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Appendix D gives the construction of the optimal sensitivity path under ¢, bounds.
Appendix E gives a construction of a submodel satisfying Appendix C.1, verifies the con-
ditions in Appendix C in the misspecified IV model, and collects auxiliary results used in

Appendix C.

D Optimal sensitivity under /., bounds

In this case, Equation (22) can be written as
min EYk/2 st |Bk|lee <B/M  and H = —kT. (S1)

Using the linear transformation 7" defined in Equation (24), the Lagrangian for this problem

can be written as
min #'Sk/2 + D " (Apili: — b) — A_ (ki + b)) + 4/ (H' + G'k).
icl

where kK =T" 'k, S=TXT", b=B/M, G =TI, and I = {dy —d,,...,d,} indexes the last
d elements of k.

The first-order conditions are given by

ieI°: e;Sk+ e;Gu =0
iel: eSk+eGu+Ay;— A ;=0
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The complementary slackness conditions are Ay ;(k; —b) > 0 and A_;(k; +b) <0 for i € I,
and the feasibility constraints are Ay ;, A_; > 0 for i € I, and H' = —G'k.

Let A denote the subset of I for which |r;| = b, and let A = {1,...,d,} \ A. If i € A,
then either x; = b, so that A\_; = 0, and hence €;Sk + ;G = —A;; <0, or else k; = —b, so
that A ; = 0, and hence €Sk + e;Gp = A_; > 0, so that

sign(r;)(e;Sk + e;Gu) <0, i€ A.
If i € A, whether i € I, we have
Sk +eGu=0 ic A%

Combining this with the feasibility constraint, we can write the conditions compactly as
0 e AN —H' — Gk
GAC SACAC K pC —SACA/'Q_A

= (GheS 36 ,Gac) H(H + (G — Gy Sye qeSaca)kia),

—1 -1
/{:AC - _SACACGACl’[’_ SACACSACAHA

This implies

Consequently, if we're in a region in where the solution path is differentiable with respect to

b, we have

KA = sign(k.a)

b
a ! - — / ! — .
%,U = (G_AC SAéAGAC> l(GA - GAC SAéACSACA) Slgn(’%A)
0 _ 0 _ .
o540 = —SAéACGAc%,u — SA};ACSACA sign(k ).

The differentiability of path is violated if either (a) the constraint |k;| < b is violated for
some i € AY NI if k(b) keeps moving in the same direction, and we add i to A at a point
at which this constraint holds with equality; or else (b) the derivative e;(Sk 4+ Gu) for some
1 € A reaches zero. In this case, drop i from A. In either case, we need to re-calculate the
directions in the preceding display using the new definition of A.

Based on the above arguments, and the fact that for b large enough, the optimal sensitivity
is Kk = —STIG(G'S7'G)"'H', we can derive the following algorithm, similar to the LAR-
LASSO algorithm, to generate the path of optimal sensitivities x(b):
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1. Initialize p = (G'S™'G)'H', k = =S7'Gu, b = ||k1]|o, and A = argmax;;|r;|.
2. While (JA| < d, —dy + 1):
(a) Calculate directions:
(Ka)a = sign(k.a)

pin = (G4 S50 4G ac) Gy = G o Sye 4o Sac ) sign(ria)

(Ka)ac = —S;\éACGAcuA — S;\éACSACA sign(k4).
(b) Set step size to d = min{d;, ds}, where'

dy = min{d > 0: €;(Sk + Gu) — de;(Ska + Gua) =0,i € A}
do = min{d > 0: |k; —dka;|=b—d,i € Ac NT}

Take step of size d: kK — kK — dka, = p— dua, and b+— b —d.
(c) If d = dy, drop argmin(d,) from A, and if d = dy, then add argmin(ds) to A.

The solution path k(B) is then obtained as k(B) = T'x(bM).

E Additional asymptotic results

E.1 Construction of a submodel satisfying Assumption C.1

We give here a construction of a submodel satisfying Assumption C.1 under mild conditions
on the class P. The construction follows Example 25.16 (p. 364) of van der Vaart (1998).

