Countering the Winner’s Curse: Auction Design in a Common Value Model

Dirk Bergemann Benjamin Brooks Stephen Morris
Yale Chicago Princeton

April 2019

University of Pennsylvania
Interdependence and Winner’s Curse

- interdependence in values across bidders is frequent in auctions
 - wildcatters bidding for an oil tract ...
 - investment banks competing for shares in IPO’s...
 - lenders competing in syndicated loan-markets ...

- winning the object is informative about value estimate of competing bidders
- each bidder must carefully account for the interdependence in individual bidding behavior
- winner’s curse: unconditional vs conditional expectation
• consider bidding for a natural resource, such as an oil tract
• richer samples suggest more oil reserves and induce higher bids
• winning means that the other samples’ were relatively weak
• a winning bidder therefore faces adverse selection
• the expected value of the tract conditional on winning is less than the unconditional expectation
Winner’s Curse and Auction Design

- winner’s curse results in bid shading and lower revenues
- how can auction design attenuate the winner’s curse...
- how can the resulting selection impact revenue: adverse, neutral or advantageous
- today: what is the revenue maximizing selling mechanism?
- prior literature has largely focused on private value

→ thus a world without winner’s curse and selection issues
Auction Design in A Common Value Model

- a pure common value model
- private signal gives partial information about common value
- key statistical feature:
 higher signals contain more information about common value than lower signals
- today:
 → highest signal is sufficient statistic of common value
 → lower signals carry no additional information
• characterize revenue maximizing mechanism
• maximal revenue is obtained by strikingly simple mechanism, stated at interim level (given signal of bidder i)

1. constant – signal independent – price
2. constant – signal independent – probability of getting object

• contrast with first, second, or ascending auction in an environment with private values
Revenue Maximizing Design: Posted Price

- optimal mechanism shares some features with posted price

1. constant – signal independent – price

- it coincides with posted price if

2. constant – signal independent – probability is $1/N$

- necessary and sufficient condition when optimal mechanism reduces exactly to posted price
- if posted price is an optimal mechanism it is inclusive: every bidder with every signal realization is willing to buy
in general, aggregate assignment probability is < 1
interim probability of getting object is constant and $< 1/N$
ex post probability for i then depends on entire signal profile
conditionally on allocating the object optimal mechanism:

1. favors bidders with lower signals
2. discriminates against bidder with highest signal

• “winner’s blessing” rather than “winner’s curse”
• advantageous rather than adverse selection
Contributions: Substantive

- setting where bidders with higher signals have more accurate information about common value;
- arises in market with intermediaries, and many other settings: auctions for resources, IPO’s
- countervailing screening incentives, tension between selling to
 1. bidder with higher expected value and
 2. bidder with less private information
 - optimal to screen “less” - with no screening in inclusive limit
 - foundation for posted price mechanisms
Contributions: Methodological

- very few results extend characterization of optimal auctions beyond private value case
- we extend optimal auctions into interdependent values:
 1. with private values, “local” incentive constraints are sufficient to pin down optimal mechanism
 2. with interdependent values, “global” constraints matter, new arguments are required
Model
Common Value Model

- N bidders compete for a single object
- bidder i receives signal s_i:
 \[s_i \in [s, \bar{s}] \subset \mathbb{R}_+ \]
 according to absolutely continuous distribution $F(s_i), f(s_i)$
- common value is the maximum of N independent signals:
 \[v(s_1, \ldots, s_N) \triangleq \max \{ s_1, \ldots, s_N \} \]
- “maximum signal model”
- signal distribution $F(s_i)$ induces value distribution $G_N(v)$:
 \[G_N(v) = (F(s))^N \]
- common value is first-order statistic of N independent signals
Two Interpretations

- maximum signal model

$$v(s_1, \ldots, s_N) = \max\{s_1, \ldots, s_N\}$$

- two leading interpretations:

1. common value model with informational implications:

 - higher signal realizations contain more information about common value than lower signal realizations
 - specifically, conditional on highest signal, the other signals contain no additional information about the common value
 - drilling/sampling for mineral rights (Bulow and Klemperer (2002))
Two Interpretations

- maximum signal model

\[v(s_1, \ldots, s_N) = \max \{s_1, \ldots, s_N\} \]

- two leading interpretations:

2. **private value model** of intermediary (dealer) market

 - each intermediary bidder receives the signal (sample) about the downstream trading opportunities
 - final sale in downstream market is open to all intermediaries
 - IPO, syndicated loan-markets, inter-dealer markets

