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Auction Design in A Common Value Model

• a pure common value model

• private signal gives partial information about common value

• key statistical feature:
higher signals contain more information about common value
than lower signals

• today:
highest signal is sufficient statistic of common value
→lower signals carry no additional information

• what is the revenue maximizing selling mechanism?
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Revenue Maximizing Design

• characterize revenue maximizing auction

• maximal revenue is obtained by strikingly simple mechanism,
stated at interim level (given signal of bidder i)

1. constant – signal independent – participation fee

2. constant – signal independent – probability of getting object

• contrast with first, second, ascending auction with private
values
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Revenue Maximizing Design: Posted Price

• optimal mechanism shares some features with posted price

1. constant – signal independent – price

• it coincides with posted price if

2. constant – signal independent – probability is 1/N

• necessary and sufficient condition when optimal mechanism
reduces exactly to posted price

• if posted price is an optimal mechanism it is inclusive:
every bidder with every signal realization is willing to buy
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Revenue Maximizing Design: Beyond Posted Price

• in generally aggregate assignment probability may be < 1

• interim probability of getting object is constant and < 1/N

• ex post probability for i depends on entire signal profile

• conditionally on allocating the object optimal mechanism:

1. favors bidders with lower signals

2. discriminates against bidder with highest signal

• “winner’s blessing” rather than “winner’s curse”
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Contributions: Substantive

• setting where bidders with higher signals have more accurate
information about common value;

• arises in market with intermediaries, and many other settings:
auctions for resources, IPO’s

• countervailing screening incentives, tension between selling to

1. bidder with higher expected value and

2. bidder with less private information

• optimal to screen “less” - with no screening in inclusive limit

• foundation for posted price mechanisms
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Contributions: Methodological

• very few results extend characterization of optimal auctions
beyond private value case

• we extend optimal auctions into interdependent values:

1. with private values, “local” incentive constraints are sufficient
to pin down optimal mechanism

2. with interdependent values, “global” constraints matter, new
arguments are required
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Model



Pure Common Value Model

• N bidders for a single object

• bidder i receives signal si ∈ [s, s]⊂ R+

• value is maximum of N independent signals:

v (s1, . . . , sN) = max {s1, . . . , sN}

“maximum signal model”

• absolutely continuous distribution F (si ) , f (si )

• signal distribution F (si ) induces value distribution GN(v):

GN(v) = (F (s))N

• common value is first order statistic of N independent signals
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Utility and Allocation

• bidder i is expected utility maximizer with quasilinear
preferences, probability qi of receiving object and transfers ti :

ui (s, qi , ti ) = v (s) qi − ti

• feasibility of auction

qi (s) ≥ 0, with
N∑
i=1

qi (s) ≤ 1

• ex post transfer ti (s) of bidder i , interim expected transfer:

ti (si ) =

∫
s−i∈SN−1

ti (si , s−i ) f−i (s−i ) ds−i ,

where

f−i (s−i ) =
∏
j 6=i

f (sj)
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Incentive Compatibility

• bidder i surplus when reporting s ′i while observing si :

ui
(
si , s

′
i

)
≡
∫
s−i∈SN−1

qi
(
s ′i , s−i

)
v (si , s−i ) f−i (s−i ) ds−i−ti

(
s ′i
)

• indirect utility given truthtelling is:

ui (si ) ≡ ui (si , si )

• direct mechanism {qi , ti}Ni=1 is incentive compatible (IC) if

ui (si ) ≥ ui
(
si , s

′
i

)
, for all i and si , s

′
i ∈ S

and individually rational (IR) if ui (si ) ≥ 0, for all i and si ∈ S
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Bidder Surplus and Revenue

• ex-ante bidder surplus is

Ui =

∫
si∈S

ui (si ) f (si ) dsi

• revenue is expected sum of transfers:

R =
N∑
i=1

∫
si∈S

ti (si ) f (si ) dsi

• seller maximizes R over all IC and IR direct mechanisms

• probability q (v), qi (v) object is assigned (to bidder i) given v

• total surplus is

TS =

∫ s

v=s
vq (v) gN (v) dv
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Value and Signal

• earlier we considered first price auction (ECTA 2017)
• fix the distribution of values

GN(v)

and ask how different common prior distribution of signals

F (s |v)

can affect surplus and welfare in first price auction
• all for general distributions of (interdependent) values:

G (v1, ...., vN)

• today, we specialize to the case of pure common values:

GN(v)
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Revenue Minimizing Information

• first price auction: N = 2 and G (v) = v2, v ∈ [0, 1]
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Figure 1: Information and Surplus Distribution 13



Global Incentive Constraints

• revenue minimizing information is maximum signal model

v (s1, . . . , sN) = max {s1, . . . , sN}

• we deduce distribution of signals from distribution of values:

F (s(v)) = (G (v))1/N

• interesting result about structure of incentive constraints

• all upward deviations–relative to unique equilibrium bid–yield
equilibrium net utility!

• all upward deviations are binding!
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Upward Deviations
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Figure 2: Uniform Upward Incentive Constraints and Winner’s Curse

• today: find optimal auction for this information structure
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Countering the Winner’s Curse



Standard Auction and Monotone Equilibria

• first-price, second-price and ascending auction all have
monotone equilibria
• consider bidding in second-price auction:

bi (si )

• interim expectation of each bidder:

E[v |si ]

• private signal is sharp lower bound on ex post value of object:

si ≤ v , si < E[v |si ]

• yet, equilibrium bid is given by

bi (si ) = si
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Adverse Selection and Winner’s Curse

• the bidder with the highest signal wins in the second price
auction

• conditional on winning the signal si turns into a sharp upper
bound of the value

v = max {s1, ..., sN} ≤ si

• this is the winner’s curse

• while at the bidding stage it was a sharplower bound!

• adverse selection: winner learns that his signal was more
favorable than all other signals
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Conditional Expectation and Winner’s Curse

• conditional expectation of bidder i given signal si

E [v (s1, . . . , sN) |si ] > si

• conditional expectation of bidder i given signal si and that si is
the highest signal:

E [v (s1, . . . , sN) |si = max {s1, . . . , sN}] = si

• the winner’s curse is maximal

• before winning, conditional expectation always exceeds si

• after winning, conditional expectation is always exactly si
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Neutral Selection and Exclusion

• uniform exclusion at threshold r :

qi (s) =

 1
N if max s ≥ r ;

0 otherwise.

• and a pair of incentive compatible prices:

• an unconditional price:
pu , r

• and a conditional price

pc ,

∫ s
r max {s−i} dF−i (s)

1− FN−1(r)
,
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Neutral Selection

• object is sold if and only if at least one bidder is willing to
make an unconditional purchase at pu = r .
• If at least one bidder makes unconditional purchase, then all

bidders get object with uniform probability 1/N at price pc

• with one exception: if only one bidder is willing to make an
unconditional purchase, then this bidder gets object at pu < pc

Proposition (Posted Price Pair)

The posted price pair (pc , pu) yields a (weakly) higher revenue than
either the inclusive or the exclusive posted price.

• uniform screening among bidders with respect to highest signal
• uniform exclusion among bidders
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Advantageous Selection and Winner’s Blessing

• there is a fixed reserve price r and a random reserve price x > r

• if bidder announces highest signal si > r , then (i) he receives
priority status and (ii) is offered object at price:

p = max {x , s−i}

• otherwise, any bidder receives the object with probability
1/(N − 1) if at least one bidder has declared priority status at
price:

p = max {r , s−i} .
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Random Reserve Price

• random reserve price is determined by:

H(x) =
1
N
(1− FN(r)

FN(x)
)

• all signals have the same interim probability of receiving the
object!