Lemma E.1. Suppose that g(w;,0) is continuously differentiable almost surely in a neigh-
borhood of 6* where Ep,g(w;, 6*) =0, and that, for some & > 0,

d
En, sup |g(w;,0)g(wi,6)| <00 and Ep, sup ||l

[6—0%||<e 16—6~||<e

wi,G)H < 00.

Let
m(w;) = C(t)h(t'g(w;,0)) where h(x) = 2[1 +exp (—2x)]""

with C(t)~' = Ep,h(t'g(w;, 0%)). This submodel satisfies Assumption C.1, and the bounds on
the moments in the above display hold with Py replaced by P;.
f |A| = 1|, set d = M.
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Proof. Quadratic mean differentiability follows from Problem 12.6 in Lehmann and Romano
(2005), so we just need to show that (35) holds, and that the derivative is continuous in a
neighborhood of (¢,6") = (0/,6*'). For this, it suffices to show that each partial derivative
exists and is continuous as a function of (#,6')" in a neighborhood of (0/,#*')’, and that the
Jacobian matrix of partial derivatives takes the form (35) at (¢',60")" = (0/,0*')" (see Theorem
4.5.3 in Shurman, 2016).

To this end, we first show that C(t) is continuously differentiable, and derive its derivative
at 0. It can be checked that h(z) is continuously differentiable, with h(0) = A/(0) = 1, and
that h(z) and h'(z) are bounded. We have, for some constant K,

\—h Yo wz,em' W (g (wi,6%)) g5 i, 0%)] < Ky (s, 6]

so, since Ep,|g;(w;, 0%)| < oo, we have, by a corollary of the Dominated Convergence Theorem
(Corollary 5.9 in Bartle, 1966),

d / * d / / * *
EEpOh(tg(wi,e ) = EPod—h(t g(w;, 0%)) = Ep,h' (' g(w;, 0%)) g, (w;, 0%).
J

By boundedness of A’ and the Dominated Convergence Theorem, this is continuous in ¢.

Thus, C(t) is continuously differentiable in each argument, with

d

G OO =~ B (g, 0] B (1g(0,,6%)g, (w07

which gives [%C(t)}t_o = Ep,g;(w;, 0) = 0.

Now consider the derivative of
EPtg(wiJ 9) = EPog<wi7 H)Wt(wi) = C(t)EPog<wia G)h(t’g(wi, 9*))

with respect to elements of § and t. We have, for each j, k

%gk(wzﬁ)h(t’g(wu@*)) = gi(wi, )N (t'g(wi, 7)) g; (wi, 7).

This is bounded by a constant times |gx(w;, 0)g;(w;, 0*)| by boundedness of 1'. Also,

a -
;K O (g0, 07)

is bounded by a constant times %gk(wi,ﬁ) by boundedness of h. By the conditions of
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the lemma, the quantities in the above two displays are bounded uniformly over (¢',6')" in a
neighborhood of (6*',0')’ by a function with finite expectation under Py. It follows that we can
again apply Corollary 5.9 in Bartle (1966) to obtain the derivative of Ep,g(w;, 0)h(t'g(w;, 6%))
with respect to each element of 6 and t by differentiating under the expectation. Furthermore,
the bounds above and continuous differentiability of g(w;,8) along with the Dominated
Convergence Theorem imply that the derivatives are continuous in (t',6’)".

Thus, Ep,g(w;,0) is differentiable with respect to each argument of ¢ and 6, with the
partial derivatives continuous with respect to (6',¢"). Tt follows that (¢, 6") — Ep,g(w;, ) is
differentiable at ¢ = 0,60 = 6*. To calculate the Jacobian, note that

d AN * / * d
Sy Zrg(wi, 0) = C(O)Epyg(wi, 0)g(wi, 07)' 1 (¢ g(w;, 07)) + Ep,g(wi, O)h(t'g(wi, 07)) =7 C(2).

