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ROBUST MECHANISM DESIGN

BY DIRK BERGEMANN AND STEPHEN MORRIS1

The mechanism design literature assumes too much common knowledge of the en-
vironment among the players and planner. We relax this assumption by studying mech-
anism design on richer type spaces.

We ask when ex post implementation is equivalent to interim (or Bayesian) imple-
mentation for all possible type spaces. The equivalence holds in the case of separable
environments; examples of separable environments arise (1) when the planner is im-
plementing a social choice function (not correspondence) and (2) in a quasilinear en-
vironment with no restrictions on transfers. The equivalence fails in general, including
in some quasilinear environments with budget balance.

In private value environments, ex post implementation is equivalent to dominant
strategies implementation. The private value versions of our results offer new insights
into the relationship between dominant strategy implementation and Bayesian imple-
mentation.

KEYWORDS: Mechanism design, common knowledge, universal type space, interim
equilibrium, ex post equilibrium, dominant strategies.

Game theory has a great advantage in explicitly analyzing the consequences of trading
rules that presumably are really common knowledge; it is deficient to the extent it assumes
other features to be common knowledge, such as one player’s probability assessment about
another’s preferences or information.
I foresee the progress of game theory as depending on successive reductions in the base
of common knowledge required to conduct useful analyses of practical problems. Only
by repeated weakening of common knowledge assumptions will the theory approximate
reality. Wilson (1987).

1. INTRODUCTION

THE THEORY OF MECHANISM DESIGN helps us understand institutions ranging
from simple trading rules to political constitutions. We can understand insti-
tutions as the solution to a well-defined planner’s problem of achieving some
objective or maximizing some utility function subject to incentive constraints.
A common criticism of mechanism design theory is that the optimal mecha-
nisms solving the well-defined planner’s problem seem unreasonably compli-
cated. Researchers have often therefore restricted attention to mechanisms
that are “more robust” or less sensitive to the assumed structure of the en-
vironment.2 However, if the optimal solution to the planner’s problem is too

1This research is supported by NSF Grant SES-0095321. We would like to thank the co-editor,
three anonymous referees, and seminar participants at many institutions for helpful comments.
We thank Bob Evans for pointing out errors in earlier examples and Sandeep Baliga, Matt
Jackson, Jon Levin, Bart Lipman, Eric Maskin, Zvika Neeman, Andrew Postlewaite, Ilya Segal,
and Tomas Sjöström for valuable discussions.

2Discussions of this issue are an old theme in the mechanism design literature. Hurwicz (1972)
discussed the need for “nonparametric” mechanisms (independent of parameters of the model).
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complicated or sensitive to be used in practice, it is presumably because the
original description of the planner’s problem was itself flawed. We would like
to see if improved modelling of the planner’s problem endogenously generates
the “robust” features of mechanisms that researchers have been tempted to
assume.

As suggested by Robert Wilson in the above quote, the problem is that we
make too many implicit common knowledge assumptions in our description
of the planner’s problem.3 The modelling strategy must be to first make ex-
plicit the implicit common knowledge assumptions and then weaken them.
The approach to modelling incomplete information introduced by Harsanyi
(1967/1968) and formalized by Mertens and Zamir (1985) is ideally suited to
this task. In fact, Harsanyi’s work was intended to address the then prevailing
criticism of game theory that the very description of a game embodied common
knowledge assumptions that could never prevail in practice. Harsanyi argued
that by allowing an agent’s type to include his beliefs about the strategic en-
vironment, his beliefs about other agents’ beliefs, and so on, any environment
of incomplete information could be captured by a type space. With this suffi-
ciently large type space (including all possible beliefs and higher order beliefs),
it is true (tautologically) that there is common knowledge among the agents of
each agent’s set of possible types and each type’s beliefs over the types of other
agents. However, as a practical matter, applied economic analysis tends to as-
sume much smaller type spaces than the universal type space, and yet maintain
the assumption that there is common knowledge among the agents of each agent’s
type space and each type’s beliefs over the types of other agents. In the small type
space case, this is a very substantive restriction. There has been remarkably
little work since Harsanyi to check whether analysis of incomplete information
games in economics is robust to the implicit common knowledge assumptions
built into small type spaces.4 We will investigate the importance of these im-
plicit common knowledge assumptions in the context of mechanism design.5

Formally, we fix a payoff environment, specifying a set of payoff types for
each agent, a set of outcomes, utility functions for each agent, and a social
choice correspondence (SCC) that maps payoff type profiles into sets of ac-

Wilson (1985) states that a desirable property of a trading rule is that it “does not rely on fea-
tures of the agents’ common knowledge, such as their probability assessments.” Dasgupta and
Maskin (2000) “seek auction rules that are independent of the details—such as functional forms
or distribution of signals—of any particular application and that work well in a broad range of
circumstances.”

3An important paper of Neeman (2004) shows how rich type spaces can be used to relax im-
plicit common knowledge assumptions in a mechanism design context. For other approaches to
formalizing robust mechanism design, see Chung and Ely (2003), Duggan and Roberts (1997),
Eliaz (2002), Hagerty and Rogerson (1987), and Lopomo (1998, 2000).

4Battigalli and Siniscalchi (2003), Morris and Shin (2003).
5Neeman (2004) argued that small type space assumptions are especially important in the full

surplus extraction results of Cremer and McLean (1985).
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ceptable outcomes. The planner ( partially) implements6 the social choice cor-
respondence if there exists a mechanism and an equilibrium strategy profile
of that mechanism such that equilibrium outcomes for every payoff type pro-
file are acceptable according to the SCC.7 This is sometimes referred to as
Bayesian implementation, but since we do not have a common prior, we will
call it interim implementation.

While holding this environment fixed, we can construct many type spaces,
where an agent’s type specifies both his payoff type and his belief about other
agents’ types. Crucially, there may be many types of an agent with the same
payoff type. The larger the type space, the harder it will be to implement the
social choice correspondence, and so the more “robust” the resulting mech-
anism will be. The smallest type space we can work with is the “payoff type
space,” where we set the possible types of each agent equal to the set of payoff
types and assume a common knowledge prior over this type space. This is the
usual exercise performed in the mechanism design literature. The largest type
space we can work with is the union of all possible type spaces that could have
arisen from the payoff environment. This is equivalent to working with a “uni-
versal type space,” in the sense of Mertens and Zamir (1985). There are many
type spaces in between the payoff type space and the universal type space that
are also interesting to study. For example, we can look at all payoff type spaces
(so that the agents have common knowledge of a prior over payoff types but
the mechanism designer does not) and we can look at type spaces where the
common prior assumption holds.

In the face of a planner who does not know about agents’ beliefs about other
players’ types, a recent literature has looked at mechanisms that implement the
SCC in ex post equilibrium (see references in footnote 10). This requires that in
a payoff type direct mechanism, where each agent is asked to report his payoff
type, each agent has an incentive to tell the truth if he expects others to tell the
truth, whatever their types turn out to be. In the special case of private values,
ex post implementation is equivalent to dominant strategies implementation.
If an SCC is ex post implementable, then it is clearly interim implementable
on every type space, since the payoff type direct mechanism can be used to
implement the SCC.

The converse is not always true. In Examples 1 and 2, ex post implementation
is impossible. Nonetheless, interim implementation is possible on every type
space. The gap arises because the planner may have the equilibrium outcome
depend on the agents’ higher order belief types, as well as their realized pay-

6“Partial implementation” is sometimes called “truthful implementation” or incentive com-
patible implementation. Since we look exclusively at partial implementation in this paper, we will
write “implement” instead of “partially implement.”

7In companion papers (Bergemann and Morris (2005a, 2005b)), we use the framework of this
paper to look at full implementation, i.e., requiring that every equilibrium delivers an outcome
consistent with the social choice correspondence.
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off type. The planner has no intrinsic interest in conditioning on non-payoff-
relevant aspects of agents’ types, but he is able to introduce slack in incentive
constraints by doing so.

The main question we address in this paper is when the converse is true.
A payoff environment is separable if the outcome space has a common compo-
nent and a private value component for each agent. Each agent cares only
about the common component and his own private component. The social
choice correspondence picks a unique element from the common component
and has a product structure over all components. In separable environments,
interim implementation on all common prior payoff type spaces implies ex post
implementation.8 Whenever the social choice correspondence is a function, the
environment has a separable representation (since we can make private value
components degenerate). The other leading example of a separable environ-
ment is the problem of choosing an allocation when arbitrary transfers are al-
lowed and agents have quasilinear utility. If the allocation choice is a function
but the planner does not care about the level and distribution of transfers, then
we have a separable environment.

This result provides a strong foundation for using ex post equilibrium as a
solution concept in separable environments. Since ex post implementation im-
plies interim implementation on all type spaces (with or without the common
prior or the payoff type restrictions), we also have equivalence between ex post
implementation and interim implementation on all type spaces. To the extent
that the mechanisms required for ex post implementation are simpler than the
mechanisms required for Bayesian implementation, our results contribute to
the literature on detail-free implementation and the “Wilson doctrine.”

For separable environments, the restriction to payoff type spaces is not
important, but this is not true in general. In Example 3, we report a two
agent quasilinear environment where we add the balanced budget require-
ment: transfers must add up to zero. In this example, ex post implementa-
tion and interim implementation on all type spaces are both impossible, but
interim implementation on all payoff type spaces is possible. As a leading ex-
ample of an important economic nonseparable environment, we look more
generally at quasilinear environments with budget balance. With two agents,
there is an equivalence between ex post implementation and interim imple-
mentation on all type spaces. With at most two payoff types for each agent,
there is the stronger equivalence between ex post implementation and interim
implementation on all payoff type spaces, but with three or more agents with
three or more types, equivalence between ex post implementation and interim
implementation on all type spaces breaks down.

In private values environments, ex post implementation is equivalent to
dominant strategies implementation. Our positive and negative results all have

8This result extends to all common prior full support type spaces in the quasilinear case and
when the environment is compact.
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counterparts in private values environments. In particular, we (1) identify con-
ditions when Bayesian implementation on all type spaces is equivalent to domi-
nant strategies implementation, (2) give examples where the equivalence does
not hold, and (3) show how and when the equivalence may depend on type
spaces richer than the payoff type space. While related questions have long
been discussed in the implementation literature (e.g., Ledyard (1978) and
Dasgupta, Hammond, and Maskin (1979))—we discuss the relationship in de-
tail in the concluding Section 6—our questions have not been addressed even
under private values.

The paper is organized as follows. Section 2 provides the setup, introduces
the type spaces, and provides the equilibrium notions. In Section 3 we present
in some detail three examples that illustrate the role of type spaces in the im-
plementation problem and point to the complex relationship between ex post
implementation on the payoff type space and interim implementation on larger
type spaces. In Section 4 we present equivalence results for separable social
choice environments. The separable environment includes as special cases all
social choice functions and the quasilinear environment without a balanced
budget requirement. Section 5 investigates the quasilinear environment with a
balanced budget requirement. We conclude with a discussion of further issues
in Section 6.