Theorem (Random Reserve Price )

The random reserve price is the revenue maximizing mechanism.

• interim probability of receiving the object is constant in signal
si

• interim transfer is constant in signal si
• all downward incentive constraints are binding
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Bounds on Bidder Surplus and
Revenue



A Relaxed Problem

• consider a smaller, one-dimensional, family of constraints:

• instead of reporting signal si , report a random signal s ′i < si ,
drawn from truncated prior on support [s, si ]:

F
(
s ′i
)
/F (si )

• misreporting a redrawn lower signal

• analyze a relaxed problem which consists of local and small
class of global constraints

• use these constraints to derive:

1. an upper bound on seller revenue

2. a lower bound on bidder utility
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A Lower Bound on Bidder Utility

• what are the gains from misreporting a redrawn lower signal?

• equilibrium surplus of a bidder with type x is

ui (si ) =

∫ si

x=s
q̂i (x) dx

• surplus from misreporting the redrawn lower signal

1
F (si )

∫ si

x=s
ui (si , x) f (x) dx

• gains vary depending on realized misreport
average gains across all misreports are easy to compute
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Posted Prices

• consider mechanisms where object is always allocated
• pure common values – allocation is therefore socially efficient

Theorem (Revenue Optimality among Efficient Mechanisms)
Among all mechanisms that allocate the object with probability
one, revenue is maximized by setting a posted price of

p =

∫ s

v=s
vgN−1 (v) dv , (1)

i.e., expected value of object conditional on having lowest signal s.

• posted price is inclusive: all types purchase at p
• all bidders equally likely to receive object: qi (v) = 1/N, ∀i , v .
• optimal selling mechanism is attained with constant interim

transfer t = ti (si ) and probability q = qi (si )
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Optimality of Posted Price

• next, optimality of posted price among all – possibly inefficient
– mechanisms

Corollary (Revenue Optimality of Posted Prices)
A posted price mechanism is optimal if and only if

ψ(s) = s −
∫ s

s

1− F (x)

F (x)
dx ≥ 0.

If a posted price p is optimal, then it is fully inclusive.
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Incentive Constraints in Optimal Auction

• in the optimal auction, each bidder is indifferent between his
equilibrium bid and any lower bid
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Figure 3: Uniform Downward Incentive Constraints and Winner’s
Blessing 27



Incentive Constraints in First Price Auction

• in the first price auction, each bidder is indifferent between his
equilibrium bid and any higher bid
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Figure 4: Uniform Upward Incentive Constraints and Winner’s Curse
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The Power of Optimal Auctions



Auctions vs Optimal Mechanism

• Bulow and Klemperer (1996) establish the limited power of
optimal mechanisms as opposed to standard auction formats

• revenue of optimal auction with N bidders is strictly
dominated by standard absolute auction with N + 1 bidders

• current common value environment is an instance of general
interdependent value setting – with one exception

• virtual utility function—or marginal revenue function—is not
monotone due to maximum operator in common value model
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A Closer Look at the Virtual Utility

• non-monotonicity leads to an optimal mechanism with features
distinct from standard first or second price auction.

• it elicits information from bidder with highest signal but
minimizes probability of assigning him the object subject to
incentive constraint

• virtual utility of each bidder, πi (si , s−i ):

πi (si , s−i ) =

 maxj{sj}, if si ≤ max{s−i};

max{sj} − 1−Fi (si )
fi (si )

, if si > max{s−i}.

• downward discontinuity in virtual utility indicates why seller
wishes to minimize the probability of assigning the object to
the bidder with the high signal
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Revenue Comparison

• virtual utility of bidder i fails monotonicity assumption even
when hazard rate of distribution function is increasing
everywhere

• BK (1996) require monotonicity of virtual utility when
establishing their main result that an absolute English auction
with N + 1 bidders is more profitable than any optimal
mechanism with N bidders

• revenue ranking does not extend to current auction
environment

• compare revenue from optimal auction with N bidders to
absolute, English or second-price, auction with N + K bidders

• absolute as there is no reserve price imposed
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Reversal in Revenue Comparison

Proposition (Revenue Comparison)

For every N ≥ 1 and every K ≥ 1, the revenue from an absolute
second-price auction with N + K bidders is strictly dominated by
the revenue of an optimal auction with N bidders.