Evaluating this at t = 0, § = 6*, the second term is equal to zero by calculations above, and
the first term is given by Ep g(w;, 6*)g(w;, 0*). For the derivative with respect to 6 at 6 = 0",
t = 0, this is equal to 'y~ p, by definition. Thus, Assumption C.1 holds. Furthermore, the
bounds on the moments of g(w;, §) hold with P, replacing Py by boundedness of m(w;). [

E.2 Example: misspecified linear IV

We verify our conditions in the misspecified linear IV model, defined by the equation

gp(0) = Ep(y; — x0)z = ¢/V/n, c€C

where C is a compact convex set, y; is a scalar valued random variable, z; is a R% valued
random variable and z; is a R% valued random variable, with dy > dy. The derivative matrix

and variance matrix are

d
Lop= @gp(é) = —FEpz., Yo.p = varp((y; — 230)2).

Let © C R% be a compact set and let h : © — R be continuously differentiable with nonzero
derivative at all 8 € ©. Let € be given and let P be a set of probability distributions P for
(x%, 25, y;)'. We make the following assumptions on P.
Assumption E.1. For all P € P, the following conditions hold.

1. For all j, Eplz;;|**¢ < 1/e, Ep|zi;|**e < 1/e and Eply;|*T* < 1/e.

2. The matriz Epzx} is full rank and |Epziziul|/||ul] > 1/e for all u € R%\{0} (i.e. the

singular values of Epz;x} are bounded away from zero).
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3. The matriz Yo p = varp((y; — .0)z;) satisfies u'Sq pu/||ul|®> > € for all u € R%\{0}
and all 0 such that there exists ¢ € C and n > 1 such that Ep(y; — x}0)z; = ¢/\/n.

Note that, applying Cauchy-Schwartz, the first condition implies Ep|vivovgvs|'5/4 < 1/¢
for any vy, vy, v3, v4 where each vy is an element of z;, z; or y;. In particular, z;(y; — x}6) has
a bounded 2 + £/2 moment uniformly over § € © and P € P.

We first verify the conditions of Section C.5. To verify the conditions of Theorems C.5
and C.6 (which show that the plug-in optimal weights k= k(0, HT, i)) lead to Cls that
achieve or nearly achieve the efficiency bounds in Theorem C.1 and Theorem C.2), we must
verify Assumptions C.2, C.3, C.5 and C.6.

Let

n n -1 n n
N / / /
Oinitial = 5 ZixiWnE T2 E zixiWnE 2iYi

where W,, = Wp + op(1) uniformly over P € P and Wp is a positive definite matrix with
w'Wpu/||ul|> bounded away from zero uniformly over P € P. Let H = Hj, where Hy is the
derivative of h at 6. Let

(yi — x;éinitial)Q-
First, let us verify Assumption C.3. Indeed, it follows from a CLT for triangular arrays

(Lemma E.7 with v; = ], [z (y; — x}0) — Ez;(y; — x}0)] with w,, an arbitrary sequence with
|un|| = 1 all n) that

"(9(0) — gp(6
sup sup  sup sup [P Vn'(9(0) — gr(9)) <t]—-®()]—0
ueRdg tER (0/,¢)EOXC PEP,(6,c) \VU'g pu
(note that u can be taken to satisfy ||u|| = 1 without loss of generality, since the formula inside

of the probability statement is invariant to scaling). Note that this, along with compactness
of C, also implies that \/Lﬁ Yoy zi(ys — x40) = \/ng(0) = Op(1) uniformly over # and P with
P e P(0,c) for some c.

For Assumption C.2, we have

1
. 1 & 1 & 1 & 1 &
N Ginitia —9) = | = 20 W — Tz - 2 W, — zi(y; — 20).

Since £ 37" | 2@, converges in probability to —I'g p uniformly over P by Lemma E.8 and

\/iﬁ Yoiy zi(ys — 2i0) = Op(1) uniformly over P by the verification of Assumption C.3 above,
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it follows that this display is Op(1) uniformly over P and 6, as required. For the second part

of the assumption, we have

n

A 1 ~ - A ~
G(Oinitia) — g(0) = - Z 2%y (Oinitial — 0) = Lo p(Oinitiar — 0) + (' — Lo p) (Ginitiar — 0).

