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1. All Pay Auction. Complete Information.The rules of the all pay
auction are: (i) the highest bid receives the object, (ii) each bidder pays
his bid, independent of whether he wins or loses the object. If two bidders
offer exactly the same bid, then each bidder receives the object with equal
probability

(a) Consider the complete information version of the all pay auction.
There are two bidders, and each bidder values the object at v > 0.

i. Argue first that there cannot be a pure strategy equilibrium in
this game.

ii. Argue next that there cannot be a mixed strategy equilibrium
where any specific bid receives a strictly positive probability.

iii. Argue next that the support of the equilibrium bidding strategy
must form an interval, that is, it is convex and does not display
any gaps.

iv. Now compute the mixed strategy Nash equilibrium of the all pay
auction and argue that the expected net utility has to be equal
to zero.

(b) Consider the complete information version of the all pay auction.
There are two bidders, but now each bidder values the object dif-
ferently, namely v1 > v2 > 0. Compute the mixed strategy Nash
equilibrium of the all pay auction.

i. Verify that the losing bidder may now place an atom, a positive
probability on the lower bound, of the support of his strategy.

ii. Now compute the mixed strategy Nash equilibrium of the all pay
auction and identify the expected net utility of each bidder.

iii. Is the resulting equilibrium leading to an efficient allocation of
the object.

[Solution]
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(a) (i) It is easy to see that bidding above v is always strictly dominated,
so it is easy to see that it will never be played. On the other hand,
note that all players bidding 0 is also not an equilibrium, as one
player could get the object a price ε (were ε is always considered a
“small enough” number). By the same argument there must be at
least two players bidding more than 0 in equilibrium.

Consider now pure strategies. If one player is submitting a strictly
positive bid that does not win the object for sure there are two possi-
bilities. Either he never wins the object, in which case he has a best
response that is bidding 0. Otherwise there is a tie at the maximum
bid, but in this case one of the players can increase his own bid by ε
and win it for sure, making it a profitable deviation.

(ii) Consider a bid that receives a strictly positive probability, which
we call bi. There are two possibilities. Either at least one other
player is playing a mixed strategies and bids ε smaller than bi receive
a positive probability density. In this case the other players can
increase the bid by ε, and increase their probability of winning in a
positive amount (as bi receives a mass of probability). If there is no
bid in an interval [bi− ε, bi], then player i that is submitting bi could
decrease bi and keep exactly the same probability of winning. Thus,
this cannot be an equilibrium either.

(iii) Suppose there exists an interval [b, b′] in which on bid is sub-
mitted, but some bids greater than b′ are submitted, which we know
must have continuous density. Then, for some bid close enough to
b′ a player can decrease the bid all the way down to b, keeping the
probability of winning ε small, but paying b − b′ less. For ε small
enough this is a profitable deviation. Note that we have proved that
there are no gaps in the submitted bids by all players. If we restrict
attention to symmetric strategies this implies that no players plays
a strategy that has a gap.

(iv) We look for a symmetric equilibrium in which players on average
get a payoff of 0, which we will denote σ. Note that σ represents
a probability density in [0, v], and we denote by Σ the cumulative
probability distribution of σ. The probability of winning when sub-
mitting bid b is given by Σ(b)n−1. Thus, since a player gets a payoff
of 0 for each bid he submits, we have that,

v · Σn−1(b) = b ∀b ∈ [0, v] such that Σ(b) < 1.
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This implies that the cumulative distribution is given by:

Σ(b) = (
b

v
)n−1

Thus, the strategy of players is given by:

σ(b) = (
b

v
)n−2(n− 1) for all b ∈ [0, v].

Note that all players get on expectation 0 from their bids.

(b) (i) This will become clear from the construction of the equilibrium.

(ii) We look for an equilibrium in which the player with lower valu-
ation gets 0 expected profits. Thus, we must have that for all bids
that agent 2 submits he gets 0 profits. Thus,

v2 · Σ1(b) = b ∀b ∈ [0, v2] such that Σ2(b) < 1.

where we denote the strategy of high and low valuation player by
subindices 1 and 2. This implies that:

Σ1(b) =
b

v2
∀b ∈ [0, v2] such that Σ2(b) < 1.