• comparison of second order statistic of N +K i.i.d. signals and
first order statistic of N + K − 1 i.i.d. signals
• second order statistic of N + K signals is revenue of absolute

second-price auction with N + K bidders.
• by earlier Theorem, optimal mechanism (weakly) exceeds

revenue from a posted price set equal to the maximum of
N + K − 1 signals.
• now, if instead of N + K bidders, the optimal auction only has
N bidders, then it is as if only N independent and identical
distributed signals are revealed to the N bidders
• but pure common value of the object is not affected by

number of bidders, it is as if the remaining K signals are
simply not disclosed, but the N participating bidders still form
the expectation over the N + K−1 signals.
• thus an attainable revenue for the seller is to offer the object

at random to a bidder at a posted price set equal to the
maximum of N + K − 1 signals
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The Power of Optimal Auctions

• compare the indirect utility in the first price auction and the
optimal auction
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Figure 5: Indirect Utility of Bidder with s = 1/2 across two mechanisms
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Conclusion

• characterized novel revenue maximizing auctions for a class of
common value models
• common value models with qualitative feature that values are

more sensitive to private information of bidders with more
optimistic beliefs
• second interpretation as auction with frictionless resale market
• characterizations of optimal revenue that exist in the literature

depend on information rents being smaller for bidders who are
more optimistic about value
• qualitative impact is that earlier results found that optimal

auctions discriminate in favor of more optimistic bidders
• today: optimal auctions discriminate in favor of less optimistic

bidders since they obtain less information rents from being
allocated the object
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Optimal Auction

• construct an incentive compatible mechanism that exactly
achieves the upper bound
• in the direct mechanism, all types are asked to make a fixed

payment, a participation fee, that is independent of their type
• no transfers beyond the participation fee are collected
• every type has the same interim expected probability of being

allocated the object
• these two features of the optimal mechanism resemble a

posted price mechanism
• unlike posted prices, the object is only allocated if the highest

realized signal among the bidders exceeds a threshold value
• thus, typically, the probability that the object is assigned to

some bidder is strictly smaller than one
• second feature distinct from posted prices is that the optimal

mechanism discriminates against bidders with higher signals
• conditional on the entire signal profile, the optimal mechanism

allocates the object to lower types with greater frequency than
would a purely random allocation
• from an interim point of view of each bidder, given his signal,

the conditional probability that the object is allocated to
somebody is increasing with the highest signal
• lower probability of receiving the object conditional on a high

signal is exactly balanced out by the higher interim probability
that the object is assigned at all in such a way that the interim
probability of receiving the object is constant
• We also exhibit an indirect implementation of the optimal

mechanism by means of a descending auction with an entry
fee.
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Uniform Distribution

• family of translated uniform distributions on [a, a+ 1] , a > 0.

• marginal revenue function for these distributions is

ψa (x) = x −
∫ a+1

y=x

(
(x − a)−

1
N − 1

)
dx ,

• lowest marginal revenue is

ψa (a) = a−
∫ a+1

y=a

(
(x − a)−

1
N − 1

)
= a− 1

N − 1
.