=1

A~

The last term is uniformly op(1/4/n) as required since (Giniiar — 0) = Op(1/4/n) as shown
above and I’ — I'y p converges in probability to zero uniformly by a LLN for triangular arrays

(Lemma E.8). For the last part of the assumption, we have, by the mean value theorem,

A ~ A

POsiier) = (0) = Hye(s,,y Ornves = 0) = Ho(isiar = 0) + (o 3,y = Ho ) Grnied = 0)

(einitial ainitial)

A~

where 0% (Oinitia1) — 0 converges uniformly in probability to zero. Since § — Hy is uniformly
continuous on 6 (since it is continuous by assumption and © is compact), it follows that
H, Brasein) Hy converges uniformly in probability to zero, which, along with the verification
of the first part of the assumption above, gives the required result.

For Assumption C.5, the first two parts of the assumption (concerning uniform consis-
tency of I and H ) follow from arguments above. For the last part (uniform consistency of

A

¥)), note that

~ 1 " R 1 n 1 n R
Y=Y ziz(yi—2ilniwa)’ = = Y 2z (i — 202+ — Y 2z [ (Y — @0mieia)” — (v — 270)?].

; z(y i t 1) n; z(y i ) n; z[(y i t l) (y i ) ]
The first term converges uniformly in probability to ¥y p by a LLN for triangular arrays

(Lemma E.8). The last term is equal to

% Z Zizz{(x;éinitial + 230 — 2yi)$;(éinitial —0).
i=1
This converges in probability to zero by a LLN for triangular arrays (Lemma E.8) and the
moment bound in Assumption E.1(1)

Finally, Assumption C.6 follows by Assumption E.1(2), and the condition that the deriva-
tive is nonzero for all 6.

We now verify the conditions of the lower bounds, Theorems C.1 and C.2. Given Fy € P
with Ep,g(w;, 0*) = 0, we need to show that a submodel P, satisfying Assumption C.1 exists
with P, € P for ||t|| small enough. To verify this condition, we take P to be the set of all
distributions satisfying Assumption E.1, and we assume that 6* is in the interior of ©.

Let P, be the subfamily given in Lemma E.1. This satisfies Assumption C.1 by Lemma E.1
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(the moment conditions needed for this lemma hold by Assumption E.1(1)), so we just need
to check that P, € P for ¢ small enough. For this, it suffices to show that Ep|z;;|*"*,
Ep,|zi|*¢, Ep|yi|*™, Epzix; and varp,(2;(y; — xi0)) are continuous in ¢ at ¢ = 0, which
holds by the Dominated Convergence Theorem since the likelihood ratio 7 (w;) for this family

is bounded and continuous with respect to t.

E.3 Auxiliary results

This section contains auxiliary results used in Appendix C. Section E.3.1 shows that opti-
mizing length over a set of the form G = R% x D is without loss of generality, as claimed
in Section C.5. Section E.3.2 contains a result on the continuity of the optimal weights with
respect to 0, I', ¥ and H. Section E.3.3 states a law of large numbers and central limit
theorem for triangular arrays.

It will be convenient to state some of these results in the general setup of Donoho (1994),
Low (1995), and Armstrong and Kolesdr (2018). Using the notation in Armstrong and

Kolesar (2018), the between class modulus problem is given by
w(0) =w(;F,G, L, K) =sup L(g — f) st. |[K(g = fll <6, feF.ged,  (52)

where F and G are convex sets with G C F, L is a linear functional and K is a linear operator
from F to a Hilbert space with norm || - ||. In our case, this is given by (31) in the main
text, which fits into this setting with (¢’,¢')’ playing the role of f, R% x C playing the role
of F, K given by the transformation (¢',¢") +— —I'0 + ¢, and with the norm defined using
the inner product (z,y) = '~ ~'y. The linear functional L is given by (¢, ') + H0.

E.3.1 Replacing R% x D with a general set G

In Section C.5, we mentioned that directing power at sets that do not restrict 6 is without

loss of generality when we require coverage over a set that does not make local restrictions
on 6. This holds by the following lemma (applied with & = R% x {0}47).

