δ2
1 −min{δ2

0, δ
2
1} − (δ2

1 − δ2
0)/2 = |δ2

1 − δ2
0|/2 as claimed. The fact

that Kh∗δ0 is defined uniquely follows from applying the result with δ1 and δ0 both given by

δ0.

Lemma E.4. For each δ, let (f ∗δ , g
∗
δ ) be a solution to the modulus problem (S2), and let

h∗δ = g∗δ − f ∗δ . Let δ0 and ε > 0 be given, and suppose that ω is strictly increasing in a

neighborhood of δ0, and that the modulus is achieved at δ0. Let g ∈ G and f ∈ F satisfy
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L(g − f) > ω(δ0)− ε with ‖K(g − f)‖ ≤ δ0, and let h = g − f . Then

‖K(h− h∗δ0)‖
2 < 4[δ2

0 − ω−1(ω(δ0)− ε)2].

Proof. Let h∗ = h∗δ0 , g
∗ = g∗δ0 and f ∗ = f ∗δ0 . Using the fact that 〈K(h+h∗)/2, K(h−h∗)/2〉 =

‖Kh‖2/4− ‖Kh∗‖2/4, we have

‖Kh‖2 = ‖K(h+ h∗)/2‖2 + ‖K(h− h∗)/2‖2 + ‖Kh‖2/2− ‖Kh∗‖2/2.

Rearranging this gives

‖K(h− h∗)/2‖2 = [‖Kh‖2 + ‖Kh∗‖2]/2− ‖K(h+ h∗)/2‖2. (S3)

Let δ′ = ω−1(ω(δ0) − ε). Since Lh > ω(δ′) and Lh∗ = ω(δ0), it follows that L(h + h∗)/2 >

[ω(δ′) + ω(δ)]/2 ≥ ω(δ′). Since (h + h∗)/2 = (g + g∗)/2 − (f + f ∗)/2 with (g + g∗)/2 ∈ G
and (f + f ∗)/2 ∈ F , this means that ‖K(h + h∗)/2‖ > δ′. Using this and the fact that

[‖Kh‖2 + ‖Kh∗‖2]/2 ≤ δ2
0, it follows that ‖K(h− h∗)/2‖2 ≤ δ2

0 − δ′
2 as claimed.

Lemma E.5. Let h∗δ,F ,G,L,K = g∗δ,F ,G,L,K − f ∗δ,F ,G,L,K where g∗δ,F ,G,L,K, f ∗δ,F ,G,L,K is a solution

to the modulus problem (S2). Let δ0, L0, K0,F0,G0 and {δn, Ln, Kn,Fn,Gn}∞n=1 be given.

Let H(δ,K,F ,G) = {g − f : f ∈ F , g ∈ G, ‖K(g − f)‖ ≤ δ} denote the feasible set of

values of g− f for the modulus problem for δ,K,F ,G. Suppose that, for any ε > 0, we have,

for large enough n, H(δ0−ε,K0,F0,G0) ⊆ H(δn, Kn,Fn,Gn) ⊆ H(δ0+ε,K0,F0,G0). Suppose

also that Lnh − L0h → 0 and ‖(Kn −K0)h‖ → 0 uniformly over h in H(δ0 + ε,K0,F0,G0)

for ε small enough. Suppose also that ω(δ;F0,G0, L0, K0) is strictly increasing for δ in a

neighborhood of δ0. Then ‖Knh
∗
δn,Fn,Gn,Ln,Kn −K0h

∗
δ0,F0,G0,L0,K0

‖ → 0 and Lnh
∗
δn,Fn,Gn,Ln,Kn −

L0h
∗
δ0,F0,G0,L0,K0

→ 0.

Proof. For any ε > 0, g∗δ0−ε,F0,G0,L0,K0
, f ∗δ0−ε,F0,G0,L0,K0

is feasible for the modulus problem

under δn,Fn,Gn, Ln, Kn for large enough n. Thus, for large enough n,

ω(δ0 − ε,F0,G0, L0, K0) = Lh∗δ0−ε,F0,G0,L0,K0
≤ Lnh

∗
δn,Fn,Gn,Ln,Kn .

Taking limits and using the fact that (Ln − L)h∗δn,Fn,Gn,Ln,Kn → 0, it follows that,

ω(δ0 − ε;F0,G0, L0, K0)− ε ≤ Lh∗δn,Fn,Gn,Ln,Kn

for large enough n. By continuity of the modulus in δ, for any η > 0 the left-hand side is

strictly greater than ω(δ0 + ε;F0,G0, L0, K0) − η for ε small enough. Since g∗δn,Fn,Gn,Ln,Kn ,
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f ∗δn,Fn,Gn,Ln,Kn is feasible for δ0 + ε,F0,G0, L0, K0 for n large enough, it follows from Lemma

E.4 that

‖K0(h∗δn,Fn,Gn,Ln,Kn − h
∗
δ0+ε,F0,G0,L0,K0

)‖

< 4[(δ0 + ε)2 − ω−1(ω(δ0 + ε;F0,G0, L0, K0)− η;F0,G0, L0, K0)2].

By continuity of the modulus and inverse modulus, the right-hand side can be made arbi-

trarily close to zero by taking ε and η small. Thus,

lim
ε↓0

lim sup
n
‖K0(h∗δn,Fn,Gn,Ln,Kn − h

∗
δ0+ε,F0,G0,L0,K0

)‖ = 0.