• thus posted price is optimal if

a > 1/ (N − 1)
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Optimal Mechanism in General



Optimal Mechanism in General

• construct an novel mechanism/game that attains the revenue
bound for all distributions

• guaranteed demand auction (GDA)

• direct mechanism to implement the bound exists as well

• descending clock (probability) auction implements revenue
bound as well
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The Guaranteed Demand Game: Rules

• bidder i demands di ∈
[
0, d
]
, where d is a parameter of game:

0 ≤ di ≤ d ≤ 1/N

• let i∗ denote identity of bidder with the highest demand:

di∗ = max{d1, ..., dN} :

• if di∗ > 0:

1. i∗ is allocated object with probability di∗

2. bidder j 6= i∗ receives the object with probability

(1− di∗) / (N − 1) > di∗

• if di∗ = 0, then the seller keeps the object
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The Guaranteed Demand Game: Properties

• importantly if upper bound on demand d is:

d < 1/N

• then conditional on highest demand being positive,

di∗ > 0

bidder j is more likely to get object if he doesn’t have highest
demand:

qj > d∗i > dj

• each bidder’s probability of receiving object is always at least
his demand
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Equilibrium Strategy

• unique equilibrium has a monotone pure strategy:

σ (si ) =


1
N

(
1− GN(r)

GN(si )

)
if si ≥ r ;

0 if si < r ,
(2)

where threshold r solves:

GN (r) = 1− Nd . (3)

• and demand at s satisfies:

σ (s) =
(
1−

(
1− Nd

))
/N = d

• denote resulting equilibrium utility: ui (s)
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The Guaranteed Demand Auction

• turn guaranteed demand game into guaranteed demand
auction (GDA) by adding entry fees fi

• each bidder’s message consists of a pair: entry decision and
demand

• if bidder i decides to enter, he pays fi to the seller, and object
is allocated among bidders who enter guaranteed demand
game

Proposition (Equilibrium of Guaranteed Demand Auction)
As long as fi ≤ ui (s) for all i , it is an equilibrium for all bidders to
enter the GDA and make demands according to (2). In equilibrium,
bidders are indifferent between their equilibrium demands and all
lower demands.
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Optimality of Guaranteed Demand Auction

• consider the GDA where the threshold r has zero generalized
virtual utility:

ψ (r∗) = r∗ −
∫ s

y=r∗

1− F (y)

F (y)
dy = 0

• choice of d
d =

1− GN (r∗)

N
ensures that bidder makes a positive demand iff bidder has
signal greater than r∗

Theorem (Optimality of Guaranteed Demand Auction)
Revenue is maximized with a guaranteed demand auction with
maximum demand d = (1− GN (r∗)) /N and a symmetric entry fee
which is equal to ui (s).
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Maximum Game

• Bulow and Klemperer (2002) define “maximum game” and
show in second price auction in equilibrium each bidder bids
his signal

si ≤ v = maxj{s1, ..., sj , ..., sN}

• in equilibrium, bidder with highest signal wins the auction and
pays second-highest signal

• in fact, it is optimal to bid any amount which is at least your
signal, and, in particular, it is optimal to bid your signal

• by contrast, in optimal auction, each bidder is indifferent
between reporting his signal and reporting any lower signal
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Comparison with IPV

• suppose now that the signals are the values, thus independent
private value environment:

si = vi ≤ maxj{s1, ..., sN}

• in second price auction bidding his signal remains optimal
• thus, in second price auction of pure common value

environment, each bidder behaves as if his signal is his true
private value rather than a signal, and in particular a lower
bound on the pure common value

• observation can be generalized
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Strategic Equivalence

• consider independent private value model: vi (s1, . . . , sN) = si
• denote the set of bidders with high signals

H (s) =

{
i |si = max

j
sj

}
• direct mechanism {qi , ti} is conditionally efficient if (i)

qi (s) > 0 if and only if si ∈ H (s) and (ii) there exists a cutoff
r such that the object is allocated whenever maxi si > r .

Proposition
Suppose a direct mechanism {qi , ti} is incentive compatible and
individually rational for the independent private value model in
which vi (s) = si and that the allocation is conditionally efficient.
Then {qi , ti} is also incentive compatible and individually rational
for the maximum common value model in which vi (s) = maxj {sj}.
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