(Viswanathan and Wang (2004))
Utility and Allocation

- bidder i is expected utility maximizer with quasilinear preferences, probability q_i of receiving object and transfers t_i:

$$u_i(s, q_i, t_i) = v(s) q_i - t_i$$

- feasibility of auction

$$q_i(s) \geq 0, \quad \text{with} \quad \sum_{i=1}^{N} q_i(s) \leq 1$$

- ex post transfer $t_i(s)$ of bidder i, interim expected transfer:

$$t_i(s_i) = \int_{s_{-i} \in S^{N-1}} t_i(s_i, s_{-i}) f_{-i}(s_{-i}) ds_{-i},$$

where

$$f_{-i}(s_{-i}) = \prod_{j \neq i} f(s_j)$$
Incentive Compatibility

• bidder i surplus when reporting s'_i while observing s_i:

$$u_i(s_i, s'_i) \equiv \int_{s_{-i} \in S^{N-1}} q_i(s'_i, s_{-i}) \vee (s_i, s_{-i}) f_{-i}(s_{-i}) \, ds_{-i} - t_i(s'_i)$$

• indirect utility given truthtelling is:

$$u_i(s_i) \equiv u_i(s_i, s_i)$$

• direct mechanism $\{q_i, t_i\}_{i=1}^N$ is incentive compatible (IC) if

$$u_i(s_i) \geq u_i(s_i, s'_i), \text{ for all } i \text{ and } s_i, s'_i \in S$$

• ... is individually rational (IR) if $u_i(s_i) \geq 0$, for all i and $s_i \in S$
The Winner’s Curse
• second-price auction in maximum signal model:

$$b_i(s_i)$$

• bid of bidder i is based on his interim expectation:

$$\mathbb{E}[v(s_1, ..., s_N) | s_i]$$

• signal s_i is \textbf{sharp lower bound} on ex post (realized) value:

$$s_i \leq v(s_1, ..., s_N),$$

• signal s_i is lower bound for interim expectation of value:

$$s_i < \mathbb{E}[v(s_1, ..., s_N) | s_i]$$
Winner’s Curse in Second Price Auction

- bidder with highest signal wins in second price auction
- equilibrium bid is given by:
 \[b_i(s_i) = s_i \]
- bids as-if private value \(s_i \), not common value \(\max\{s_1, \ldots, s_N\} \)
- conditional on winning, signal \(s_i \) turns into sharp upper bound:
 \[v(s_1, \ldots, s_N) = \max\{s_1, \ldots, s_N\} \leq s_i \]
- this is the curse:

 1. when bidding, \(s_i \) is sharp lower bound of expectation of value
 2. when winning, \(s_i \) is sharp upper bound of expectation of value
Winner’s Curse and Adverse Selection

- adverse selection:
 winner learns his signal is most favorable of all signals
- selection as winner is adverse information to winner
- magnitude of adverse selection is controlled by change in expectation from ex-interim to ex-post:

1. when bidding, s_i is sharp lower bound of expectation of value
2. when winning, s_i is sharp upper bound of expectation of value

- structure of information controls strength of winner’s curse
- winner’s curse lowers bids, thus lowers revenue of auctioneer
- maximal winner’s curse is quantified by minimal revenue (in any given auction format)
An Aside:

Magnitude of Winner’s Curse
Magnitude of the Curse

• can we quantify the winner’s curse?
• can we identify maximal winner’s curse which generates minimal revenue?
• how does it relate to the structure of private information of bidders?
• making it operational
• consider all possible information structures for a fixed distribution of values,
• thus look at all Bayes correlated equilibria of the auction (ECTA, 2017)
Information and Winner’s Curse

- fix a distribution of (common) values with N bidders:
 \[G_N(v) \]

- ask how different common prior distribution of signals:
 \[F(s | v) \]

impact bidding and revenue for fixed distribution $G_N(v)$

- maximum signal model: an example of information structure, others are wallet game, affiliated mineral rights model, etc.
“Revenue Guarantee Equivalence” (AER forthcoming) finds:

1. equivalence: the maximum signal model attains the same revenue in all standard auctions: first-price, second-price, ascending auction, etc.

