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Abstract

We survey the literature on multi-armed bandit models and their

applications in economics. The multi-armed bandit problem is a sta-

tistical decision model of an agent trying to optimize his decisions

while improving his information at the same time. This classic prob-

lem has received much attention in economics as it concisely models

the trade-o� between exploration (trying out each arm to �nd the

best one) and exploitation (playing the arm believed to give the best

payo�).
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Introduction The multi-armed bandit problem, originally described by

Robbins (1952), is a statistical decision model of an agent trying to optimize

his decisions while improving his information at the same time. In the multi-

arm bandit problem, the gambler has to decide which arm of K di�erent

slot machines to play in a sequence of trials so as to maximize his reward.

This classical problem has received much attention because of the simple

model it provides of the trade-o� between exploration (trying out each arm

to �nd the best one) and exploitation (playing the arm believed to give

the best payo�). Each choice of an arm results in an immediate random

payo�, but the process determining these payo�s evolves during the play

of the bandit. The distinguishing feature of bandit problems is that the

distribution of returns from one arm only changes when that arm is chosen.

Hence the rewards from an arm do not depend on the rewards obtained from

other arms. This feature also implies that the distributions of returns do not

depend explicitly on calendar time.

Practical examples of the bandit problem include clinical trials where dif-

ferent treatments need to be experimented with while minimizing patient

losses, or adaptive routing e�orts for minimizing delays in a network. In

an economics environment, experimental consumption is an example of in-

tertemporal allocation problems where the trade-o� between current payo�

and value of information plays a key role. Alternatively, the use of arms may

change their physical properties as in learning by doing where experience

with the arm increases its future payo�s.

Basic Model It is easiest to formulate the bandit problem as an in�nite

horizon Markov decision problem in discrete time with time index t = 0; 1; ::::

At each t; the decision maker chooses amongst K arms and we denote this
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choice by at 2 f1; :::; Kg: If at = k, a random payo� xkt is realized and

we denote the associated random variable by Xk
t . The state variable of the

Markovian decision problem is given by st:We can then write the distribution

of xkt as F
k (�; st) : The state transition function � depends on the choice of

the arm and the realized payo�:

st+1 = �
�
xkt ; st

�
Let St denote the set of all possible states in period t: A feasible Markov

policy a = fatg1t=0 selects an available alternative for each conceivable state
st, i.e.

at : St ! f1; :::; Kg

The following two assumptions must be met for the problem to qualify

as a bandit problem.

1. Payo�s are evaluated according to the discounted expected payo� cri-

terion where the discount factor � satis�es 0 � � < 1:

2. The payo� from each k depends only on outcomes of periods with

at = k: In other words, we can decompose the state variable st into K

components
�
s1t ; :::; s

K
t

�
such that for all k :

skt+1 = s
k
t if at 6= k;

skt+1 = �(s
k
t ; xt) if at = k;

and

F k (�; st) = F k
�
�; skt

�
:

Notice that when the second assumption holds, the alternatives must be

statistically independent.
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It is easy to see that many situations of economic interest are special

cases of the above formulation. First, it could be that F k
�
�; �k

�
is a �xed

distribution with an unknown parameter �k: The state variable is then the

posterior probability distribution on �k: Alternatively, F k
�
�; sk

�
could denote

the random yield per period from a resource k after extracting sk units.

The value function V (s0) of the bandit problem can be written as follows.

Let Xk
�
skt
�
denote the random variable with distribution F k

�
�; skt

�
: Then

the problem of �nding an optimal allocation policy is the solution to the

following intertemporal optimization problem:

V (s0) = sup
a

(
E

1X
t=0

�tXat (satt )

)
:

The celebrated index theorem due to Gittins and Jones (1974) transforms

the problem of �nding the optimal policy into a collection of k stopping

problems. For each alternative k; we calculate the following index 
k
�
skt
�
,

which only depends on the state variable of alternative k:

mk
�
skt
�
= sup

�

(
E
P�

u=t �
tXk

�
sku
�

E
P�

u=t �
t

)
; (1)

where � is a stopping time with respect to fskt g: The idea is to �nd for
each k the stopping time � that results in the highest discounted expected

return per discounted expected number of periods in operation. The Gittins

index theorem then states that the optimal way of choosing arms in a bandit

problem is to select in each period the arm with the highest Gittins index,

mk
�
skt
�
, as de�ned by ( 1).