Note that we are looking for an equilibrium in which player 2 gets
0 expected profits, so he cannot bid v2 and win the object for sure.
Thus, the support of σ1 must be [0, v2]. Thus, the support of σ2 must
also be [0, v2]. Thus, we have that:

σ1(b) =
1

v2
for all b ∈ [0, v2]

We know that for all bids that player 1 submits, he must get the
same expected profits. Thus, there exists a c such that (since player
1 gets positive expected c 6= 0).,

v1 · Σ2(b)− b = c ∀b ∈ [0, v1] such that Σ1(b) < 1.

We know that player 1 can bid v2 and get the object for sure. Thus,
his expected rents must be v1 − v2. Thus, we have that:

c = v1 − v2
Whenever player 1 bids 0, his expected profits must be v1 − v2, so
he must win the object with probability (v1 − v2)/v1 Thus, we have
that the strategy of player 2 will be

Σ2(b) =
(v1 − v2)

v1
+ (

v2
v1

)(
b

v2
) for all b ∈ [0, v2]
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This implies that player 2 plays 0 with probability (v1 − v2)/v1 and
a uniform [0, v2] with the complementary probability. Finally, note
that the tie breaking rule is key to keep player 2 indifferent between
bidding 0 and some number ε above 0, as he always wins against vl
if he is vh.

(iii) Obviously not as high valuation player. Note that the revenue
equivalence does not hold as bids are not strictly increasing in agents
type, and thus the low valuation agent gets the object with positive
probability

2. All Pay Auction. Incomplete Information. The rules of the all pay
auction are: (i) the highest bid receives the object, (ii) each bidder pays
his bid, independent of whether he wins or loses the object.

(a) Characterize the equilibrium of the all-pay auction in the symmetric
environment with a uniform distribution on the unit interval for I = 2
bidders. (Hint: Guess that the equilibrium bidding function is an
increasing and quadratic function.)

(b) Characterize the equilibrium of the all-pay auction in the symmetric
environment with a continuously differentiable distribution function.
(You may either proceed similarly to the method we proceeded in
class and/or directly the assume the validity of the revenue equiva-
lence theorem.)

[SOLUTION]

(a) Let there be N bidders with uniformly distributed valuations. Re-
member that in this incomplete information game, a player’s type is
her valuation and a strategy is a function mapping valuations into
bids.

Look for a symmetric equilibrium in which players use a strictly in-
creasing (identical) bidding function bi (vi) = b (v) ∀i. If all players
j 6= i follow a strategy βj (vj), then player i’s payoff is given by:

ui
(
vi, bi, βj

)
= vi

∏
j 6=i

Pr
(
bi > βj

)
− bi

= vi
∏
j 6=i

Pr
(
β−1j (bi) > vj

)
− bi

= viF
N−1 (β−1j (bi)

)
− bi

= vi
[
β−1j (bi)

]N−1 − bi.
Differentiating with respect to bi one obtains

vi (N − 1)
[
β−1j (bi)

]N−2 1

β′j
(
β−1j (bi)

) − 1 = 0
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Imposing symmetry
(
β ≡ b, β−1 (b) = v

)
:

v (N − 1) vN−2
1

b′ (v)
− 1 = 0

b′ (v) = (N − 1) vN−1

b (v) =
N − 1

N
vN

From this solution you can verify that for N = 2 the bidding function
is quadratic.

(b) Follow the previous steps, suppose a symmetric equilibrium in which
players use a strictly increasing (identical) bidding function bi (vi) =
b (v) ∀i. If all players j 6= i follow a strategy βj (vj), then player i’s
payoff is given by:

ui
(
vi, bi, βj

)
= vi

∏
j 6=i

Pr
(
bi > βj

)
− bi

= vi
∏
j 6=i

Pr
(
β−1j (bi) > vj

)
− bi

= viF
N−1 (β−1j (bi)

)
− bi

Differentiating with respect to bi one obtains

vi (N − 1)
[
F (β−1j (bi))

]N−2 f(β−1j (bi))

β′j
(
β−1j (bi)

) − 1 = 0

Imposing symmetry
(
β ≡ b, β−1 (b) = v

)
:

v (N − 1)F (v)N−2
f(v)

b′ (v)
− 1 = 0

b′ (v) = v (N − 1)F (v)N−2f(v)

b (v) = (N − 1)

∫ v

0

yF (y)N−2f(y)dy

Notice that if F (y) ∼ Uniform[0, 1], we obtain the result of part (a).