2. guarantee: the maximum signal model generates the lowest revenue across all information structures in every standard auction

- sharp revenue guarantee through maximum signal model ...
- ... across all standard auction formats
- revenue minimizing is winner’s curse maximizing:

\[v(s_1, \ldots, s_N) = \max \{s_1, \ldots, s_N\} \]
• standard auction (with no reserve prices) with two bidders
• revenue and bidders surplus in all information structures

Figure 1: Revenue and Bidder Utility across All Information Structures
Structure of Incentive Constraints

- structure of incentive constraints in maximum signal model
- all upward deviations—relative to unique equilibrium bid—yield the equilibrium net utility
- all upward deviations are binding:
 \[b' \in [b_i(s_i), b_i(\bar{s})], \quad \forall s_i \in [s, \bar{s}] \]
- global rather than local inventive constraints matter, everywhere!
- global constraints matter in all standard auction formats!
Figure 2: Uniform Upward Incentive Constraints and Winner’s Curse

- counter the curse: find optimal auction
Counter the Curse
Adverse Selection and Winner’s Curse

- assigning object to highest bidder conveys (too) much information to the winner
- adverse selection: winner learns that his signal was more favorable than all other signals
- winning bid is depressed by adverserial selection of winner
- what about neutral selection of winner?
- a neutral (symmetric) selection must be a random allocation among the bidders
- event of winning does not convey any additional information to the winner
Neutral Selection: Inclusive Posted Price

- a specific neutral selection
- every bidder receives the object with equal probability $1/N$
- every winning bidder is charged a posted price

$$p \triangleq \int_{s_i} v(s, s_{-i}) f_{-i}(s_{-i}) \, ds_{-i}$$

- even bidder with lowest signal, $s_i = s$, is willing to buy at p,
- thus p is inclusive, does not exclude any signal s_i for any i
Revenue Improvement I

- how does inclusive posted price fare?

Proposition

The inclusive posted price yields a (weakly) higher revenue than absolute first-price, second-price or ascending price auction.

- Bulow-Klemperer (2002) establish second-price auction ranking
- notable features of inclusive posted price

1. random allocation—rather than deterministic allocation
2. constant allocation in signal – rather than increasing in signal
3. no selection on either signal or value, thus no screening
Neutral Selection and Exclusion

• exclusion—not selling the object when the value is low—may increase the revenue

• in private value environments it famously does: Myerson (1981)

• can neutral selection be maintained with exclusion?
Two Tier Price Mechanism

- uniform exclusion at a threshold r:

$$q_i(s) = \begin{cases} \frac{1}{N} & \text{if } \max s \geq r; \\ 0 & \text{otherwise}. \end{cases}$$

- supported by two-tier price:

1. a preferred price (unconditional sale):

 $$p_u \triangleq r,$$

2. a standard price (conditional sale):

 $$p_c \triangleq \int_r^{\bar{s}} \max \{ s_i \} \, dF_{-i}(s) \frac{1}{1 - F_{N-1}(r)} > r = p_u,$$

 \iff right censored first order statistic of $N - 1$ samples
Two-Tier Price Mechanism

• object is sold if and only if at least one bidder is willing to make an unconditional purchase at

\[p_u = r \]

• then all the remaining bidders get object with probability \(1/N \) at price

\[
p_c \triangleq \frac{\int_r^s \max \{ s_i \} \, dF_i(s)}{1 - F^{N-1}(r)}
\]

• with one exception... if more than one bidder requests unconditional purchase, then all bidders get object at \(p_c \)
Proposition (Two-Tier Pricing)

A two-tier pricing \((p_c, p_u)\) yields a (weakly) higher revenue than any other inclusive or exclusive posted price.

- standard price \(p_c\) could be offered equivalently as random price:
 \[p \triangleq \max \{ r, s_{-i} \} \]
- resulting mechanism is ex-post incentive compatible and ex-post individually rational
- but neither as dominant strategy!
Implications of Two-Tier Price

- uniform screening among bidders with respect to highest signal
- uniform exclusion among bidders’
- winning at generates winner’s blessing:
 \[E[v(s_1, ..., s_N) | s_i] < E[v(s_1, ..., s_N) | s_i, x_i > 0] \]
- two-tiered pricing similar to syndicated loan arrangement: one for lead lender, and one for all syndicate lenders
- turned from adverse to neutral selection
- now turn from neutral to to advantageous selection!
• there is a fixed reserve price r and a random reserve price $x > r$
• if bidder i reports highest signal $s_i > r$, then:

1. he receives priority status,
2. he is offered object at price:
\[p \triangleq \max \{ x, s_i \} \]

• otherwise, other bidders receive object with probability
\[1/(N - 1), \]

• if at least one bidder has declared priority status and pay price:
\[p \triangleq \max \{ r, s_i \} = v(s_1, ..., s_N). \]
Random Reserve Price

• reserve price r^* is smallest solution to:

$$x - \int_{y=x}^{\bar{s}} \frac{1 - F(y)}{F(y)} dy = 0$$

• distribution of random reserve price is:

$$H^*(x) = \frac{1}{N}(1 - \frac{F^N(r)}{F^N(x)})$$

• resulting mechanism is **interim** incentive compatible and **ex-post** individually rational

• higher signal guarantee higher probability of getting the object
Final Revenue Improvement

- additional revenue from the bidder with the highest signal

Theorem (Random Reserve Price)

The random reserve price mechanism \((r^*, H^*)\) is a revenue maximizing mechanism.