2. SETUP

2.1. Payoff Environment

We consider a finite set of agents 1�2� � � � � I. Agent i’s payoff type is θi ∈ Θi,
where Θi is a finite set. We write θ ∈ Θ = Θ1 × · · · × ΘI . There is a set of
outcomes Y . Each agent has utility function ui :Y × Θ → R. A social corre-
spondence is a mapping F :Θ → 2Y \ ∅. If the true payoff type profile is θ, the
planner would like the outcome to be an element of F(θ).

An important special case—studied in some of our examples and results—is
a quasilinear environment where the set of outcomes Y has the product struc-
ture Y = Y0 ×Y1 × · · · ×YI , where Y1 = Y2 = · · · = YI = R, and a utility func-
tion

ui(y�θ)= ui(y0� y1� � � � � yI� θ) � vi(y0� θ)+ yi�

which is linear in yi for every agent i. The planner is concerned only about
choosing an “allocation” y0 ∈ Y0 and does not care about transfers. Thus there
is a function f0 :Θ → Y0 and

F(θ)= {
(y0� y1� � � � � yI) ∈ Y : y0 = f0(θ)

}
�

Throughout the paper, this environment is fixed and informally understood
to be common knowledge. We allow for interdependent types: one agent’s pay-
off from a given outcome depends on other agents’ payoff types. The payoff
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type profile is understood to contain all information that is relevant to whether
the planner achieves his objective or not. For example, we do not allow the
planner to trade off what happens in one state with what happens in another
state. For the latter reason, this setup is somewhat restrictive. However, it in-
corporates many classic problems such as the efficient allocation of an object
or the efficient provision of a public good.

2.2. Type Spaces

While maintaining that the above payoff environment is common knowl-
edge, we want to allow for agents to have all possible beliefs and higher order
beliefs about other agents’ types. A flexible framework for modelling such be-
liefs and higher order beliefs is “type spaces.”

A type space is a collection

T = (Ti� θ̂i� π̂i)
I
i=1�

Agent i’s type is ti ∈ Ti. A type of agent i must include a description of his payoff
type. Thus there is a function

θ̂i :Ti → Θi�

with θ̂i(ti) being agent i’s payoff type when his type is ti. A type of agent i must
also include a description of his beliefs about the types of the other agents.
Write ∆(Z) for the space of probability measures on the Borel field of a mea-
surable space Z. The belief of type ti of agent i is a function

π̂i :Ti → ∆(T−i)�

with π̂i(ti) being agent i’s beliefs when his type is ti. Thus π̂i(ti)[E] is the proba-
bility that type ti of agent i assigns to other agents’ types, t−i, being an element
of a measurable set E ⊆ T−i. In the special case where each Tj is finite, we will
abuse notation slightly by writing π̂i(ti)[t−i] for the probability that type ti of
agent i assigns to other agents having types t−i.

Our terminology is nonstandard relative to the mechanism design literature.
In most of the mechanism design literature and indeed in much of the ap-
plied economics literature, it is common to fix a set of types for each agent,
let agents’ payoffs depend on their own and others’ types, and then add on
agents’ beliefs (often through a common prior) as part of the description of
the problem. Thus an agent’s type implicitly defines his utility function but not
his beliefs. By contrast, we are assuming that an agent’s type implicitly con-
tains a description of his beliefs and his payoffs. Our usage is in the tradition
of Harsanyi (1967/1968) and Mertens and Zamir (1985), who originally intro-
duced the idea of types into the economics and game theory literature, and also
the literature on epistemic foundations of game theory since then. Our “pay-
off type” does correspond to the way types are often talked about in applied
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mechanism design. The foundations of this formalism are discussed in some
detail in Section 2.5.

2.3. Solution Concepts

Fix a payoff environment and a type space T . A mechanism specifies a
message set for each agent and a mapping from message profiles to out-
comes. Social choice correspondence F is interim implementable if there exists
a mechanism and an interim (or Bayesian) equilibrium of that mechanism such
that outcomes are consistent with F . However, by the revelation principle, we
can restrict attention to truth-telling equilibria of direct mechanisms.9 A direct
mechanism is a function f :T → Y .

DEFINITION 1: A direct mechanism f :T → Y is interim incentive compatible
on type space T if∫

t−i∈T−i

ui

(
f (ti� t−i)� θ̂(ti� t−i)

)
dπ̂i(ti)

≥
∫
t−i∈T−i

ui

(
f (t ′i� t−i)� θ̂(ti� t−i)

)
dπ̂i(ti)

for all i, t ∈ T and t ′i ∈ Ti.

The notion of interim incentive compatibility is often referred to as Bayesian
incentive compatibility. We use the former terminology as there need not be a
common prior on the type space.

DEFINITION 2: A direct mechanism f :T → Y on T achieves F if

f (t) ∈ F(θ̂(t))

for all t ∈ T .

It should be emphasized that a direct mechanism f can prescribe varying
allocations for a given payoff profile θ as different types, t and t ′, may have an
identical payoff profile θ = θ̂(t)= θ̂(t ′).

DEFINITION 3: A social choice correspondence F is interim implementable
on T if there exists f :T → Y such that f is interim incentive compatible
on T and f achieves F .

9See Myerson (1991, Chapter 6).
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We will be interested in comparing interim implementation with the stronger
solution concept of ex post implementation. Ex post implementation uses the
stronger solution concept of ex post equilibrium for incomplete information
games.10 By the revelation principle, it is again enough to verify ex post incen-
tive compatibility.

DEFINITION 4: A direct mechanism f :Θ → Y is ex post incentive compatible
if, for all i and θ ∈Θ,

ui(f (θ)�θ) ≥ ui

(
f (θ′

i� θ−i)� θ
)

for all θ′
i ∈ Θi.

The notion of ex post incentive compatibility requires agent i to prefer truth-
telling at θ if all the other agents also report truthfully. Ex post incentive com-
patibility is defined directly on the payoff type space, but observe that this is
equivalent to requiring ex post incentive compatibility on any type space where
all payoff types are possible (i.e., the range of each θ̂i is Θi).

In contrast, the notion of dominant strategy implementation requires agent i
to prefer truth-telling for all possible reports by the other agents, truth-telling
or not.

DEFINITION 5: A direct mechanism f :Θ→ Y is dominant strategies incentive
compatible if, for all i and θ ∈ Θ,

ui

(
f (θi� θ

′
−i)� θ

) ≥ ui(f (θ
′)�θ)

for all θ′ ∈Θ.

If there are private values (i.e., each ui(y�θ) depends on θ only through θi),
then ex post incentive compatibility is equivalent to dominant strategies incen-
tive compatibility.

DEFINITION 6: A social choice correspondence F is ex post implementable if
there exists f :Θ→ Y such that f is ex post incentive compatible and f (θ) ∈ F(θ)
for all θ ∈Θ.

10Ex post incentive compatibility was discussed as “uniform incentive compatibility” by
Holmstrom and Myerson (1983). Ex post equilibrium is increasingly studied in game theory
(see Kalai (2004)) and is often used in mechanism design as a more robust solution concept
(Cremer and McLean (1985)). A recent literature on interdependent value environments has
obtained positive and negative results using this solution concept: Dasgupta and Maskin (2000),
Bergemann and Valimaki (2002), Perry and Reny (2002), and Jehiel et al. (2005).
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2.4. Questions

Our main question is, When is F interim implementable on all type spaces?
By requiring that F be interim implementable on all type spaces, we are asking
for a mechanism that can implement F with no common knowledge assump-
tions beyond those in the specification of the payoff environment. In Sections
4 and 5, we provide sufficient conditions for ex post implementability to be
equivalent to interim implementability on all type spaces, but Examples 1 and 2
in the next section show that it is possible to find social choice correspondences
that are interim implementable on any type space but are not ex post imple-
mentable.

We also consider the implications of interim implementability on different
type spaces. To describe these results, we must introduce some important prop-
erties of type spaces. A type space T is a payoff type space if each Ti = Θi and
each θ̂i is the identity map. Type space T is finite if each Ti is finite. Finite type
space T has full support if π̂i(ti)[t−i] > 0 for all i and t. Finite type space T
satisfies the common prior assumption (with prior p) if there exists p ∈ ∆(T)
such that ∑

t−i∈T−i

p(ti� t−i) > 0 for all i and ti

and

π̂i(ti)[t−i] = p(ti� t−i)∑
t′−i∈T−i

p(ti� t
′
−i)

�

The standard approach in the mechanism design literature is to restrict at-
tention to a common prior payoff type space (perhaps with full support). Thus
it is assumed that there is common knowledge among the agents of a common
prior over the payoff types. A payoff type space can be thought of as the small-
est type space embedding the payoff environment described above. Restricting
attention to a full support, common prior, payoff type space is with loss of gen-
erality. We can relax the implicit common knowledge assumptions embodied
in those restrictions by asking the following progressively tougher questions
about interim implementability:
• Is F interim implementable on all full support common prior payoff type

spaces?
• Is F interim implementable on all common prior payoff type spaces?
• Is F interim implementable on all common prior type spaces?
• Is F interim implementable on all type spaces?

We will see that relaxing common knowledge assumptions makes a differ-
ence. In particular, we will show that while the common prior assumption is
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not important and the full support assumption does not play a big role,11 the
payoff type space restriction is important. In Example 3 in the next section,
it is possible to interim implement on any payoff type space (with or without
the common prior) but not all type spaces. We are especially interested in the
relationship between the ex post implementability of F and the interim imple-
mentability on all type spaces.

2.5. Implicit versus Explicit Modelling of Higher Order Uncertainty and
the Universal Type Space

Heifetz and Samet (1999) distinguish two ways of discussing higher order un-
certainty about some state of nature. There is the explicit approach: an agent’s
possible higher order beliefs consist of his beliefs about nature, his beliefs
about nature and other agents’ beliefs about nature, and so on. Then there
is the implicit approach, where there is a set of states of nature and a set of
“types” of an agent, where each type corresponds to a belief over the state of
nature and the types of the other agents. Each type encodes implicitly the be-
liefs, and higher order beliefs about the state of nature. Harsanyi (1967/1968)
argued that the implicit approach was sufficient to capture possible higher or-
der beliefs, and Mertens and Zamir (1985) showed that the two approaches
are—under some assumptions—equivalent.

We follow the implicit approach in this paper. The type spaces that we work
with are thus “implicit type spaces” in the language of Heifetz and Samet
(1999).12 In this section, we briefly discuss what would happen if we had fol-
lowed the explicit approach and what implications the explicit approach would
have for our results.

We will describe a standard universal type space construction for our prob-
lem. The only nonstandard aspect is that we want to maintain the feature that
each agent knows his payoff type.13 Player i’s zeroth level type is his payoff-
relevant type t0

i = θi ∈ Θi. Let T 0
i ≡ Θi be player i’s set of zeroth level types.