3. First Price Auction. Consider the first price auction in a symmetric
environment with binary valuations, i.e. the value of bidder i is given by
vi ∈ {vl, vh} with 0 ≤ vl < vh <∞. It is sufficient to consider the case of
i = 1, 2. (You may assume an efficient tie-breaking rule; i.e. if the there
are two bidders, then the bidder with the higher value receives the object,
if they have the same value, then the probability of receiving the object
is the same.)

(a) The prior probability is given by Pr (vi = vh) = α for all i. Charac-
terize the equilibrium in the first price auction. (Hint: Can you find
a pure strategy Bayesian Nash equilibrium?)

5



(b) The prior probability is now given by Pr (vi = vh) = αi with 0 <
α1 < α2 < 1. Characterize the equilibrium in the first price auction.
(Hint: Can you find a pure strategy Bayesian Nash equilibrium?)

(c) Does the revenue equivalence result between the first and the second
price auction still hold with the binary payoff types.

[SOLUTION]

(a) Consider only the case with 2 bidders and focus on symmetric interim
BNE. First of all, note that for any type {vl, vh}, it is irrational to
bid above her own valuation, ie, b(vi) ≤ vi, for all i. Given this, any
bidder of the high type, vh, will always bid above vl, since there is
no point in bidding below vl and incur the risk of loosing against a
low type when she could easily win and make positive profit. So, in
any BNE it must be the case that vl ≤ b(vh) ≤ vh. Now let’s focus
on each type separetely.

• Low Type: in any BNE, we must have b(vl) = vl, because for any
strategy such that b(vl) < vl, the low type bidder has an incen-
tive to deviate and bid slightly more than b, win with positive
probability (when the other bidder is a low type) and, so, obtain
a positive expected payoff. (Of course she always get a payoff of
zero when playing against a high type).

• High Type: once that b(vl) = vl and vl ≤ b(vh) ≤ vh in any
BNE, we see that the high type prefers to bid as close as possible
to vl when playing against a low type (since then she wins the
auction and pays the lowest price possible) but as large as vh
when against a high type (since for any given strategy profile
such that b(vh) < vh, she would have an incentive to deviate and
bid slightly above b(vh), and obtain positive payoff for sure). In
any case, if (a) bi < bj < vh, then i would have a profitable
deviation; if (b) vl ≤ bj < bi < vh, then again i would have a
profitable deviation; and if (c) bj ≤ bi = vh, once more i would
have a profitable deviation since this action garantees a zero
payoff while biding less than vh gives a positive expected payoff
(since high type always win against low type and she would pay
less than her own valuation). Because of this discontinuity in the
expected payoff, there is no pure strategy best reply to strategies
such that b(vl) = vl and vl ≤ b(vh) ≤ vh. Ie, there is no pure
strategy BNE here.
So, let’s look for a mixed strategy BNE. From the discussion
above, the only type that is willing to mix is the high type. So
let’s propose a BNE such that b(vl) = vl and the high type mixes
with the distribution F (b) over some support [b, b].
Of course, from above, we must have vl ≤ b ≤ b ≤ vh. Moreover,
the lower bound must be b = vl, because if b was strictly greater
than vl then bids in the interval (vl, b) would be preferred to b. A
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subtlety here is that although b = vl, we must have the support
to be open at the lower bound, ie, (vl, b]. The reason is that when
the high type bids vl there is a tie whenever the opponent is a
low type and they get the good with probability 1/2, by the tie-
breaking rule. This situation gives a smaller payoff for the high
type than the expected payoff obtained when bidding slightly
above vl. However, if the mixed strategy F (b) puts mass zero at
this left-end point, then this event occurs with zero probability
and we do not need to care about it. In this case we could use
the support as [vl, b].

1

Actually, the distribution F (b) has to be continuous because if
it is not (at some point b), the other player could put more mass
right above b and get higher expected payoff. So from now on,
suppose F (b) is continuous and the support is [vl, b]. Now we
have to find both b, F (b) and we have to show that there is no
incentive for the high type to deviate from this strategy.