It then follows from Lemma E.3 that limn→∞ ‖K0(h∗δn,Fn,Gn,Ln,Kn − h
∗
δ0,F0,G0,L0,K0

)‖ = 0. The

result then follows from the assumption that ‖(K0 − Kn)h‖ → 0 uniformly over H(δ0 +

ε,K0,F0,G0).

We now specialize to our setting. Let f ∗δ,H,Γ,Σ = (s∗0
′, c∗0

′) and g∗δ,H,Γ,Σ = (s∗1
′, c∗1

′) denote

solutions to the modulus problem (31) with F = Rdθ×C and G = Rdθ×D. Let ω(δ;H,Γ,Σ) =

ω(δ;Rdθ × C,Rdθ ×D, H,Γ,Σ) denote the modulus. Let h∗δ,H,Γ,Σ = f ∗δ,H,Γ,Σ − g∗δ,H,Γ,Σ and let

KΓ,Σ = Σ−1/2(−Γ, Idg×dg). Note that h∗δ,H,Γ,Σ,C = (s∗′, c∗′)′ where (s∗′, c∗′)′ solves

supHs s.t. (c− Γs)′Σ−1(c− Γs) ≤ δ2, c ∈ D − C, s ∈ Rdθ . (S4)

Furthermore, a solution does indeed exist so long as C and D are compact and Γ and Σ are

full rank, since this implies that the constraint set is compact.

Let δ0, H0, Γ0 and Σ0 be such that δ0 > 0, H0 6= 0 and such that Γ0 and Σ0 are full

rank. We wish to show that KΓ,Σh
∗
δ,H,Γ,Σ is continuous as a function of δ, H, Γ and Σ at

(δ0, H0,Γ0,Σ0). To this end, let δn, Hn, Γn and Σn be arbitrary sequences converging to δ0,

H0, Γ0 and Σ0 (with Σn symmetric and positive semi-definite for each n). We will apply

Lemma E.5. To verify the conditions of this lemma, first note that the modulus is strictly

increasing by translation invariance (see Section C.2 in Armstrong and Kolesár, 2018). The

conditions on uniform convergence of (Ln−L)h and (Kn−K)h follow since the constraint set

for h = g−f is compact. The condition on H(δ,K,F ,G) follows because (c−Γs)′Σ−1(c−Γs)

is continuous in Σ−1 and Γ uniformly over c and s in any compact set, and there exists a

compact set that contains the constraint set for all n large enough. We record these results

and some of their implications in a lemma.

Lemma E.6. Let C and D be compact and let c∗δ,H,Γ,Σ, s∗δ,H,Γ,Σ denote a solution to (S4).

Let A denote the set of (δ,H,Γ,Σ) such that δ > 0, H ∈ Rdθ\{0}, Γ is a full rank dg × dθ

S11



matrix and Σ is a (strictly) positive definite dg × dg matrix. Then Σ−1/2(s∗δ,H,Γ,Σ − Γc∗δ,H,Γ,Σ)

is defined uniquely for any (δ,H,Γ,Σ) ∈ A. Furthermore, the mappings (δ,H,Γ,Σ) 7→
Σ−1/2(s∗δ,H,Γ,Σ − Γc∗δ,H,Γ,Σ),

k(δ,H,Γ,Σ)′ =
(s∗δ,H,Γ,Σ − Γc∗δ,H,Γ,Σ)Σ−1

(s∗δ,H,Γ,Σ − Γc∗δ,H,Γ,Σ)Σ−1ΓH/H ′H
and ω(δ;H,Γ,Σ) = Hs∗δ,H,Γ,Σ

are continuous functions on A.

E.3.3 CLT and LLN for triangular arrays

To verify the conditions of Section C.5, a CLT and LLN for triangular arrays (applied to

the triangular arrays that arise from arbitrary sequences Pn ∈ P) are useful. We state them

here for convenience.

Lemma E.7. Let ε > 0 be given. Let {vi}ni=1 be an iid sequence of scalar valued random

variables and let P be a set of probability distributions with EPv
2+ε
i ≤ 1/ε, 1/ε ≤ EPv

2
i and

EPvi = 0 for all P ∈ P. Then

sup
P∈P

sup
t∈R

∣∣∣∣∣P
(

1√
n

n∑
i=1

vi/
√

varP (vi) ≤ t

)
− Φ(t)

∣∣∣∣∣→ 0.

Proof. The result is immediate from Lemma 11.4.1 in Lehmann and Romano (2005) applied

to arbitrary sequences P ∈ P and the fact that convergence to a continuous cdf is always

uniform over the point at which the cdf is evaluated (Lemma 2.11 in van der Vaart, 1998).

Lemma E.8. Let ε > 0 be given. Let {vi}ni=1 be an iid sequence of scalar valued random

variables and let P be a set of probability distributions with EP |vi|1+ε ≤ 1/ε for all P ∈ P.

Then 1
n

∑n
i=1 vi − EPvi = oP (1) uniformly over P ∈ P.

Proof. The stronger result supP∈P EP
∣∣ 1
n

∑n
i=1 vi − EPvi

∣∣1+min{ε,2} → 0 follows from Theorem

3 in von Bahr and Esseen (1965).
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