Player i’s first level type must specify his payoff-relevant type and his belief
about other players’ zeroth level types. Thus t1

i ∈ T 1
i ≡ Θi × ∆(T 0

−i). Player i’s
second level type must specify his payoff-relevant type and his belief about
other players’ first level types. Thus t2

i ∈ T 2
i ≡ Θi × ∆(T 1

−i). Iterating this con-
struction, we have tki ∈ Tk

i ≡ Θi × ∆(Tk−1
−i ) and we obtain an infinite hierarchy

11However, different type space assumptions will be important for different questions. The full
support assumption is crucial when we look at full implementation (see Bergemann and Morris
(2005b)) and the common prior assumption is important when we look at revenue maximization.

12As pointed out to us by a referee, they are therefore “Θ-based abstract belief spaces” in the
language of Mertens and Zamir (1985).

13If we made a private values assumption—each agent’s utility does not depend on others’
payoff types—then the construction we describe is the same at the “private values universal type
space” in Heifetz and Neeman (2004).
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of beliefs (t0
i � t

1
i � t

2
i � � � � ). We want to require that high level types, which in-

tuitively contain more information than lower level types, are consistent with
lower levels. Formally, an infinite hierarchy is coherent if all higher level types
have the same payoff-relevant type as lower level types and if the projection of
their beliefs over other players’ types onto lower level type spaces is consistent
with lower level types’ beliefs. We can let player i’s possible types, Ti, be the set
of all coherent infinite hierarchies of beliefs. The universal type space litera-
ture14 shows that—under some topological assumptions—the set of types, i.e.,
infinite hierarchies, can be identified with pairs of payoff-relevant types and
beliefs, so that, for each i, there exists a homeomorphism fi :Ti → Θi ×∆(T−i).
Since each Θi is finite, such a construction is possible in our case. Now letting
θ̂i be the projection of fi onto Θi and letting π̂i be the projection of fi onto
∆(T−i), this canonical “known own payoff type” universal type space is an ex-
ample of a type space T = (Ti� θ̂i� π̂i)

I
i=1, as described is Section 2.2, with the

special property that for each θi ∈ Θi and πi ∈ ∆(T−i), there exists ti ∈ Ti such
that θ̂i(ti)= θi and π̂i(ti)= πi.15

What is the connection between the explicit universal type space and the
implicit type spaces we described above? An implicit type space has no “re-
dundant types” if every pair of types differs at some level in their higher order
belief types. Mertens and Zamir (1985, Property 5 and Proposition 2.16) show
that any implicit type space that has no “redundant” types and satisfies some
topological restrictions is a belief-closed subset of the universal type space (and
the same result will be true in our setting). Thus modulo the redundancy and
topological provisos, the union of all type spaces is the same as the universal
type space.

How significant are the redundancy and topological restrictions required
by Mertens and Zamir to show the equivalence of explicit and implicit
type spaces? Heifetz and Samet (1999) show that—without topological restric-
tions—it is possible to find types that cannot be embedded in the universal type
space.16 In general, the no redundant types restriction is not innocuous either.
To illustrate this point, consider the type space

T1 = {t1� t ′1}�
T2 = {t2� t ′2}�

14Mertens and Zamir (1985), Brandenburger and Dekel (1993), Heifetz (1993), Mertens,
Sorin, and Zamir (1994).

15This “known own payoff type” universal type space has built in the feature that there is
common knowledge that each agent i knows his payoff type θi . If instead we had allowed agents
also to be uncertain about their own θi, we would be back to the standard universal type space
concerning Θ, as constructed by Mertens and Zamir (1985).

16Heifetz and Samet (1998) provide a nonconstructive proof of the existence of a universal
type space without topological restictions.



1782 D. BERGEMANN AND S. MORRIS

with a single payoff-relevant type for each player,

θ̂1(t1)= θ̂1(t
′
1)= θ1�

θ̂2(t2)= θ̂2(t
′
2)= θ2�

and the associated belief types

π̂1(t1)[t2] = 2
3
�

π̂1(t
′
1)[t2] = 1

3
�

π̂2(t2)[t1] = 2
3
�

π̂2(t
′
2)[t1] = 1

3
�

Since all types have the same payoff-relevant type, the infinite hierarchy of
beliefs is degenerate: each type of player i is sure that he has payoff-relevant
type θi, he is sure that his opponent j has payoff-relevant type θj , and so on.
However, because of the opportunities for correlation, rational strategic be-
havior on this type space may be very different from the type space where each
player has only a single possible type.17

So there are potential gaps between the explicit and implicit approaches.
However, all the positive and negative results reported in this paper would
be unchanged if we replaced “implementable on all type spaces” by “imple-
mentable on the (known own payoff type) universal type space.” Since the uni-
versal type space is an example of a type space, implementability for all type
spaces trivially implies implementability on the universal type space. On the
other hand, when we show a failure of implementability for all type spaces,
we do so by constructing a finite type space without redundancy where imple-
mentability is impossible, but those finite type spaces are isomorphic to belief
closed subsets of the universal type space. In addition, if it is not possible to
implement on a given type space, it is not possible to implement on any type
space (such as the universal type space) that contains that given type space as
a belief closed subset. Thus whenever implementability is impossible on those
finite type spaces, it is also impossible on the universal type space.

3. EXAMPLES

This section presents three examples that illustrate the relationship between
interim implementation on different type spaces and ex post implementation.

17This issue is important in Dekel, Fudenberg, and Morris (2005).
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The first two examples exhibit social choice correspondences that are interim
implementable on all type spaces, but are not ex post implementable. The first
example is very simple, but relies on (i) a restriction to deterministic alloca-
tions, (ii) a social choice correspondence that depends on only one agent’s
payoff type, and (iii) interdependent types. In the second example, we show
how to dispense with all three features. Since this second example has private
values, we thus have an example where dominant strategies implementation is
impossible, but interim implementation is possible on any type space.

The third example exhibits a social choice correspondence that is interim
implementable on all payoff type spaces (with or without the common prior),
but is not interim implementable on all type spaces. The social choice corre-
spondence represents efficient allocations in a quasilinear environment with
a balanced budget requirement. As such it also illustrates some of the results
presented later in Section 5 on social choice problems with a balanced bud-
get.

3.1. F Is Interim Implementable on All Type Spaces but
Not ex post Implementable

EXAMPLE 1: There are two agents. Each agent has two possible types: Θ1 =
{θ1� θ

′
1} and Θ2 = {θ2� θ

′
2}. There are three possible allocations: Y = {a�b� c}.

The payoffs of the two agents are given by the following tables (each box de-
scribes agent 1’s payoff, then agent 2’s payoff):

a θ2 θ′
2

θ1 1�0 −1�2

θ′
1 0�0 0�0

b θ2 θ′
2

θ1 −1�2 1�0

θ′
1 0�0 0�0

c θ2 θ′
2

θ1 0�0 0�0

θ′
1 1�1 1�1

The social choice correspondence is given by

F θ2 θ′
2

θ1 {a�b} {a�b}
θ′

1 {c} {c}

These choices are maximizers of the sum of agents’ utility. The key feature of
this example is that the agents agree about the optimal choice when agent 1 is
type θ′

1; when agent 1 is type θ1, they agree that it is optimal to choose either
a or b. However, each agent has strict and opposite preferences over outcomes
a and b: 1 strictly prefers a when 2’s type is θ2, while 2 strictly prefers a when
his type is θ′

2.
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We now show—by contradiction—that this correspondence is not ex post
implementable. If F were implementable, we would have to have c chosen at
profiles (θ′

1� θ2) and (θ′
1� θ

′
2), and either a or b chosen at profiles (θ1� θ2) and

(θ1� θ
′
2). For type θ1 to have an incentive to tell the truth when he is sure that

agent 2 is type θ2, we must have a chosen at profile (θ1� θ2); for type θ1 to have
an incentive to tell the truth when he is sure that agent 2 is type θ′

2, we must
have b chosen at profile (θ1� θ

′
2). However, if a is chosen at profile (θ1� θ2) and

b is chosen at profile (θ1� θ
′
2), then both types of agent 2 will have an incentive

to misreport their types when they are sure that agent 1 is type θ1.
However, the correspondence is interim implementable on any type space

using the very simple mechanism of letting agent 1 pick the outcome. There
is always an equilibrium of this mechanism where agent 1 will pick outcome a
if his type is θ1 and he assigns probability at least 1

2 to the other agent being
type θ2; agent 1 will pick outcome b if his type is θ1 and he assigns probability
less than 1

2 to the other agent being type θ2; and agent 1 will pick outcome c if
his type is θ′

1. By allowing the mechanism to depend on agent 1’s beliefs about
agent 2’s type (something the planner does not care about intrinsically), the
planner is able to relax incentive constraints that he cares about.

The failure of ex post implementation in this example relied on the as-
sumption that only pure outcomes were chosen. This restriction can easily be
dropped at the expense of adding a third payoff type for agent 1, so that the
binding ex post incentive constraint for agent 1 is with a different type and
outcome depending on 2’s type. Example 1 also had the social choice corre-
spondence depending only on agent 1’s payoff type and had interdependent
values. We can mechanically change these two assumptions by letting the plan-
ner want different outcomes depending on agent 2’s type. Now instead of hav-
ing agent 1’s utility depend on agent 2’s type, it can depend on the planner’s
refined choice.

EXAMPLE 2: There are two agents. Agent 1 has three possible types, Θ1 =
{θ1� θ

′
1� θ

′′
1}, and agent 2 has two possible types, Θ2 = {θ2� θ

′
2}. There are eight

possible pure allocations, {a�b� c�d�a′� b′� c′� d′}, and lotteries are allowed, so
Y = ∆({a�b� c�d�a′� b′� c′� d′}). The private value payoffs of agent 1 are given
by the table

u1 a b c d a′ b′ c′ d′

θ1 1 −1 1
2 −1 −1 1 −1 1

2

θ′
1 0 0 1 0 0 0 1 0

θ′′
1 0 0 0 1 0 0 0 1
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The private value payoffs of agent 2 are given by the table

u2 a b c d a′ b′ c′ d′

θ2 0 1 0 0 0 1 −1 −1

θ′
2 1 0 −1 −1 1 0 0 0

The social choice correspondence F is described by the table18

θ2 θ′
2

θ1 {a�b} {a′� b′}
θ′

1 {c} {c′}
θ′′

1 {d} {d′}

We now show—by contradiction—that this correspondence is not ex post
implementable. Let q be the probability that a is chosen at profile (θ1� θ2) and
let q′ be the probability that a′ is chosen at profile (θ1� θ

′
2). For type θ1 to have

an incentive to tell the truth (and not report himself to be type θ′
1) when he is

sure that agent 2 is type θ2, we must have

q− (1 − q)≥ 1
2

⇔ q ≥ 3
4
�(1)

For type θ1 to have an incentive to tell the truth (and not report himself to be
type θ′′

1) when he is sure that agent 2 is type θ′
2, we must have

−q′ + (1 − q′)≥ 1
2

⇔ q′ ≤ 1
4
�(2)

but for agent 2 to have an incentive to tell the truth when he is type θ2 and he
is sure that agent 1 is type θ1, we must have

1 − q ≥ 1 − q′;
thus

q′ ≥ q�(3)

18The SCC F in this example is not ex post Pareto efficient at (θ1� θ2) and (θ1� θ
′
2), as b′ and a,

respectively, Pareto dominate b and a′, respectively. We choose this example for the simplicity
of its payoffs, yet we have constructed examples with the same number of agents, states, and
allocations such that the SCC F is ex ante Pareto efficient and interim implementable on all type
spaces, but not ex post, and a fortiori, not dominant strategy implementable.
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However, (1), (2), and (3) generate a contradiction, so ex post implementation
is not possible.