Lemma E.2. Let U be a set with 0 € U such that F = F —U (i.e. F is invariant to adding

elements in U ). Then, for any solution f*,g* to the modulus problem
sup L(g — f) s.t. |[K(g—fll <6, f€F.geg+U,

where K is a linear operator, there is a solution f*,g* to the modulus problem (S2) for F
and G with g* — f* = g* — f*. Furthermore, any solution to the modulus problem (S2) for F
and G is also a solution to the modulus problem for F and G+ U.
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Proof. Let f, §+ @ be a solution to the modulus problem for F and G 4+ U with § € G and
@eU. Then f = f—a, and g = § is feasible for F and G and achieves the same value of the
objective function. Since it achieves the maximum for the objective function over the larger
set F X (G+U) and is in F x G, it must maximize the objective function over F x G. Thus,
f, g achieves the modulus for F and G and also for F and G + U. Since the modulus for F
and G is the same as the modulus over F and the larger set G + U, it also follows that any

solution to the former modulus problem is a solution to the latter modulus problem. O

E.3.2 Continuity of optimal weights

We first give some lemmas under the general setup (S2).

Lemma E.3. For each 0, let (ff,gs) be a solution to the modulus problem (S2), and let
hy = g5 — f5. Let 69,01 be given, and suppose that w is strictly increasing on an open
interval containing g and 61, and that a solution to the modulus problem exists for dy and d;.
Then Khy, and Khy are defined uniquely (i.e. they do not depend on the particular solution

(f3,95)) and
| Kby, — Khy ||? < 2|67 — 6]

Proof. Let fo = f5, fi = f5 and similarly for go, g1, ho and h;. Let h = (ho + h1)/2.
Note that i = § — f where § = (go + ¢1)/2 € G and f = (fo + f1)/2 € F by convexity.
Thus, w(||Kh|) > Lh = [w(d) + w(01)]/2 > min{w(dy),w(d;)}. From this and the fact that
w is strictly increasing on an open interval containing &, and &, it follows that ||Kh| >
min{do, 41 }.

Note that hy = h + (hy — ho)/2 and (Kh, K(hy — ho)/2) = |[Khi||?/4 — | Kho||?/4 =
(62 — 52)/4 (the last equality uses the fact that the constraint on ||K(f — g)|| binds at any &

at which the modulus is strictly increasing). Thus,

0f = | K |* = | KR|* + | K (hn — ho)/2|* + (67 — 67)/2
> min{dg, 07} + | K (h1 — ho)/2||* + (67 — 65) /2.

Thus, ||K(hy — ho)|?/4 < 62 — min{d6Z, 07} — (62 — 62)/2 = |67 — 62|/2 as claimed. The fact

that Khj, is defined uniquely follows from applying the result with ¢, and dy both given by
o- O

Lemma E.4. For each 9, let (f5,g5) be a solution to the modulus problem (S2), and let
hy = g5 — fi. Let dp and ¢ > 0 be given, and suppose that w 1is strictly increasing in a
neighborhood of o9, and that the modulus is achieved at 9. Let g € G and f € F satisfy
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L(g— f) > w(do) —e with | K(g — f)|| < do, and let h =g — f. Then
(R = B, )P < 4[5 — ™" (w(do) — &)7].

Proof. Let h* = hj , g* = g3, and f* = f . Using the fact that (K(h+h*)/2, K(h—h*)/2) =
| Kh||?/4 — || Kh*||?/4, we have

IERIP = (| K (h+ 1) /2| + [ K (h = 1) /2|7 + | KR|*/2 = [ Kh*1? /2.
Rearranging this gives
1K (h = %) /201 = (| KR + [ KRT|2]/2 = | K (h+ 1) /2. (S3)

Let 0/ = w ! (w(dy) — €). Since Lh > w(d’') and Lh* = w(dy), it follows that L(h + h*)/2 >
[w(d') + w(9)]/2 > w(d’). Since (h+ h*)/2 = (g+ g*)/2 — (f + f*)/2 with (¢ +¢*)/2 € G
and (f 4+ f*)/2 € F, this means that |K(h + h*)/2|| > ¢’. Using this and the fact that
[IKR|? + || Kh*|]?]/2 < 62, it follows that ||K (h — h*)/2||? < 63 — 6'* as claimed. O

Lemma E.5. Let hiz 1 = 95rgrx — Jorcrx where g5z 1 xs firgrx 1S a solution
to the modulus problem (S2). Let oy, Lo, Ko, Fo, Go and {6y, Ly, Ky, Fn,Gn}22, be given.