Theorem 1 (Gittins-Jones (1974))

The optimal policy satis�es at = k for some k such that

mk
�
skt
�
� mj

�
sjt
�
for all j 2 f1; :::; Kg:
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To get the economic intuition behind this theorem, consider the following

variation on the original problem. This reasoning follows the lines suggested

in Weber (1992). The arms are owned and operated by separate risk neutral

agents. The owner can rent a single arm at a time to the operators and there

is a competitive market of potential operators. As time is discounted, it is

clearly optimal to obtain high rental incomes in early periods of the model.

The rental market is operated as a descending price auction where the fee

for operating an arbitrary arm is lowered until an operator accepts the price.

At the accepted price, the operator is allowed to operate the arm as long as

it is pro�table. Since the market for operators is competitive, the price is

such that under an optimal stopping rule, the operator breaks even. Hence

the highest acceptable price for arm k is the Gittins index mk
�
skt
�
, and the

operator operates the arm until its Gittins index falls below the price, i.e. its

original Gittins Index. Once an arm is abandoned, the process of lowering

the price o�er is restarted. Since the operators get zero surplus and they

are operating under optimal rules, this method of allocating arms results in

the maximal surplus to the owner and thus to the largest sum of expected

discounted payo�s.

The optimality of the index policy reduces the dimensionality of the op-

timization problem. It says that the original K�dimensional problem can

be split into K independent components, and then be knitted together after

the solutions of the indices for the individual problems have been computed,

as in formula (1). In particular, in each period of time, at most one index

has to be re-evaluated, the other indices remain frozen.

The multi-armed bandit problem and many variations are presented in

detail in Gittins (1989) and Berry and Fristedt (1985). An alternative proof

of the main theorem, based on dynamic programming can be found in Whittle
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(1982). The basic idea is to �nd for every arm a retirement value Mk
t , and

then to choose in every period the arm with the highest retirement value.

Formally, for every arm k and retirement value M , we can compute the

optimal retirement policy given by:

V k
�
skt ;M

�
, max

�
E
�
Xk
�
sku
�
+ �V k

�
sk+1t ;M

�
;M
�	

(2)

The auxiliary decision problem given by (2) compares in every period the

trade-o� between continuation with the reward process generated by arm k

or stopping with a �xed retirement valueM . The index of arm k in the state

skt is the highest retirement value at which the decision is just indi�erent

between continuing with arm k or retiring with M =M
�
skt
�
:

Mk
�
skt
�
= V k

�
skt ;M

k
�
skt
��
.

The resulting index Mk
�
skt
�
is equal to the discounted sum of 
ow index

mk
�
skt
�
, or Mk

�
skt
�
= mk

�
skt
�
= (1� �).

Extensions Even though it is easy to write down the formula for the Git-

tins index and to give it an economic interpretation, it is normally impossible

to obtain analytical solutions for the problem. One of the few settings where

such solutions are possible is the continuous time bandit model where the

drift of a Brownian motion process is initially unknown and learned through

observations of the process. Karatzas (1984) provides an analysis of this case

when the volatility parameter of the process is known.

From an analytical standpoint, the key property of bandit problems is

that they allow for an optimal policy that is de�ned in terms of indices that

are calculated for the individual arms. It turns out that this property does

not generalize easily beyond the bandit problem setting. One instance where
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such a generalization is possible is the branching bandit problem where new

arms are born to replace the arm that was chosen in the previous period (see

Whittle (1981)).