• Find b: when b = vl, the expected payoff of the high type is
(1 − α)(vh − vl). At any other b in the support, the expected
payoff is (1 − α)(vh − b) + α(vh − b)F (b). Therefore, bmust be
such that (1 − α)(vh − vl) = (1 − α)(vh − b) + α(vh − b), since
F (b) = 1. Implying b = αvh + (1 − α)vl. Note, as (should be)
expected, that b < vh.

• Find F (b): from the previous reasoning it is easy to deduce that
for all b ∈ [vl, αvh + (1− α)vl], we have that

(1− α)(vh − vl) = (1− α)(vh − b) + α(vh − b)F (b)

⇒ F (b) =
1− α
α

[
(vh − vl)
(vh − b)

− 1

]
• Check this is a BNE: the high type is indifferent, by construction,

over the support [vl, αvh + (1 − α)vl]. Moreover, she does not
want to deviate since (i) any b < vl gives a payoff of zero, which
is smaller than the payoff (1 − α)(vh − vl) obtained when using
the mixed strategy; and (ii) any b ∈ (αvh + (1−α)vl, vh] gives a
payoff smaller than vh − {αvh + (1 − α)vl} = (1 − α)(vh − vl).
Hence, bids within the support are better than bids outside the
support. Consequently, the high type does not deviate from the
proposed mixed strategy. Since the low type gives a best response
b(vl) = vl, we found a symmetric BNE of this game.

(b) The strategies calculated in the previous part where meant to leave
the other agent indifferent when he is the high type. Yet, for an agent
conditional on being the high type, these strategies will still work for

1Another solution would be to impose a tie-breaking rule that gives the object to the
highest type whenever a tie ocurs.
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all bids in the support of the distribution. That is, we just index the
strategy by the agents own prior distribution as follows:

Fi(b) =
1− αi
αi

[
(vh − vl)
(vh − b)

− 1

]
Once again, as these strategies left the other agent indifferent in the
previous part, they will still keep the agent indifferent independent on
what was the prior. Yet, this is only true for b ∈ [vl, αivh+(1−αi)vl].
Thus, if we assume each player plays according to Fi ,then for player
two there will be bids in the support of his strategy that are not in
the support of the strategy of player 1. This cannot be optimal, as
he could reduce the bids keeping the probability of winning constant.

Thus, we assume that player 1 plays the same strategy as before,
but we modify the strategy of player 2. We do this by assuming he
will play a mass of probability at vl when his type is vh. The mass
of probability is such that it induces the same expected distribution
over bids as the one that player 1 has. Since player 2 is high type
with higher probability, he can play vl with a mass probability when
he is vh and induce the same distribution over bids as player 1.

Summing up, the equilibrium bidding strategies are given by (these
are the distributions conditional on being vh, conditional on being vl
both players bid vl):

F1(b) =
1− α1

α1

[
(vh − vl)
(vh − b)

− 1

]
F2(b) = (1− α2 − α1

α2
)
1− α1

α1

[
(vh − vl)
(vh − b)

− 1

]
+
α2 − α1

α2
.

Just to repeat the argument one more time. Both players play vl
with probability 1 − α1. Player 1 plays vl when he is type vl only.
On the other hand, player 2 plays vl when he is vl, but when he is
vh he also plays vl with probability (α2 − α1)/α2. Note that,

1− α1 = 1− α2 + α2 ·
(α2 − α1)

α2
.

Since the strategy of both player plays all other bids with the same
probability, the final (unconditional) distribution over bids is the
same for player 1 and player 2 (even when their strategies are differ-
ent!). Since we already showed that under these distributions players
were indifferent between all bids, this is still an equilibrium (as we
have not changed the distribution over bids).

(c) Consider the Second Price Auction first. The equilibrium in domi-
nant strategies is, as usual, b(vi) = vi for both types. The expected
revenue therefore is R(SPA) = (1−α)2vl + 2α(1−α)vl +α2vh, where
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the first term is the probability of having two bidders with low type
times the corresponding payment; the second term reflects the cases
where one bidder is low type and the other is a high type and so on.