It is straightforward to implement on any interim type space. Consider the
following indirect mechanism for any arbitrary type space where individual 1
chooses a message m1 ∈ {m1

1�m
2
1�m

3
1�m

4
1}, and individual 2 chooses a message

m2 ∈ {m1
2�m

2
2}, and let outcomes be chosen as follows:

m1
2 m2

2

m1
1 a a′

m2
1 b b′

m3
1 c c′

m4
1 d d′

There is always an equilibrium where type θ1 of agent 1 sends message m1
1 if

he believes agent 2 is type θ2 with probability at least 1
2 and message m2

1 if he
believes agent 2 is type θ2 with probability less than 1

2 ; type θ′
1 always sends

message m3
1 and type θ′′

1 always sends message m4
1. Type θ2 of agent 2 sends

message m1
2 and type θ′

2 sends message m2
2, and this strategy is a dominant

strategy for agent 2.
This private values example has the feature that dominant strategies imple-

mentation is impossible, but interim implementation is possible on any type
space and seems to be the first example in the literature noting this possibil-
ity.19

As we will see in the next section, a necessary feature of the example is that
we have a social choice correspondence (not function) that we are trying to
implement. In the example, it was further key that there were aspects of the al-
location that the planner did not care about but the agents did. In the example,
this may look a little contrived, but note that this is a natural feature of qua-
silinear environments where the planner wants to maximize the total welfare
of agents. We will next present a quasilinear utility example that exploits this
feature.

19It is often noted that in public good problems with budget balance, dominant strategies im-
plementation is impossible, whereas Bayesian implementation is possible. However, the posi-
tive Bayesian implementation results (d’Aspremont and Gerard-Varet (1979) and d’Aspremont
Cremer, and Gerard-Varet (1995, 2004)) hold only for “generic” priors on a fixed type space, not
for all type spaces in our sense. They provide examples that show that Bayesian implementation
fails for some type spaces.
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3.2. F Is Interim Implementable on All Payoff Type Spaces but Not Interim
Implementable on All Type Spaces

EXAMPLE 3: This example has two agents, denoted 1 and 2. Agent 1 has
three possible payoff types, Θ1 = {θ1� θ

′
1� θ

′′
1}, and agent 2 has two possible pay-

off types, Θ2 = {θ2� θ
′
2}. The set of feasible “allocations” is given by

Y0 = {a�b� c�d}�

The agents’ gross utilities from the allocations, v1(y0� θ) and v2(y0� θ), respec-
tively, are given by

a θ2 θ′
2

θ1 0�2 0�2

θ′
1 −4�0 1�0

θ′′
1 −4�0 −4�0

b θ2 θ′
2

θ1 0�0 0�0

θ′
1 0�2 0�0

θ′′
1 −4�0 0�0

c θ2 θ′
2

θ1 0�0 −4�0

θ′
1 0�0 0�2

θ′′
1 0�0 0�0

d θ2 θ′
2

θ1 −4�0 −4�0

θ′
1 1�0 −4�0

θ′′
1 0�2 0�2

The planner wants the allocation y0 ∈ Y0 to maximize the sum of the agents’
utilities at every type profile θ; thus he wants the allocation to depend on type
profile θ according to the function f0 described in the table

f0 θ2 θ′
2

θ1 a a

θ′
1 b c

θ′′
1 d d

(4)

In addition, balanced budget transfers are possible. Thus the planner must
choose (y0� y1� y2) ∈ Y0 × R

2, with y1 + y2 = 0. Each agent has quasilinear util-
ity, so agent i’s utility from (y0� y1� y2) in payoff profile θ is vi(y0� θ) + yi. The
planner maximizes the sum of utilities and so does not care about transfers;
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thus

F(θ)= {
(y0� y1� y2) ∈ Y0 × R

2 : y0 = f0(θ) and y2 = −y1

}
�

We first make a few observations regarding the ex post incentive constraints
for truth-telling with zero transfers. Agent 1 always values the efficient alterna-
tives at 0. The critical type for agent 1 is θ′

1, where he values an inefficient alter-
native, either d or a (depending on the payoff type of agent 2 being θ2 or θ′

2),
at 1, and thus is higher than the efficient alternative at that type profile. The
remaining negative entries, −4, for agent 1 simply ensure that no other incen-
tive constraints become relevant. Agent 2 always values the efficient allocation
at 2 and every inefficient allocation at 0.

It is straightforward to establish that ex post implementation with balanced
transfers is not feasible. Writing fi(θ) for the transfer received by i at pay-
off type profile θ, we have the following ex post incentive constraints for
agent 1:

v1

(
f0(θ1� θ2)� (θ1� θ2)

) + f1(θ1� θ2)

≥ v1

(
f0(θ

′
1� θ2)� (θ1� θ2)

) + f1(θ
′
1� θ2)�

v1

(
f0(θ

′
1� θ2)� (θ

′
1� θ2)

) + f1(θ
′
1� θ2)

≥ v1

(
f0(θ

′′
1� θ2)� (θ

′
1� θ2)

) + f1(θ
′′
1� θ2)

and

v1

(
f0(θ

′′
1� θ

′
2)� (θ

′′
1� θ

′
2)

) + f1(θ
′′
1� θ

′
2)

≥ v1

(
f0(θ

′
1� θ

′
2)� (θ

′′
1� θ

′
2)

) + f1(θ
′
1� θ

′
2)�

v1

(
f0(θ

′
1� θ

′
2)� (θ

′
1� θ

′
2)

) + f1(θ
′
1� θ

′
2)

≥ v1

(
f0(θ1� θ

′
2)� (θ

′
1� θ

′
2)

) + f1(θ1� θ
′
2)�

Inserting the gross utilities v1(·� ·), we can write the above set of inequalities
as

f1(θ1� θ2)≥ f1(θ
′
1� θ2) ≥ f1(θ

′′
1� θ2)+ 1(5)

and

f1(θ
′′
1� θ

′
2)≥ f1(θ

′
1� θ

′
2)≥ f1(θ1� θ

′
2)+ 1�(6)

Next we consider the ex post incentive constraints for agent 2 at θ1 and θ′′
1 ,

respectively. Here the social choice mapping prescribes allocations constant in
the reported type profile of agent 2 and ex post incentive compatibility hence
requires constant transfers as well, or f2(θ1� θ2) = f2(θ1� θ

′
2) and f2(θ

′′
1� θ2) =
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f2(θ
′′
1� θ

′
2). Using the balanced budget requirement by writing f2(θ) = −f1(θ),

we thus obtain

f1(θ1� θ2) = f1(θ1� θ
′
2)

and

f1(θ
′′
1� θ2)= f1(θ

′′
1� θ

′
2)�

which lead to a contradiction with inequalities (5) and (6).
Despite the failure of ex post implementation, we now show that we can sat-

isfy the interim incentive compatibility conditions for every prior on the payoff
type space. The sole determinant of the appropriate transfers is the belief of
agent 1 with payoff type θ′

1. If type θ′
1 assigns probability at least 1

2 to agent 2 be-
ing of payoff type θ2, then the following transfers to agent 1 (and corresponding
balanced budget transfers for agent 2) are interim incentive compatible:

f1(θ1� θ2) = 0� f1(θ1� θ
′
2)= 0�(7)

f1(θ
′
1� θ2) = 0� f1(θ

′
1� θ

′
2)= −1�

f1(θ
′′
1� θ2)= −1� f1(θ

′′
1� θ

′
2)= −1�

Conversely, if type θ′
1 assigns probability less than 1

2 to the other agent being
of payoff type θ2, then the following transfers to agent 1 are interim incentive
compatible:

f1(θ1� θ2) = −1� f1(θ1� θ
′
2) = −1�(8)

f1(θ
′
1� θ2) = −1� f1(θ

′
1� θ

′
2) = 0�

f1(θ
′′
1� θ2)= 0� f1(θ

′′
1� θ

′
2)= 0�

By symmetry of the payoffs, it will suffice to verify the incentive compatibility
conditions for the first case. We first observe that all the ex post incentive con-
straints hold except for agent 1 at type profile θ′

1θ
′
2, where he has a profitable

deviation by misreporting himself to be of type θ1. Suppose then that type θ′
1

assigns probability p to the other agent being type θ2. His expected payoff to
truth-telling is

p(0 + 0)+ (1 −p)(0 − 1)= −(1 −p)�

while his expected payoff to misreporting type θ1 is

p(−4 + 0)+ (1 −p)(1 + 0)= 1 − 5p

and his expected payoff to misreporting type θ′′
1 is given by

p(1 − 1)+ (1 −p)(−4 − 1)= −5(1 −p)�



1790 D. BERGEMANN AND S. MORRIS

Thus truth-telling is optimal as long as

−(1 −p)≥ 1 − 5p ⇔ p ≥ 1
3
�(9)

The second set of transfers, described in (8), offers interim incentive com-
patibility for agent 1 provided that p ≤ 2

3 . Whereas either of the above trans-
fer schemes satisfies the ex post incentive constraints of agent 2, it follows for
every belief p by type θ′

1, we can find interim incentive compatible transfers
and hence F is interim implementable for all payoff type spaces.

However, on richer type spaces than the payoff type space, there may be
many types with payoff type θ′

1, some of whom are sure that the other agent
is type θ2 while others are sure that he is type θ′

2. That is the idea behind the
following example of a “complete information” type space where F cannot be
interim implemented. We consider the following type space:

t1
2 t2

2 t3
2 t4

2 t5
2 t6

2

t1
1

1
6 0 0 0 0 0 θ1

t2
1 0 1

6 0 0 0 0 θ′
1

t3
1 0 0 1

6 0 0 0 θ′′
1

t4
1 0 0 0 1

6 0 0 θ′′
1

t5
1 0 0 0 0 1

6 0 θ′
1

t6
1 0 0 0 0 0 1

6 θ1

θ2 θ2 θ2 θ′
2 θ′

2 θ′
2

Thus there are six types for each agent, tk1 and tl2. The entries in the cell describe
the probabilities of the common prior, which puts all probability mass on the
diagonal. The payoff type that corresponds to each type appears at the end
of the row/column corresponding to that type. Thus, for example, type t3

1 of
agent 1 has payoff type θ′′

1 and believes that agent 2 has a payoff type θ2 with
probability 1. It is in this sense that we speak of complete information. We
require that F is implemented even at “impossible” (zero probability) type
profiles, but we could clearly adapt the example to have small probabilities off
the diagonal.