An index characterization of the optimal allocation policy can still be ob-

tained without the Markovian structure. Varaiya, Walrand, and Buyukkoc

(1985) give a general characterization in discrete time, and Karoui and Karatzas

(1997) provide a similar result in a continuous time setting. In either case,

the essential idea is that the evolution of each arm only depends on the (pos-

sibly entire) history and running time of the arm under consideration, but

not on the realization nor the running time of the other arms. Banks and

Sundaram (1992) show that the index characterization remains valid under

some weak additional condition even if the number of indices is countable,

but not necessarily �nite.

On the other hand, it is well known that an index characterization is not

possible when the decision maker must or can select more than a single arm at

each t: Banks and Sundaram (1994) also show further that an index charac-

terization is not possible when an extra cost must be paid to switch between

arms in consecutive periods. Bergemann and V�alim�aki (2001) consider a sta-

tionary setting in which there is an in�nite supply of ex ante identical arms

available. Within the stationary setting, they show that an optimal policy

follows the index characterization even when many arms can be selected at

the same time or when a switching cost has to be paid to move from one arm

to another.

Market Learning In economics, Bandit problems have �rst been used

to model search processes. The �rst paper that used a one-armed bandit

problem in economics is Rothschild (1974) in which a single �rm is facing
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a market with unknown demand. The true market demand is given by a

speci�c probability distribution over consumer valuations. However the �rm

initially has a prior probability over several possible market demands. The

problem for the �rm is �nd an optimal sequence of prices to learn more

about the true demand while maximizing its expected discounted pro�ts.

In particular, Rothschild shows that ex ante optimal pricing rules may well

end up using prices that are ex post suboptimal (i.e. suboptimal if the

true distribution were to be known). If several �rms were to experiment

independently in the same market, they might o�er di�erent prices in the

long run. Optimal experimentation may therefore lead to price dispersion in

the long run as shown formally in McLennan (1984).

In an extension of Rothschild, Keller and Rady (1999) consider the prob-

lem of the monopolist facing an unknown demand that is subject to random

changes over time. In a continuous time model, they identify conditions on

the probability of regime switch and discount rate under which either very

low or very high intensity of experimentation is optimal. With a low inten-

sity policy, the tracking of the actual demand is poor and the decision maker

eventual becomes trapped, in contrast with a high intensity policy demand is

tracked almost perfectly. Rustichini and Wolinsky (1995) examine the pos-

sibility of mis-pricing in a two-armed bandit problem when the frequency of

change is small. Nonetheless, they show that it is possible that learning will

cease even though the state of demand continues to change.

The choice between various research projects often takes the form of a

bandit problem. In Weitzman (1979) each arm represents a distinct research

project with a random prize associated with it. The issue is to characterize

the optimal sequencing over time in which the projects should be undertaken.

It shows that as novel projects provide an option value to the research, the op-
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timal sequence is not necessarily the sequence of decreasing expected rewards

(even when there is discounting). Roberts and Weitzman (1981) consider a

richer model of choice between R&D processes.

Many Agent Experimentation The multi-armed bandit models have re-

cently been used as a canonical model of experimentation in teams. In Bolton

and Harris (1999) and Keller, Rady, and Cripps (2005) a set of players choose

independently between the di�erent arms. The reward distributions are �xed,

but characterized by parameters that are initially unknown to the players.

The model is one of common values in the sense that all players receive in-

dependent draws from the same distribution when choosing the same arm.

It is assumed that outcomes in all periods are publicly observable and as a

result a free riding problem is created. Information is a public good and each

individual player would prefer to choose the current payo� maximizing arm

and let other players perform costly experimentation with currently inferior

arms. These papers characterize equilibrium experimentation under di�erent

assumptions on the reward distributions. In Bolton and Harris (1999), the

model of uncertainty is a continuous time model with unknown drift and

know variance, whereas in Keller, Rady, and Cripps (2005) the underlying

uncertainty is modelled by an unknown Poisson parameter.