- interim probability of receiving object is constant in signal \(s_i\)
- interim transfer is constant in signal \(s_i\)
- advantageous selection
- all downward incentive constraints are binding!
• with random reserve price, each bidder is indifferent between his equilibrium bid and any lower bid

Figure 3: Uniform Downward Incentive Constraints
A Study in Contrasts

- optimal vs standard mechanisms
- exactly flip the orientation of the constraints, and more...

Figure 4: Uniform Downward vs Upward Incentive Constraints
Bounds on
Bidder Surplus and Revenue
A New Problem

- how to establish the optimality of the mechanism?
- evidently, the local constraints are binding, but many others, non-local constraints are binding as well
- thus, we need to consider local as well global constraints
- but which ones?
- analyze a relaxed problem which consists of local and small class of global constraints
- use these constraints to derive:

1. an upper bound on seller revenue
2. a lower bound on bidder utility
A Relaxed Problem

- consider a smaller–one-dimensional–family of constraints:
- instead of reporting signal s_i, report a random signal
 \[s'_i < s_i, \]
 drawn from truncated prior on support $[s, s_i]$:
 \[F(s'_i) / F(s_i) \]
- misreporting a redrawn lower signal
A Lower Bound on Bidder Utility

- what are the gains from misreporting a redrawn lower signal?
- equilibrium surplus of a bidder with type x is
 - from envelope condition of local constraints:
 $$u_i(s_i) = \int_{x=s_i}^{\hat{q}_i(x)} dx$$
- surplus from misreporting the redrawn lower signal
 $$\frac{1}{F(s_i)} \int_{x=s_i}^{u_i(s_i, x)} f(x) dx$$
- gains vary depending on realized misreport
 average gains across all misreports are easy to compute
Average Gains from Misreporting

- misreport is redrawn from prior, bidder i is equally likely to fall anywhere in distribution of signals, unconditional on misreport, ex-ante likelihood that i receives object and x is highest signals

$$q_i(x) g_N(x)$$

- if highest report is less than s_i, surplus that bidder i obtains from being allocated object is s_i rather than x, so $s_i - x$ is difference between deviator and truthtelling surplus:

$$\frac{1}{F(s_i)} \int_{x=s}^{s_i} [(s_i - x) q_i(x) g_N(x) + u_i(x) f(x)] \, dx$$

- thus the incentive constraint requires:

$$u_i(s_i) \geq \frac{1}{F(s_i)} \int_{x=s}^{s_i} [(s_i - x) q_i(x) g_N(x) + u_i(x) f(x)] \, dx$$
Lower Bound As Equality

- lower bound of bidder’s surplus through small class of deviations:
 \[u_i(s_i) \geq \frac{1}{F(s_i)} \int_{s_i}^{s_i} [(s_i - x) q_i(x) g_N(x) + u_i(x) f(x)] \, dx \]

- inequality hold as sum across all \(i \):
 \[u(s) \geq \frac{1}{F(s)} \int_{x=s}^{s} [(s - x) q(x) g_N(x) + u(x) f(x)] \, dx \]

- lowest solution \(u(s) \) exists and solves inequality as equality
- monotonic operator on increasing functions has unique smallest fixed point by Knaster-Tarski fixed point
- can be integrated by parts as
 \[U = \int_{x \in S} u(s) f(s) \, ds = \int_s^s \left(\int_{x=s}^{s} \frac{1 - F(x)}{F(x)} \, dx \right) q(s) g_N(s) \, ds \]
A Generalized Virtual Utility Formula

• with the lower bound on bidder surplus:

\[U = \int_{x \in S} u(s) f(s) \, ds = \int_s \left(\int_{x=s}^s \frac{1 - F(x)}{F(x)} \, dx \right) q(s) g_N(s) \, ds \]

• we obtain our final formula for revenue, which is

\[\bar{R} = TS - U = \int_v \psi(v) q(v) g_N(v) \, dv \]

where

\[\psi(v) = v - \int_{x=v}^{\bar{s}} \frac{1 - F(x)}{F(x)} \, dx, \]

• compare to virtual utility in private value environments:

\[\pi(x) = x - \frac{1 - F(x)}{f(x)} \]
• generalized virtual utility:

\[\psi(x) = x - \int_{y=x}^{\bar{s}} \frac{1 - F(y)}{F(y)} \, dy, \]

Theorem (Revenue Upper Bound)

In any auction in which the probability of allocation is given by \(q \), bidder surplus is bounded below by \(\underline{U} \) and expected revenue is bounded above by \(\overline{R} \).