In the First Price Auction, the expected revenue is R(FPA) = (1 −
α)2vl + 2α(1−α)E(bh) +α2E(b(1)), where E(bh) is the expected bid
of the high type when she mixes (since that is the expected payment
when one bidder is a low type and the other is a high type); and
E(b(1)) = E(max{b1, b2}) (since that is the expected payment when
the two bidders are of a high type).

Now we have to solve some tedious algebra. First note that R(SPA) =
R(FPA) if and only if the last two terms of each coincide, i.e., iff
2α(1− α)vl + α2vh = 2α(1− α)E(bh) + α2E(b(1)).

Now, notice that, by integration by parts,

E(bh) =

∫ b

vl

b.dF (b) = b−
∫ b

vl

1− α
α

[
(vh − vl)
(vh − b)

− 1

]
db

therefore,

2α(1−α)E(bh) = 2α(1−α)b− 2(1−α)2
∫ b

vl

[
(vh − vl)
(vh − b)

− 1

]
db (1)

Also, by integration by parts again and noticing that b(1) ∼ [F (b)]2

E(b(1)) = b−
∫ b

vl

(
1− α
α

)2 [
(vh − vl)
(vh − b)

− 1

]2
db

implying

α2E(b(1)) = α2b− (1− α)2
∫ b

vl

[
(vh − vl)
(vh − b)

− 1

]2
db

= α2b−(1−α)2
∫ b

vl

(
vh − vl
vh − b

)2

db+2(1−α)2
∫ b

vl

(
vh − vl
vh − b

)
db−(1−α)2

∫ b

vl

1.db

(2)

Notice the last term of 2α(1−α)E(bh), in (1), and the two last terms
of α2E(b(1)), in (2). Therefore, we have that

[2α(1− α)E(bh)] + [α2E(b(1))] =

=

[
2α(1− α)b+ (1− α)2

∫ b

vl

1.db

]
+

[
α2b− (1− α)2

∫ b

vl

(
vh − vl
vh − b

)2

db

]

=
[
2α(1− α)b+ (1− α)2(b− vl)

]
+

[
α2b− (1− α)2(vh − vl)2

[
1

vh − b

]b
vl

]
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=
[
2α(1− α)b+ (1− α)2(b− vl)

]
+

+

[
α2b− (1− α)2(vh − vl)2

[
1

(1− α)(vh − vl)
− 1

(vh − vl)

]]
= 2α(1−α)b+(1−α)2(b−vl)+α2b−(1−α)(vh−vl)+(1−α)2(vh−vl)

After some more algebra and using b = αvh + (1− α)vl, we obtain

= 2α(1− α)vl + α2vh

Hence [2α(1− α)E(bh)] + [α2E(b(1))] = 2α(1− α)vl + α2vh, and, so,
the revenue equivalence holds here.

4. Bilateral Trading. Suppose there is a continuum of buyers and sell-
ers (with quasilinear preferences). Each seller initially has one unit of
indivisible good and each buyer initially has none. A seller’s valuation
for consumption of the good is θ1 ∈ [θ1, θ1], which is independently and
identically drawn from distribution Φ1(·) with associated strictly posi-
tive density φ1(·). A buyer’s valuation from consumption of the good is
θ2 ∈ [θ2, θ2], which is independently and identically drawn from distribu-
tion Φ2(·) with association strictly positive density φ2(·).

(a) Characterize the trading rule in an ex post efficient social choice
function. Which buyers and sellers end up with a unit of the good?

(b) Exhibit a social choice function that has the trading rule you identi-
fied in (a), is Bayesian incentive compatible, and is the individually
rational. [Hint: Think of a ”competitive” mechanism.] Conclude
that the inefficiency identified in the Myerson-Satterthwaite theorem
goes away as the number of buyers and sellers grows large.

[SOLUTION]

(a) The ex post efficient trading rule will have all the highest valuation
agents owning a unit of the good. That is, we may have only buyers, only
sellers or a mixture of both ending up with the good, as long as there is
some θ̃ such that all agents with θ ≥ θ̃ have one unit of the good and
all others do not. The total amount of good is given by the continuum
[θ1, θ1].