Our impossibility argument will depend only on what happens at twelve crit-
ical type profiles: the diagonal profiles and the type profiles where agent 1 with
type tk1 claims to be one type higher, or tk+1

1 , and agent 2 with type tl2 claims
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to be one type lower, or tl−1
1 . In the next table, we note which allocation must

occur at these twelve profiles if F is to be implemented:

t1
2 t2

2 t3
2 t4

2 t5
2 t6

2

t1
1 a a θ1

t2
1 b b θ′

1

t3
1 d d θ′′

1

t4
1 d d θ′′

1

t5
1 c c θ′

1

t6
1 a a θ1

θ2 θ2 θ2 θ′
2 θ′

2 θ′
2

We observe that the incentive constraints for agent 1 and agent 2 jointly form a
cycle through the type space. We write ykl for the transfer of agent 1 when the
type profile is t = (tk1 � t

l
2). The incentive constraints that correspond to types tk1

misreporting to be type tk+1
1 (modulo 6) imply (for k= 1�2� � � � �6, respectively)

0 + y11 ≥ 0 + y21�(10)

0 + y22 ≥ 1 + y32�

0 + y33 ≥ 0 + y43�

0 + y44 ≥ 0 + y54�

0 + y55 ≥ 1 + y65�

0 + y66 ≥ 0 + y16�

The incentive constraints that correspond to types tl2 misreporting to be
type tl−1

2 imply, using the balanced budget to write the transfers to agent 2
as the negatives of agent 1 (for l = 1�2� � � � �6, respectively),

2 − y11 ≥ 2 − y16�(11)

2 − y22 ≥ 2 − y21�

2 − y33 ≥ 2 − y32�

2 − y44 ≥ 2 − y43�

2 − y55 ≥ 2 − y54�

2 − y66 ≥ 2 − y65�
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Inequalities (10) and (11) have a very simply structure. With very few excep-
tions, the payoffs that appear on the left- and right-hand sides of the inequali-
ties are identical and only the transfers differ. These inequalities are generated
either by true or misreported types, which induce only different transfer deci-
sions but identical allocational decisions. The exceptions are the second and
fifth inequality of agent 1, where a misreported type also leads to a different
allocational decision. Rearranging the inequalities, we obtain

0 ≥ y21 − y11� 0 ≥ y11 − y16�

−1 ≥ y32 − y22� 0 ≥ y22 − y21�

0 ≥ y43 − y33� 0 ≥ y33 − y32�

0 ≥ y54 − y44� 0 ≥ y44 − y43�

−1 ≥ y65 − y55� 0 ≥ y55 − y54�

0 ≥ y16 − y66� 0 ≥ y66 − y65�

When we sum these twelve constraints, the transfers on the right-hand side of
the inequalities cancel out and we are left with the desired contradiction for
any arbitrary choice of probabilities, namely −2 ≥ 0. The transfers cancelled
out because the set of incentive constraints for agent 1 and agent 2 jointly
formed a cycle through the type space.

4. SEPARABLE ENVIRONMENTS

We now present general results about the relationship between ex post im-
plementability and interim implementability on different type spaces. The first
result is an immediate implication from the definition of ex post equilibrium.

PROPOSITION 1: If F is ex post implementable, then F is interim implementable
on any type space.

PROOF: If F is ex post implementable, then by hypothesis there exists
f ∗ :Θ→ Y with f ∗(θ) ∈ F(θ) for all θ, such that for all i, all θ, and all θ′

i,

ui(f
∗(θ)�θ) ≥ ui

(
f ∗(θ′

i� θ−i)� θ
)
�

Consider then an arbitrary type space T and the direct mechanism f :T → Y
with f (t)= f ∗(θ̂(t)). Incentive compatibility now requires

ti ∈ arg max
t′i∈Ti

∫
t−i∈T−i

ui

(
f (t ′i� t−i)�

(
θ̂i(ti)� θ̂−i(t−i)

))
dπ̂i(ti)

= arg max
t′i∈Ti

∫
t−i∈T−i

ui

(
f ∗( θ̂i(t

′
i)� θ̂−i(t−i)

)
�
(
θ̂i(ti)� θ̂−i(t−i)

))
dπ̂i(ti)�
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This requires that

θ̂i(ti) = arg max
θi∈Θi

∫
t−i∈T−i

ui

(
f ∗(θi� θ̂−i(t−i)

)
�
(
θ̂i(ti)� θ̂−i(t−i)

))
dπ̂i(ti)

= arg max
θi∈Θi

∑
θ−i∈Θ−i

(∫
{t−i :θ̂−i(t−i)=θ−i}

dπ̂i(ti)

)
× ui

(
f ∗(θi� θ−i)�

(
θ̂i(ti)� θ−i

))
�

but by hypothesis of ex post implementability, truth-telling is a best response
for every possible profile θ−i and thus it remains a best response for arbitrary
expectations over Θ−i. Q.E.D.

The converse does not always hold, as shown by Examples 1 and 2 in the
previous section, but we can identify important classes of problems for which
the equivalence can be established.

4.1. Separable Environments

A social choice environment is separable if the outcome space has a common
component and a private value component for each agent. Each agent cares
only about the common component and his own private value component. The
social choice correspondence picks a unique element from the common com-
ponent and has a product structure over all components.

Thus the environment and SCC can be represented in the manner

Y = Y0 ×Y1 × · · · ×YI;
there exists ũi :Y0 ×Yi ×Θ → R such that

ui((y0� y1� � � � � yI)� θ)= ũi(y0� yi� θ)

for all i, y ∈ Y and θ ∈ Θ; and there exists a function f0 :Θ → Y0 and, for each
agent i, a nonempty valued correspondence Fi :Θ→ 2Yi/∅ such that

F(θ)= f0(θ)× F1(θ)× · · · × FI(θ)�

We observe that the private component for agent i, determined by Fi(θ), is
allowed to depend on the payoff type profile θ of all agents. The common
component is determined by a function, whereas the private components are
allowed to be correspondences. The strength of the separability condition, rep-
resented by the product structure, is that the set of permissible private compo-
nents for agent i does not depend on the choice of the private component for
the remaining agents.
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There are two subsets of separable environments in which we are particu-
larly interested.20 First, there is the case of the single-valued private compo-
nent where Yi = {yi} is a single allocation for all i. In this case, there exists a
representation of the utility function ũi :Y0 ×Θ→ R such that ũi depends only
on the common component y0 and the payoff type profile θ. Thus any social
choice function is separable. Second, there is the case of the classic quasilinear
environment (described in Section 2). In this case, we set, for each agent i,

Yi = R�

ũi(y0� yi� θ) = vi(y0� θ)+ yi�

Fi(θ)= Yi�

In the quasilinear environment, the common component f0(θ) will often rep-
resent the problem of implementing an efficient allocation, so that

f0(θ)= arg max
y0∈Y0

I∑
i=1

vi(y0� θ)�

Whereas the designer is only interested in maximizing the social surplus and
the utilities are quasilinear, there are no further restriction on the private com-
ponents, here the monetary transfers, offered to the agents. In contrast, in the
next section, we shall investigate the quasilinear environment with a balanced
budget requirement as a canonical example of a nonseparable environment.
By requiring a balanced budget, the SCC contains an element of interdepen-
dence in the choice of the private components as the transfers have to add up
to zero.

PROPOSITION 2: In separable environments, if F is interim implementable on
every common prior payoff type space T , then F is ex post implementable.

PROOF: Suppose that F can be interim implemented on all type spaces.
Then, in particular, it must be possible to interim implement F on the type
space where agents other than i have type profile θ−i. Thus for each i and
θ−i ∈ Θ−i, there must exist gi�θ−i :Θi → Y such that i has an incentive to truth-
fully report his type,

ũi

(
gi�θ−i (θi)� (θi� θ−i)

) ≥ ũi

(
gi�θ−i (θ′

i)� (θi� θ−i)
)

(12)

for all θi� θ
′
i ∈ Θi, and such that F is implemented, so that

gi�θ−i (θi) ∈ F(θ)�(13)

20We would like to thank an anonymous referee for suggesting that we incorporate these two
special cases in the unified language of a separable environment.
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If we have a separable environment, condition (13) can be rewritten as

g
i�θ−i

0 (θi)= f0(θi� θ−i)�

g
i�θ−i
j (θi) ∈ Fj(θi� θ−i) for all j = 1� � � � � I;

condition (12) can be rewritten as

ũi

(
f0(θi� θ−i)� g

i�θ−i
i (θi)� (θi� θ−i)

) ≥ ũi

(
f0(θ

′
i� θ−i)� g

i�θ−i
i (θ′

i)� (θi� θ−i)
)

(14)

for all θi� θ
′
i ∈ Θi.

These conditions ensure ex post implementation by letting

f (θ)= (
f0(θ)�g

1�θ−1
1 (θ1)� � � � � g

i�θ−i
i (θi)� � � � � g

I�θ−I
I (θI)

)
�

which completes the proof. Q.E.D.

Proposition 2 immediately implies the following strong equivalence result
for a separable environment.

COROLLARY 1: In separable environments, the following statements are equiv-
alent:

1. F is interim implementable on all type spaces.
2. F is interim implementable on all common prior type spaces.
3. F is interim implementable on all payoff type spaces.
4. F is interim implementable on all common prior payoff type spaces.
5. F is ex post implementable.

PROOF: (1) ⇒ (2), (3), and (4) follows by definition as we are asking for in-
terim implementation on a smaller collection of type spaces. By Proposition 2,
(4) ⇒ (5). By Proposition 1, (5) ⇒ (1). Q.E.D.

Given Proposition 1, whenever we can show that interim implementability
on a class of type spaces implies ex post implementability, it follows that there
is equivalence between ex post implementation and interim implementation
on any collection of type spaces including that class. In the remainder of the
paper, we do not report these immediate corollaries.

Our two leading examples of separable environments are (1) when the so-
cial choice correspondence is single-valued and (2) when the environment is
quasilinear. Recent literature has established positive and negative results con-
cerning ex post implementation in quasilinear environments (see footnote 10),
motivating the ex post solution concept as reflective of the planner’s ignorance
about the true prior. Proposition 2 provides a foundation for the solution con-
cept. In particular, it shows that the impossibility results in Jehiel et al. (2005)
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for ex post implementation with multidimensional signals extend to interim
implementation.

Proposition 2 and Corollary 1 would be true even without the restriction
to separable environments if attention were restricted to truth-telling payoff
type direct mechanisms, where outcomes depend only on the reported payoff
types. This would just be the interdependent value analogue of the classic pri-
vate values observation that direct implementation for all priors implies domi-
nant strategy implementation (Ledyard (1978) and Dasgupta, Hammond, and
Maskin (1979)). If the social choice correspondence is single-valued, then any
implementing mechanism can only depend on payoff types, so the direct mech-
anism restriction is without loss of generality. However, the assumption is not
usually without loss of generality, as Examples 1 and 2 showed.