Let H(0, K, F,G) ={g9—f:fe€F,ge G |K(g—f)l <0} denote the feasible set of
values of g — f for the modulus problem for 0, K, F,G. Suppose that, for any e > 0, we have,
for large enough n, H(do—e, Ko, Fo,Go) € H(0pn, Kpn, Fn,Gn) € H(do+e, Ko, Fo,Go). Suppose
also that L,h — Loh — 0 and ||(K,, — Ko)h|| — 0 uniformly over h in H(dy + €, Ko, Fo, Go)
for € small enough. Suppose also that w(d; Fy, Go, Lo, Ko) is strictly increasing for ¢ in a
neighborhood of d. Then ||[Kuhy, 7 ¢ 1w, — Kol 7 gororoll = 0 and Lok 7 6 1w —

*
L0h507-7:07go7L07K0 — 0.

Proof. For any € > 0, g5 . 7 6o 1010 Jdo—eFo.Go.Lo. I, 1S feasible for the modulus problem

under 9, F,, Gn, Ly, K, for large enough n. Thus, for large enough n,
w(bo — &, Fo, Go, Lo, Ko) = Lhg, . 7, Go.10.560 < Lnhs, 7, G L 1
Taking limits and using the fact that (L, — L)} 7 g 1. . — 0, it follows that,
w(do — &; Fo, Go, Lo, Ko) — € < Lhy, 7 6. 1. K.

for large enough n. By continuity of the modulus in 9§, for any n > 0 the left-hand side is
strictly greater than w(do + &; Fo, o, Lo, Ko) — 1 for & small enough. Since g5 = 5 | r,
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fgn,fn,gn,Ln,Kn is feasible for dg + ¢, Fo, Go, Lo, Ko for n large enough, it follows from Lemma
E.4 that

||K0(h§n,]-"n,gn,Ln,Kn - hzoJrE,]:o,go,Lo,Ko)H
< 4[(do + 5)2 - c<)_1(W(50 + &; Fo, Go, Lo, Ko) — n; Fo, Go, Lo, KO)Z]-

By continuity of the modulus and inverse modulus, the right-hand side can be made arbi-

trarily close to zero by taking ¢ and 7 small. Thus,

16%101 lim sup HK0<h§n,fn,gn,Ln,Kn - h§0+s,fo,go,Lo,Ko)H =0.
n

It then follows from Lemma E.3 that lim, oo | Ko(R}, 7 6. 1. 1, — M. 70.Go.L0.K0) || = 0- The
result then follows from the assumption that ||(Ky — K,)h|| — 0 uniformly over H(dy +
é‘7-[{07~F.07g0)' [

We now specialize to our setting. Let f5 s = (s, ¢5') and g5 gy = (s7',¢}’) denote
solutions to the modulus problem (31) with F = R% xC and G = R% xD. Let w(d; H,T',¥) =
w(d;R% x C,R% x D, H,T', %) denote the modulus. Let b} ;15 = f5pry — 95 pry and let

Kry = S7Y2(=T, I4,xq,)- Note that hj ;5 e = (s, ") where (s*,¢) solves

supHs s.t. (c—T's)S 7 (c—Ts) <% ceD—C,s € R, (S4)

Furthermore, a solution does indeed exist so long as C and D are compact and I' and X are
full rank, since this implies that the constraint set is compact.