(b) Define the following “competitive” social choice function as follows:
let qS and qD denote market supply and demand, and be defined as:

qD =


θ2 − θ2 for p ≤ θ2
(θ2 − θ2)

∫ θ2
p
dΦ2(θ) for θ2 ≤ p ≤ θ2

0 for p ≥ θ2
qS =


0 for p ≤ θ1
(θ1 − θ1)

∫ p
θ1
dΦ1(θ) for θ1 ≤ p ≤ θ1

θ1 − θ1 for p ≥ θ1

The market equilibrium price p∗ ≡ min{p : qD(p) ≤ qS(p)}, which is a
well defined object, will cause efficient trade, and will lead to the efficient
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outcome described in (a) above. Trivially, incentive compatibility holds
since there is no need for announcements. It is individually rational since
a buyer will buy if and only if p ≤ θ2 and a seller will sell if and only if
p ≥ θ1. This example shows that for a continuum of buyers and sellers the
Myerson-Satterthwaite theorem (nonexistence of an individual rational,
incentive compatible and ex post efficient direct mechanism) no holds.

5. Single Unit Auction. Suppose the valuation of agent i = 1, 2, and
j 6= i, for the object is given by

ui (θi, θj) = θi + γθj

with 0 < γ < 1. The type θi is private information of agent i and as
the valuation of the object by agent i also depends on the type of his
competitor j, we are in a world of interdependent rather than private
values.

(a) Find a transfer rule t∗ such that truthtelling is an ex post equilibrium
in the direct revelation game and such that the efficient allocation
is realized and such that the transfer of each agent only depends on
the announcement of the other agent and the allocation decision, but
not on the announcement of agent i.

(b) Given the transfer rule, is truthtelling also an equilibrium in domi-
nant strategies?

[SOLUTION]

(a) Let {q(θ), t(θ)} be a direct mechanism where qi(θ) is the probability
that i gets the object, and ti(θ) the transfer from i to the seller.

Efficiency requires that the object goes to the player with the highest
valuation (note that ui ≥ uj ⇔ θi ≥ θj since γ ∈ (0, 1)). Therefore, an
efficient mechanism2 should have for all i 6= j

qi(θ) =

{
1 if θi > θj , θi ≥ 0
0 otherwise

With quasilinear utilities we have that player i’s payoff is then

Ui(θ) = qi(θi + γθ−i)− ti

Consider the following transfer rule

ti(θ) = (1 + γ)θjqi(θ)

where qi is the efficient allocation rule defined above.

2Assuming the prior distributions are such that ties are zero probability events.
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Let’s check in this direct mechanism truthtelling is an ex post equilibrium
and there is efficient allocation of the good. Truthtelling is an ex post
equilibrium iff ∀i, ∀θ

qi(θ)[(θi + γθj)− (1 + γ)θj ] ≥ qi(θ′i, θj)[(θi + γθj)− (1 + γ)θj ] ∀θ′i (3)

For arbitrary θi and θj , from (3) we need to check ∀θ′i

1{θi > θj}[θi − θj ] ≥ 1{θ′i > θj}[θi − θj ] (4)

If θi > θj (4) implies
1 ≥ 1{θ′i > θj}

which holds ∀θ′i, and if θi < θj (4) implies

0 ≤ 1{θ′i > θj}

which again holds ∀θ′i.
(b) Truthtelling is an equilibrium in (weakly) dominant strategies iff3 ∀i,
∀θ, ∀θ′i

qi(θi, θ
′
j)[(θi+γθj)−(1+γ)θ′j ] ≥ qi(θ

′
i, θ
′
j)[(θi+γθj)−(1+γ)θ′j ] ∀θ

′
j (5)

and

qi(θi, θ
′
j)[(θi+γθj)−(1+γ)θ′j ] > qi(θ

′
i, θ
′
j)[(θi+γθj)−(1+γ)θ′j ] for some θ′j .

(6)

To show that truthtelling is not an equilibrium in dominant strategies it
suffices an example that violates (5) and (6). Say j has valuation θj but
reports θ′j with θ′j > θi > θj . If i reports his true valuation, θi, he looses

and gets a payoff of 0. On the other hand if he reports θ′i > θ′j , he wins
and gets a payoff of θi − θj > 0.

Reading MWG: 23, S (=Salanie) 2 and 3

3A similar definition can be given in an interim version without changing the results.
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