The proof of Proposition 2 used the fact that the class of all common prior
payoff type spaces contains as a special case priors where there is only uncer-
tainty about the payoff profile of agent i, but no uncertainty about the payoff
profile, θ−i ∈ Θ−i, of the remaining agents. Thus a necessary condition of im-
plementation on all type spaces is that, for every i and every θ−i ∈Θ−i, it is pos-
sible to solve the agent i single agent implementation problem when the payoff
type profile of the remaining agents is known to be θ−i. The separable condi-
tion is then enough to ensure that these necessary conditions spliced together
replicate the ex post implementation problem for all agents (this is where the
proof would break down in the cases of Examples 1 and 2). However, by con-
struction, the priors used in this proof were not full support common priors.
We will see in the next section the extent to which the equivalence result can
be strengthened to full support common priors.

Proposition 2 used extreme looking type spaces to establish the necessity of
ex post incentive compatibility. An interesting question is how rich the type
space must be to make ex post incentive compatibility. In Bergemann and
Morris (2004), we characterize interim incentive compatibility on arbitrary
type spaces in quasilinear environments. These results can be used to construct
less extreme looking type spaces where interim incentive compatibility implies
ex post incentive compatibility.

4.2. Full Support Conditions

One obvious supplementary condition to the separable environment is to
introduce compactness. Thus we say that the environment is compact if each
ũi(y0� yi� θ) is continuous with respect to yi and each Fi(θ) is a compact subset
of Yi. We observe that in the quasilinear environment, the private component is
given by Fi(θ)= R for all θ ∈ Θ and hence F(θ) is not compact. For this reason,
we will separately prove the equivalence result for the compact environment
and the quasilinear environment.
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PROPOSITION 3: In a compact separable environment, if F is interim imple-
mentable on every full support common prior payoff type space T , then F is ex post
implementable.

PROOF: Suppose that F is interim implementable on every common prior
full support payoff type space. Then, for every p ∈ ∆++(Θ), there exists for
each i, gp

i :Θ→ Yi such that gp
i (θ) ∈ Fi(θ) for all θ and∑

θ−i

p(θi� θ−i)ũi

(
f0(θi� θ−i)� g

p
i (θi� θ−i)� (θi� θ−i)

)
(15)

≥
∑
θ−i

p(θi� θ−i)ũi

(
f0(θ

′
i� θ−i)� g

p
i (θ

′
i� θ−i)� (θi� θ−i)

)
for all θi and θ′

i. Consider a sequence of priors with pn → p∗, where
p∗(θ−i)= 1. By compactness of each Fi(·), we can choose a convergent sub-
sequence of gpn

i . Writing g
θ−i
i for the limit of that subsequence, we have

ũi

(
f0(θi� θ−i)� g

θ−i
i (θi� θ−i)� (θi� θ−i)

)
(16)

≥ ũi

(
f0(θ

′
i� θ−i)� g

θ−i

i (θ′
i� θ−i)� (θi� θ−i)

)
for all i, θ, and θ′

i, which ensures ex post incentive compatibility. Q.E.D.

Consider next the quasilinear environment in which the social choice corre-
spondence is unbounded in the private component. With quasilinear utilities,
it is useful to express the ex post incentive constraints as a set of linear con-
straints. The only data of the problem that interests us is the incentive of a
payoff type θi to manipulate the choice of y0 ∈ Y0 by misreporting his payoff
type. His ex post gain to reporting himself to be type θ′

i when he is type θi and
he is sure that others have type profile θ−i is

δi(θ
′
i|θi� θ−i)� vi

(
f0(θ

′
i� θ−i)� θ

) − vi(f0(θi� θ−i)� θ)�(17)

A set of transfer functions f = (f1� � � � � fI), each fi :Θ→ R, then satisfy ex post
incentive compatibility if

fi(θi� θ−i)− fi(θ
′
i� θ−i)≥ δi(θ

′
i|θi� θ−i)

for all i, θi, θ′
i, and θ−i.

PROPOSITION 4: In a quasilinear environment, if F is interim implementable
on every full support common prior payoff type space T , then F is ex post imple-
mentable.
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PROOF: We first show that a solution to the following maxmin problem exists
for any fixed θ−i:

max
fi : Θi→R

{
min

(θi�θ
′
i)∈Θi×Θi

{
fi(θi)− fi(θ

′
i)− δi(θ

′
i|θi� θ−i)

}}
�(18)

To show this, let M be the maximal gain or loss from misreporting of types,

M � max
(θi�θ

′
i)∈Θi×Θi

∣∣δi(θ
′
i|θi� θ−i)

∣∣�
let Fi be the set of transfer rules bounded by [−2M�2M],

Fi = {fi :Θi → [−2M�2M]}�
and write ∆i(fi) for the lowest incentive to tell the truth under transfer rule fi,

∆i(fi)� min
(θi�θ

′
i)∈Θi×Θi

{
fi(θi)− fi(θi)− δi(θ

′
i|θi� θ̂−i)

}
�

Now observe that for all fi ∈ Fi, there exists f i ∈ Fi with ∆i(fi)≤ ∆i(f i). To see
this, let f 0

i (θi)= 0 for all θi; note that f 0
i ∈ Fi and ∆i(f

0
i )≥ −M . If

max
(θi�θ

′
i)∈Θi×Θi

|fi(θi)− fi(θ
′
i)|> 2M�

then ∆i(fi) < −M ≤ ∆i(f
0
i ). If

max
(θi�θ

′
i)∈Θi×Θi

|fi(θi)− fi(θ
′
i)| ≤ 2M�

fix any θi and let f̃i(θi) = fi(θi) − fi(θi). Now f̃i ∈ Fi and ∆i(fi) ≤ ∆i(f̃i), but
now we have that the maximum in expression (18) is attained on a compact
subset, so the maxmin exists.

Now suppose that ex post implementation is infeasible. Then there exist
j and θ̂−j such that, for every fj :Θj → R,

fj(θj� θ̂−j)− fj(θ
′
j� θ̂−j) < δj(θ

′
j|θj� θ̂−j)

for some θj , θ′
j . Since we have shown that a solution to

max
fj : Θj→R

{
min

(θj�θ
′
j )∈Θj×Θj

{
fj(θj)− fj(θ

′
j)− δj(θ

′
j|θj� θ̂−j)

}}
(19)

exists, there exists η> 0 such that, for every fj : Θj → R,

min
(θj�θ

′
j )∈Θj×Θj

{
fj(θj)− fj(θ

′
j)− δj(θ

′
j|θj� θ̂−j)

} ≤ −η�(20)
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Now suppose that F is interim equilibrium implementable on the payoff type
space for all priors p ∈ ∆(Θ). Consequently, for every p there must exist a set
of transfer functions, f p

i :Θ→ R, and associated interim payments,

f
p
i (θi)�

∑
θ−i∈Θ−i

f
p
i (θi� θ−i)p(θ−i|θi)�

such that ∀ i�∀θi� θ
′
i,

f
p
i (θi)− f

p
i (θ

′
i)≥

∑
θ−i∈Θ−i

δi(θ
′
i|θi� θ−i)p(θ−i|θi)�(21)

Let

ξ(p) = sup
fj : Θj→R

{
min

(θj �θ
′
j )∈Θj×Θj

{
f
p
j (θj)− f

p
j (θ

′
j)

−
∑

θ−j∈Θ−j

δj(θ
′
j|θj� θ−j)p(θ−j|θj)

}}
�

For all full support p, we have

ξ(p)≤ −η+p(θ̂−j|θj)M

by (20) and

ξ(p)≥ 0

by (21). This yields a contradiction if we choose p with p(θ̂−j|θj) sufficiently
close to 1. Q.E.D.

The argument is straightforward, but distinct from the argument in Propo-
sition 3. It proceeds by contrapositivity and relies on the linearity in monetary
transfers fi in two crucial steps. First, we can show that the problem of max-
imizing the minimal ex post benefits from truth-telling over all profiles and
all agents is well-defined and admits a finite solution, even though the set of
feasible transfers and utilities is unbounded. This allows us to conclude that if
ex post implementation is infeasible, then the social choice function that max-
imizes the minimal benefits of ex post truth-telling (i.e., solves (18)) leads to
a strictly negative solution. Second, we use the linearity to separate in the in-
centive constraints the contribution of the utility from the allocation vi(y0� θ)
and the monetary transfer fi(θi� θ−i). The monetary transfer has the further
property that the value of the transfer for agent i depends on neither the al-
location y0 nor on his own true payoff profile. This allows us to evaluate the
value of transfers in expectations, thereby eliminating the payoff types of the
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other agents, exclusively on the basis of the reported type of agent i. However,
then we are back at the ex post incentive constraints, from which we know
from the first step that they have a strict gap and hence so do interim incentive
constraints for distributions close by.

While a similar argument will apply under some weakenings of the quasilin-
ear assumption, there is not a lot of slack. Suppose each agent’s utility takes
the form ui(y0� θ)+ vi(yi� θi), where each vi is supermodular in (yi� θi), strictly
increasing in θi, and has range R+. Now each agent’s benefit from his transfer
is allowed to depend on his own type only. This seems like a minimal weaken-
ing of the quasilinear assumption, yet we have constructed a simple example
where interim implementation on all full support payoff type spaces is possi-
ble, even though ex post implementation is impossible. We report this example
in the Appendix (Bergemann and Morris (2005c)), along with an elaborate set
of sufficient conditions that do extend the quasilinear result.

5. THE QUASILINEAR ENVIRONMENT WITH BUDGET BALANCE

We now consider the quasilinear environment with budget balance as a
canonical example of a nonseparable environment. There are three reasons
for studying this case.

First, we are able to establish some more limited ex post equivalence re-
sults in this case. We show that if either there are only two agents or, for an
arbitrary number of agents, the payoff space of each agent is binary, then the
equivalence between ex post implementation and interim implementation on
all type spaces holds.

Second, unlike in the case of separable environments in the previous section,
we are able to identify an important class of economic environments when
there is a gap between interim implementation on all type spaces and interim
implementation on all payoff type spaces: in the two agent case, we show that
ex post implementation is equivalent to the former but not to the latter. This
confirms that our concern with the richness of the type space is not misplaced.

Finally, we know that our results are tight: once there are more than two
agents and at least one agent has at least three types, we can show that there is
no longer equivalence between ex post implementation and interim implemen-
tation on all type spaces. Thus within the budget balanced quasilinear environ-
ments of this section, we are able to establish the limits to ex post equivalence.

Formally, the budget balance requirement is introduced in the quasilinear
environment by imposing budget balance on the private components. Thus we
take the definition of a quasilinear environment in Section 2.1 but let

Y =
{
(y0� y1� � � � � yI) ∈ Y0 × R

I :
I∑

i=1

yi = 0

}
�

Example 3 was an example of a quasilinear environment with budget balance.
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We exploit a dual characterization of when ex post implementation is pos-
sible. The dual approach builds on the classic work of d’Aspremont and
Gerard-Varet (1979) and the more recent works of d’Aspremont, Cremer, and
Gerard-Varet (1995, 2004). In contrast to these works, we use the ex post rather
than the interim dual. The dual variables of our characterization will be the
multipliers of the budget balance constraints, ν, and the multipliers of the in-
centive constraints, λ.