Let 6y, Ho, 'y and ¥y be such that 6y > 0, Hy # 0 and such that I'g and ¥, are full
rank. We wish to show that Krxhjyry is continuous as a function of 4, H, I' and X at
(60, Ho, Ty, 3p). To this end, let 6, H,, ', and X, be arbitrary sequences converging to dy,
Hy, Ty and Xy (with X, symmetric and positive semi-definite for each n). We will apply
Lemma E.5. To verify the conditions of this lemma, first note that the modulus is strictly
increasing by translation invariance (see Section C.2 in Armstrong and Kolesér, 2018). The
conditions on uniform convergence of (L,, — L)h and (K, — K)h follow since the constraint set
for h = g— f is compact. The condition on H(d, K, F, G) follows because (c—I's)’> " (c—T's)
is continuous in ¥~! and I' uniformly over ¢ and s in any compact set, and there exists a
compact set that contains the constraint set for all n large enough. We record these results

and some of their implications in a lemma.

Lemma E.6. Let C and D be compact and let ¢5yry, S5pry denote a solution to (S4).
Let A denote the set of (5, H,T',X) such that § > 0, H € R%\{0}, T is a full rank d, x dg
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matriz and X is a (strictly) positive definite dy x dg matriz. Then S7V2(s} 41y — T s
is defined uniquely for any (6, H,T,%) € A. Furthermore, the mappings (6, H,I',¥) —

—1/2( % *
%Y (Sa,H,r,z _ch,H,F,E)7

(S5ars — FC;,H,F,z)E_I
(Sz,H,F,E - FCE,H,F,z)EAFH/HIH

k(6,H,T,%) = and w(0; H,I',¥) = Hsj gy

are continuous functions on A.

E.3.3 CLT and LLN for triangular arrays

To verify the conditions of Section C.5, a CLT and LLN for triangular arrays (applied to
the triangular arrays that arise from arbitrary sequences P, € P) are useful. We state them

here for convenience.

Lemma E.7. Let € > 0 be given. Let {v;}I, be an iid sequence of scalar valued random
variables and let P be a set of probability distributions with Epv;t® < 1/e, 1/e < Epv? and
Epv; =0 for all P € P. Then

sup sup — 0.

PeP teR

P (% Z%/V’UCLTP(W) < t> — d(t)

Proof. The result is immediate from Lemma 11.4.1 in Lehmann and Romano (2005) applied
to arbitrary sequences P € P and the fact that convergence to a continuous cdf is always

uniform over the point at which the cdf is evaluated (Lemma 2.11 in van der Vaart, 1998). [

Lemma E.8. Let € > 0 be given. Let {v;}I, be an iid sequence of scalar valued random
variables and let P be a set of probability distributions with Ep|v;|'*™® < 1/e for all P € P.
Then %Z?:l v; — Epv; = op(1) uniformly over P € P.

Proof. The stronger result suppcp Ep ‘% Z?:l v; — Epv; ‘ Lmin{e.2} — 0 follows from Theorem
3 in von Bahr and Esseen (1965). O
References

Armstrong, T. B. and Kolesar, M. (2018). Optimal inference in a class of regression models.
Econometrica, 86(2):655—683.

Bartle, R. G. (1966). Elements of Integration. John Wiley & Sons Inc, New York, NY first

edition.

S12



Donoho, D. L. (1994). Statistical estimation and optimal recovery. The Annals of Statistics,
22(1):238-270.

Lehmann, E. L. and Romano, J. P. (2005). Testing statistical hypotheses. Springer, New
York, third edition.

Low, M. G. (1995). Bias-variance tradeoffs in functional estimation problems. The Annals
of Statistics, 23(3):824-835.

Shurman, J. (2016). Calculus and Analysis in Euclidean Space. Springer, New York, NY,
first edition.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, New York,
NY.

von Bahr, B. and Esseen, C.-G. (1965). Inequalities for the rth absolute moment of a sum

of random variables, 1 < r < 2. The Annals of Mathematical Statistics, 36(1):299-303.

S13



	Optimal sensitivity under ell infinity bounds
	Additional asymptotic results
	Construction of a submodel satisfying Assumption C.1
	Example: misspecified linear IV
	Auxiliary results
	Replacing Rd times D with a general set G
	Continuity of optimal weights
	CLT and LLN for triangular arrays