Experimentation and Matching The bandit framework have been suc-

cessfully applied to learning in matching markets such as labor and consumer

good markets. An early example of this is given in the job market matching

model of Jovanovic (1979) who applies a bandit problem to a competitive

labor markets. Suppose that a worker must choose employment in one of

K �rms and her (random) productivity in �rm k is parametrized by a real
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variable �k. The bandit problem is then a natural framework for the study of

learning about the match speci�c productivities. For each k; sk0 is then simply

the prior on �k and skt is the posterior distribution given s
k
0 and x

k
s for s < t:

Over time, a worker's productivity in a speci�c job becomes know more pre-

cisely. In the event of a poor match, separation occurs in equilibrium and job

turnover arises as natural by-product of the learning process. On the other

hand, over time the likelihood of separation eventually decreases, as condi-

tional on being still on the job, the likelihood of a good match increases.

The model generates hence a number of interesting empirical implications

which have since been investigated extensively. Miller (1984) enriches the

above setting by allowing for a priori di�erent occupations, and hence the

sequence in which a worker is matched over time to di�erent occupations is

determined as part of the equilibrium.

Experimentation and Pricing In a related recent literature, bandit prob-

lems have been taken as a starting point for the analysis of division of surplus

in an uncertain environment. In the context of a di�erentiated product mar-

ket and a labor market respectively, Bergemann and V�alim�aki (1996) and

Felli and Harris (1996) consider a model with a single operator and a sep-

arate owner for each arm. The owners compete for the operator's services

by o�ering rental prices. These models are interested in the e�ciency and

the division of the surplus resulting from the equilibrium of the model. In

both models, arms are operated according to the Gittins index rule and the

resulting division of surplus leaves the owners of the arms as well as the

operator with positive surpluses. In Bergemann and V�alim�aki (1996), the

model is set in discrete time and a general model of uncertainty is consid-

ered. They interpret the experiment as the problem of choosing among two
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competing experience goods, in which both seller and buyer are uncertain

about the quality of the match between the product and the preferences of

the buyer. In contrast, Felli and Harris (1996) consider a continuous model

with uncertainty represent by a Brownian motion and interpret the model

in the context of a labor market. Both models show that even though the

models allow for a genuine sharing of the surplus, allocation decisions are

surplus maximizing in all Markovian equilibria and each competing seller

receives his marginal contribution to the social surplus in the unique cau-

tious Markovian equilibrium. Bergemann and V�alim�aki (2006) generalizes

the above e�ciency and equilibrium characterization from two sellers to an

arbitrary �nite number of sellers in a deterministic setting. Their proof uses

some of the techniques �rst introduced in Karoui and Karatzas (1997). On

the other hand, if the market consists of many buyers and each one of them

is facing the same experimentation problem, then the issue of free-riding

arises again. Bergemann and V�alim�aki (2002) analyzes a continuous time

model as in Bolton and Harris (1999) but with strategic sellers. Surprisingly,

the ine�ciency observed in the earlier paper is now reversed and the mar-

ket equilibrium displays too much information. As information is a public

good, the seller has to compensate an individual buyer only for the impact

his purchasing decision has on his own continuation value but not on the

change in continuation value of the remaining buyers. As experimentation

leads in expectation to more di�erentiation, hence less price competition, the

sellers prefer more di�erentiation, hence more experimentation to less. As

each seller only has to compensate the individual buyers, but not all buyers,

the social price of the experiment is above the equilibrium price, leading to

excess experimentation in equilibrium.
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Experimentation in Finance Recently, the paradigm of the bandit model

has also been applied in corporate �nance and asset pricing. Bergemann and

Hege (1998) and Bergemann and Hege (2005) model a new venture or innova-

tion as a Poisson bandit model with variable learning intensity. The investor

controls the 
ow of funding allocated to the new project and hence the rate

at which information about the new project arrives. The optimal funding

decision is subject to a moral hazard problem in which the entrepreneur con-

trols the unobservable decision to allocate the funds to the project. Hong

and Rady (2002) introduce experimentation in an asset pricing model with

uncertain liquidity supply. In contrast to the standard noise trader model,

the strategic seller can learn about liquidity from past prices and trading vol-

ume. This learning implies that strategic trades and market statistics such

as informational e�ciency are path-dependent on past market outcomes.
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