Our first result concerns the two agent case. The critical type space in the
argument will be the complete information type space. We used a subset of
this type space earlier in Example 3 and describe it now more precisely. Let
each Ti = Θ and hence a type of agent i will be written as ti = θi ∈ Θ, where
θi = (θi

1� � � � � θ
i
I). We also write θi

−i for the vector θi excluding θi
i. We assume

that θ̂i(θ
i)= θi

i and π̂i satisfies

π̂i(θ
i)[t−i] =

{
1� if tj = θi for all j = i,
0� otherwise.

Thus we require that for each θ, there is a type of agent i who has payoff type θi

and assigns probability 1 to his opponents having types θ−i. The complete in-
formation type space is T = ×I

i=1Ti = [×I

i=1Θi]I .
Recall from (17) that we write δi(θ

′
i|θ) for the ex post incentive of agent i to

misreport himself to be type θ′
i when the true type profile is θ. With two agents,

the ex post incentive constraints are given by

f1(θ)− f1(r1� θ2)≥ δ1(r1|θ) ∀ r1�(22)

f2(θ)− f2(θ1� r2)≥ δ2(r2|θ) ∀ r2�

We can use the budget balance condition f1(θ) + f2(θ) = 0 or f1(θ) = −f2(θ)
to combine the ex post incentive constraints (22) and observe that ex post im-
plementation with budget balance exists if and only if there exists f1(·) such
that

f1(θ1� r2)− f1(r1� θ2)≥ δ1(r1|θ)+ δ2(r2|θ) ∀θ�∀ r�(23)

PROPOSITION 5 —Equivalence with Budget Balance: I = 2: If I = 2 and F is
interim implementable on all complete information type spaces, then F is ex post
implementable.

PROOF: We argue by contrapositivity and thus suppose that F is not ex post
implementable. Then, by Farkas’ lemma, there exists a nonnegative vector
(λ(θ� r))(θ�r)∈Θ2 such that for every θ ∈Θ,∑

r

λ((θ1� r2)� (r1� θ2))=
∑
r

λ((r1� θ2)� (θ1� r2))(24)
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and ∑
θ�r

λ(θ� r)
[
δ1(r1|θ)+ δ2(r2|θ)

]
> 0�(25)

Let ν(θ) denote the common value of the left- and right-hand side term in (24).
For (θ� r) ∈ Θ2, we define q(θ� r) as

q(θ� r) �
∑

r′ λ((θ1� θ2)� (r1� r
′
2))λ((r1� r2)� (r

′
1� θ2))

ν(r1� θ2)
�(26)

Therefore, by (24),∑
r2

q((θ1� θ2)� (r1� r2))=
∑
r2

λ((θ1� θ2)� (r1� r2))(27)

and ∑
r1

q((r1� r2)� (θ1� θ2))=
∑
r1

λ((θ1� θ2)� (r1� r2))�(28)

so that ∑
r

q(θ� r) =
∑
r

q(r� θ)�(29)

We now show that F is not implementable under the complete information
common prior. In contradiction, suppose that (f1(θ�θ

′)� f2(θ�θ
′))(θ�θ′)∈Θ2 is a

budget balanced vector of transfers in the complete information setting and
interim implements the social choice problem, i.e., for all θ ∈Θ,

f1(θ�θ)− f1(r� θ)≥ δ1(r1|θ) ∀ r ∈Θ(30)

and

f2(θ�θ)− f2(θ� r) ≥ δ2(r2|θ) ∀ r ∈ Θ�(31)

It follows that with positive weights q(θ� r) and q(r�θ), as defined in (26), we
can sum inequalities (30) and (31) to obtain∑

θ�r

q(θ� r)
[
f1(θ�θ)− f1(r� θ)− δ1(r1|θ)

]
+

∑
θ�r

q(r� θ)
[
f2(θ�θ)− f2(θ� r)− δ2(r2|θ)

] ≥ 0�
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Using the budget balance requirement, we can write the above inequality as∑
θ�r

q(θ� r)
[
f1(θ�θ)− f1(r� θ)− δ1(r1|θ)

]
(32)

+
∑
θ�r

q(r� θ)
[
f1(θ� r)− f1(θ�θ)− δ2(r2|θ)

] ≥ 0�

Regarding the transfers, (29) implies that∑
r

q(θ� r)f1(θ�θ) =
∑
r

q(r� θ)f1(θ�θ) ∀θ�

and the remaining transfer terms cancel as well as

−
∑
θ�r

q(θ� r)f1(r� θ)+
∑
θ�r

q(r� θ)f1(θ� r) = 0�

The remaining terms in inequality (32) can be written as∑
θ�r1

δ1(r1|θ1� θ2)
∑
r2

q((θ1� θ2)� (r1� r2))(33)

+
∑
θ�r2

δ2(r2|θ1� θ2)
∑
r1

q((r1� r2)� (θ1� θ2))�

Using (27) and (28), we can rewrite (33) as∑
θ�r1

δ1(r1|θ1� θ2)
∑
r2

λ((θ1� θ2)� (r1� r2))(34)

+
∑
θ�r2

δ2(r2|(θ1� θ2))
∑
r1

λ((θ1� θ2)� (r1� r2))�

Now (32) implies that expression (34) is less than or equal to zero, contradict-
ing a property of the ex post dual solution (25). Q.E.D.

Since the equivalence holds for all complete information type spaces, it must
also hold for all type spaces. Example 3 considered a balanced budget problem
with two agents. It already indicated the crucial role of the type space for the in-
terim implementation result. The main feature of the example was that ex post
implementation and interim implementation on all type spaces was impossi-
ble, yet interim implementation on all payoff type spaces was possible. This
illustrates that the equivalence result for I = 2 does not hold if all complete
information type spaces are replaced with all payoff type spaces.
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For I = 2 we directly used the budget balance to combine the ex post incen-
tive constraints for agent 1 and agent 2 at a true payoff type profile θ against
reports r1 and r2, respectively, into a single constraint for the true state θ and
pair of misreports r = (r1� r2). The resulting dual variable λ(θ� r) of the ex post
constraint has the same dimension as the interim incentive constraints of the
complete information type space with true type profile θ and report r. We then
directly used the existence of λ(θ� r) to prove that interim implementation on
the complete information type space is impossible.21

With more than two agents we have to consider the ex post incentive con-
straints of each agent separately and then link them through the additional
budget balance constraints

fi(θ
′
i� θ−i)− fi(θi� θ−i)+ δi(θ

′
i|θi� θ−i)≤ 0 ∀ i�∀θ(35)

and the balanced budget constraint

I∑
i=1

fi(θ)= 0 ∀θ�(36)

The dual problem to (35) and (36) with the multipliers λi :Θi ×Θi ×Θ−i → R+
and ν :Θ → R is given the ex post flow condition (EF)

ν(θ)=
∑
θ′
i∈Θi

λi(θ
′
i� θi� θ−i)−

∑
θ′
i∈Θi

λi(θi� θ
′
i� θ−i)(37)

for all θ ∈Θ and all i, and the ex post weighting condition (EW)

I∑
i=1

∑
θ∈Θ

∑
θ′
i∈Θi

λi(θ
′
i� θi� θ−i)δi(θ

′
i|θi� θ−i) > 0�(38)

Thus ex post implementation is impossible if and only if there exist (λ� ν) sat-
isfying EF and EW. In the case where each agent has exactly two types, we can
use this ex post dual characterization to show the impossibility of interim im-
plementation on all payoff type spaces. In particular, if ex post implementation
fails, we can construct a payoff type spaces where interim implementation fails:
whenever∑

θ−i

λi(θi� θ
′
i� θ−i) > 0

21We would like to thank an anonymous referee for suggesting the direct argument presented
here.
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for some θi = θ′
i, let type θi assign probability

λi(θi� θ
′
i� θ−i)∑

θ−i
λi(θi� θ

′
i� θ

′
−i)

(39)

to his opponents type profile θ−i (this construction is well-defined exactly be-
cause there is only one possible θ′

i = θi). Now summing interim incentive com-
patibility constraints will give a contradiction.

We will show the stronger result that ex post implementation is equivalent
to interim implementation on all common prior payoff type spaces. For this, it
is necessary to establish properties of the ex post multipliers; we will show that
any solution to EF and EW takes a simple form. Given a dual solution to the
ex post program, we refer to λi(θ

′
i� θi� θ−i) > 0 as an outflow from (θi� θ−i) and

correspondingly as an inflow into (θ′
i� θ−i). Consistent with this language, we

refer to the profile (θi� θ−i) as a source if there are only outflows,∑
θ′
i∈Θi

λi(θ
′
i� θi� θ−i) > 0 and

∑
θ′
i∈Θi

λi(θi� θ
′
i� θ−i)= 0�

and refer to (θi� θ−i) as a sink if there are only inflows,∑
θ′
i∈Θi

λi(θ
′
i� θi� θ−i)= 0 and

∑
θ′
i∈Θi

λi(θi� θ
′
i� θ−i) > 0�

In the simple solution, every payoff profile θ is either a sink or source, the
ex post incentive multipliers λi(θ

′
i� θi� θ−i) are either 0 or 1, and the budget

balance multipliers ν(θ) are either −1 or +1. In graph-theoretic terms, the
multipliers (ν�λ) form the unique solution to the two-coloring problem, which
we illustrate in Figure 1 for the case of I = 3.

Given this simple structure of the ex post dual, the flow equality ensures that
the posteriors can be generated from a common prior. In fact, the resulting
common prior p(·) puts uniform probability on all sources and zero probability
on all the sinks as illustrated in Figure 1. The resulting type space is a common
prior payoff type space with correlation. Finally, when we add up all the interim
incentive constraints under these posteriors, due to the 0�1 property of the
posteriors and the balanced budget postulate, all the transfers cancel out and
we are exactly left with the sum that appears in the ex post weighting inequality.
By the hypothesis of the ex post dual, the sum is positive and hence the interim
incentive constraints cannot be satisfied either.22

22The dual argument for the hypercube encompasses the cubical array lemma in Walker (1980)
that establishes necessary and sufficient conditions for dominant strategy implementation with
budget balance in a private value model. Walker considers dominant strategy implementation
when the set of possible preferences is given by the class of all utility functions on a given set
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FIGURE 1.—Ex post dual solution.

PROPOSITION 6 —Equivalence with Budget Balance: I > 2: If #Θi ≤ 2 for
all i and F is interim implementable on all payoff type spaces, then F is ex post
implementable.

PROOF: We first note that if any agent has only one type, then a well-known
argument establishes that budget balance has no bite, since the single type can
absorb the budget surpluses or deficit (see Mas-Collel, Whinston, and Green
et (1995, p. 881)). Thus suppose that #Θi = 2 for all i. The proof is by con-
tradiction. Thus suppose F is not ex post implementable and hence there does
not exist a solution to the ex post incentive constraints and budget balance
constraints, (35) and (36). By Farkas’ lemma with equality constraints, it then

of allocations. This allows him to assert that the only dominant strategy incentive compatible
transfer functions (without regard to budget balance) are the exact Groves schemes. Whereas the
Groves schemes represent the marginal contributions of each agent at each type profile, budget
balance can be translated into an equality constraint on the sum of the differences of the social
valuations at the true profiles on the hypercube. Generically, the social values will not satisfy the
equality. In the current model, we are only considering a finite set of preferences for each agent,
and hence the set of dominant strategy incentive compatible transfers (without regard to budget
balance) is larger than the set of exact Groves schemes. For the hypercube, this implies that the
sum of differences in Walker is always strictly larger than our weighting inequality, and thus if
budget balance fails on the hypercube and the weighting inequality is positive, then the Groves
schemes will necessarily fail as well.
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follows that there must exist a solution to the dual problem (37) and (38) that
satisfies λi(θ

′
i� θi� θ−i)≥ 0 ∀ i�∀θ.

Next we show that if a solution {ν(θ)�λi(θ
′
i� θi� θ−i)} exists, then there also

exists a solution such that for all i� θ� and θ′
i,

ν(θ) ∈ {−1�1}� λi(θ
′
i� θi� θ−i) ∈ {0�1}�(40)

λi(θ
′
i� θi� θ−i)+ λi(θi� θ

′
i� θ−i)= 1�

The binary payoff type space implies that for a given θi, payoff type θ′
i = θi is

uniquely determined. We first observe that a necessary condition for interim
(and ex post) incentive compatibility on all payoff type spaces is that for all i
and all θ−i,

fi(θ
′
i� θ−i)− fi(θi� θ−i)+ δi(θ

′
i|θi� θ−i)≤ 0

and

fi(θi� θ−i)− fi(θ
′
i� θ−i)+ δi(θi|θ′

i� θ−i)≤ 0�

By summing the two inequalities, we obtain that for all i and all θ−i,

δi(θ
′
i|θi� θ−i)+ δi(θi|θ′

i� θ−i)≤ 0�(41)

Based on the given solution {ν(θ)�λi(θ
′
i� θi� θ−i)}, we then propose a new solu-

tion {ν(θ)� λ̂i(θ
′
i� θi� θ−i)}, which is defined by

λ̂i(θ
′
i� θi� θ−i)� max

{
λi(θ

′
i� θi� θ−i)− λi(θi� θ

′
i� θ−i)�0

}
and, correspondingly,

λ̂i(θi� θ
′
i� θ−i)� max

{
λi(θi� θ

′
i� θ−i)− λi(θ

′
i� θi� θ−i)�0

}
�

By construction the new solution satisfies the equality constraints (37) under
the original values ν(θ) and by (41) weakly increases the right-hand side of the
inequality constraint (38). Accordingly, equalities (37) simplify to either

ν(θ)= λ̂i(θ
′
i� θi� θ−i) ∀ i(42)

or

ν(θ)= −λ̂i(θi� θ
′
i� θ−i) ∀ i�(43)

Due to the binary property of the type space Θi and the fact that equalities
(42) and (43) have to hold for all agents simultaneously, we obtain a bipar-
tition of the type space Θ into subsets Θ′ and Θ′′ (in graph-theoretic terms
they form the unique solution to the two-coloring problem) such that for all
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θ ∈ Θ′� ν(θ) > 0 and for all θ ∈ Θ′′, ν(θ) < 0. We can finally normalize ν(θ)
and λ̂i(θ

′
i� θi� θ−i) by dividing through |ν(θ)| to obtain a solution, denoted by

{ν∗(θ)�λ∗
i (θ

′
i� θi� θ−i)}, with the desired properties described in (40). Inequal-

ity (38) now reads

I∑
i=1

∑
θ∈Θ′

δi(θ
′
i|θi� θ−i) > 0�(44)

We obtain a contradiction to (44) by considering the interim implementation
for the payoff prior, which puts uniform probability on all θ ∈ Θ′ and zero
probability on all θ ∈ Θ′′. By the hypothesis of interim implementability, the
interim incentive constraints for every i and every θi,∑

(θi�θ−i)∈Θ′

[
fi(θ

′
i� θ−i)− fi(θi� θ−i)+ δi(θ

′
i|θi� θ−i)

]
p(θ−i|θi)≤ 0�

can be satisfied with a balanced budget transfer scheme. By summing the in-
terim incentive constraints over all agents and omitting the constant (on Θ′)
probability p(θ−i|θi), we get

I∑
i=1

∑
(θi�θ−i)∈Θ′

[
fi(θ

′
i� θ−i)− fi(θi� θ−i)+ δi(θ

′
i|θi� θ−i)

] ≤ 0�

and by the balanced budget stipulation, the transfers drop out and we are left
with

I∑
i=1

∑
(θi�θ−i)∈Θ′

δi(θ
′
i|θi� θ−i)≤ 0�

which provides the desired contradiction to (44). Q.E.D.

In an earlier version of this paper (Bergemann and Morris (2003)), we
demonstrated, by means of an example, the tightness of the ex post equiva-
lence results obtained in Propositions 5 and 6. Example 4 consisted of three
agents in which the first agent had three payoff types and the remaining two
agents had binary payoff type spaces. With this minimal relaxation of either of
the above sufficient conditions, we have an example where ex post implemen-
tation is impossible while interim implementation (using a single mechanism)
is possible on all type spaces. We conjecture that ex post equivalence results
may again be obtained in a general environment with I > 2 and #Θi > 2 only
after imposing suitable restrictions on the environment such as single crossing
or supermodularity conditions.
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6. DISCUSSION

6.1. A Classical Debate

An old debate in the Bayesian implementation literature went as follows.
Some scholars pointed out that—as a practical matter—the planner was un-
likely to know the true prior over the type space. Therefore, it would be desir-
able to have a mechanism that was going to work independently of the prior.
For a private values environment, Dasgupta, Hammond, and Maskin (1979),
Ledyard (1978, 1979), and Groves and Ledyard (1987) observed that if a direct
mechanism was going to implement a social choice correspondence for every
prior on the type space, then there must be dominant strategies implemen-
tation. Other scholars pointed out that if the planner did not know the prior
(and the agents do), then we should not restrict attention to direct mechanisms;
rather, we should allow the mechanism to elicit reports of the true prior from
the agents (since this information is nonexclusive in the sense of Postlewaite
and Schmeidler (1986), this elicitation will not lead to any incentive problems).
A formal application of this folk argument appears in the recent work of Choi
and Kim (1999). How do our results fit into this debate between the “practical
designers” and the “implementation purists”?

Our results allow for interdependent values, but we believe they clarify this
debate when restricted to private values (recall that ex post incentive compati-
bility implies dominant strategies incentive compatibility under private values).
• In some environments, even if the designer was allowed to elicit the true

prior, implementation for every prior on the fixed type space implies dom-
inant strategy implementation. In these environments, the practical design-
ers’ conclusion is immune to the purists’ criticism. These environments
include separable environments (Proposition 2) and quasilinear environ-
ments with budget balance but at most two types for each player (Propo-
sition 6).23

• In some environments, the purists’ criticism binds. That is, dominant strategy
implementation is impossible, but Bayesian implementation is possible for
every prior on a fixed type space. This was true of Examples 1 and 2, and we
can also construct quasilinear environments with budget balance where it is
true.

• A second practical criticism of the classical Bayesian implementation litera-
ture is that not only may the planner not know the true prior over the payoff
types, but the agents may not know the true prior either. We have formal-
ized this criticism by requiring implementation on type spaces larger than

23Mookerjee and Reichelstein (1992) examine the relationship between Bayesian implementa-
tion and dominant strategy implementation in the private value environment. If dominant strat-
egy implementation of an allocation rule is possible, then it is possible to do so in a way that
generates any expected transfer levels achievable under Bayesian implementation of that alloca-
tion rule.



1810 D. BERGEMANN AND S. MORRIS

the payoff type space, and we have shown that in some environments, im-
plementation on all type spaces implies dominant strategies implementation
even when interim implementation for all priors on the payoff type space
does not (Example 3 and Proposition 5).24

6.2. Genericity

If we restrict attention to “generic” priors on the payoff type space (or any
fixed finite type space), it is possible to obtain very permissive implementa-
tion results. Thus arguments in d’Aspremont and Gerard-Varet (1979) and
d’Aspremont, Cremer, and Gerard-Varet (1995, 2004) establish that it is possi-
ble to implement any allocation rule in a quasilinear environment with budget
balance for a generic set of priors on all fixed type spaces. This contrasts with
our results that show that implementation in some quasilinear environments
with budget balance for all priors on (the fixed) payoff type space is equiva-
lent to ex post implementation, which is known to be impossible under quite
general conditions.

As emphasized by Neeman (2004), “generic” priors entail some counterintu-
itive properties, e.g., that a planner can infer an agent’s valuation of an object
from that agent’s beliefs about other agents’ types. In any case, the justifica-
tion for fixing a set of types, “generically” picking a prior, and then assuming
common knowledge of that prior is not clear. Some current work tries to iden-
tify more natural ways to think about genericity.25 In this work, we have not
discussed any results that rely on genericity notions.26

6.3. Augmented ex post Equivalence

In nonseparable environments, ex post implementability may be a strictly
stronger requirement than interim implementability on all type spaces. Is there
a natural weakening of ex post implementability that is necessary? Consider
an augmented mechanism where each agent’s report consists of his payoff type
and a supplemental message. An agent’s strategy is truthful if he always cor-
rectly reports his payoff type. A decision rule that maps message profiles into
outcomes is augmented ex post incentive compatible if an agent who expects
all other agents to report truthfully has a truthful best response. A social choice

24Example 3 has interdependent values, but we could mechanically turn it into a private value
example the same way we constructed Example 2 as a private value version of Example 1.

25Morris (2002) and Dekel, Fudenberg, and Morris (2005) examine ways to define “strategic
topologies” on types in the universal type space that might suggest useful topological notions of
genericity. Heifetz and Neeman (2004) argue that among common prior belief closed subspaces
of the universal type space, the type spaces often described as generic are not “prevalent” in the
sense of Christiansen (1974), Hunt, Sauer, and Yorke (1992), and Anderson and Zame (2001).

26Genericity issues are discussed at greater length in the working paper version of this paper,
Bergemann and Morris (2003).



ROBUST MECHANISM DESIGN 1811

correspondence F is augmented ex post implementable if there exists an aug-
mented ex post incentive compatible decision rule that (under truthful strate-
gies) always achieves outcomes in F . We showed in the working paper version
of this paper (Bergemann and Morris (2003)) that (up to some technical re-
strictions) augmented ex post incentive compatibility is equivalent to interim
implementability on all type spaces. Now an interesting way to characterize im-
plementation problems is how many supplemental messages are needed. For
separable environments, no extra messages are needed. In the worst case, the
supplemental message might consist of the agent’s belief over T ∗

−i in the univer-
sal type space and we would be looking at a direct mechanism on the universal
type space. An interesting problem for future research is the characterization
of how many supplemental messages are required for different classes of prob-
lems.
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