• bound is valid for any allocation policy \(q(v) \)

Corollary (Random Reserve Price)

The random reserve price mechanism attains the revenue upper bound.
Posted Price
As Optimal Mechanism
Posted Prices

• consider mechanisms where object is always allocated
• pure common values – allocation is therefore socially efficient

Theorem (Revenue Optimality among Efficient Mechanisms)
Among all mechanisms that allocate the object with probability one, revenue is maximized by setting a posted price of

\[p = \int_{\bar{s}}^s v g_{N-1}(v) \, dv, \]

i.e., expected value of object conditional on having lowest signal \(\bar{s} \).

• posted price is inclusive: all types purchase at \(p \)
• all bidders equally likely to receive object: \(q_i(v) = 1/N, \forall i, v \).
• optimal selling mechanism is attained with constant interim transfer \(t = t_i(s_i) \) and probability \(q = q_i(s_i) \)
Optimality of Posted Price

- next, optimality of posted price among all possibly inefficient mechanisms

Corollary (Revenue Optimality ofPosted Prices)

A posted price mechanism is optimal if and only if

$$\psi(s) = s - \int_s^\bar{s} \frac{1 - F(x)}{F(x)} \, dx \geq 0.$$

If a posted price p is optimal, then it is fully inclusive.
The Power of Optimal Auctions
• Bulow and Klemperer (1996) establish the limited power of optimal mechanisms as opposed to standard auction formats.

• Revenue of optimal auction with N bidders is strictly dominated by standard absolute auction with $N + 1$ bidders.

• Current common value environment is an instance of general interdependent value setting – with one exception.

• Virtual utility function—or marginal revenue function—is not monotone due to maximum operator in common value model.
A Closer Look at the Virtual Utility

- non-monotonicity leads to an optimal mechanism with features distinct from standard first or second price auction.
- it elicits information from bidder with highest signal but minimizes probability of assigning him the object subject to incentive constraint
- virtual utility of each bidder, $\pi_i(s_i, s_{-i})$:

$$
\pi_i(s_i, s_{-i}) = \begin{cases}
 \max_j \{s_j\}, & \text{if } s_i \leq \max \{s_{-i}\}; \\
 \max \{s_j\} - \frac{1-F_i(s_i)}{f_i(s_i)}, & \text{if } s_i > \max \{s_{-i}\}.
\end{cases}
$$
- downward discontinuity in virtual utility indicates why seller wishes to minimize the probability of assigning the object to the bidder with the high signal
• virtual utility of bidder \(i \) fails monotonicity assumption even when hazard rate of distribution function is increasing everywhere

• BK (1996) require monotonicity of virtual utility when establishing their main result that an absolute English auction with \(N + 1 \) bidders is more profitable than any optimal mechanism with \(N \) bidders

• revenue ranking does not extend to current auction environment

• compare revenue from optimal auction with \(N \) bidders to absolute, English or second-price, auction with \(N + K \) bidders

• absolute as there is no reserve price imposed
Theorem (Revenue Comparison)

For every \(N \geq 1 \) and every \(K \geq 1 \), the revenue from an absolute second-price auction with \(N + K \) bidders is strictly dominated by the revenue of an optimal auction with \(N \) bidders.

- comparison of second order statistic of \(N + K \) i.i.d. signals and first order statistic of \(N + K - 1 \) i.i.d. signals
- second order statistic of \(N + K \) signals is revenue of absolute second-price auction with \(N + K \) bidders.
- by earlier Theorem, optimal mechanism (weakly) exceeds revenue from a posted price set equal to the maximum of \(N + K - 1 \) signals.
• but pure common value of the object is not affected by number of bidders, it is as if the remaining K signals are simply not disclosed, but the N participating bidders still form the expectation over the $N + K - 1$ signals.

• now, if instead of $N + K$ bidders, the optimal auction only has N bidders, then it is as if only N independent and identical distributed signals are revealed to the N bidders

• thus an attainable revenue for the seller is to offer the object at random to a bidder at a posted price set equal to the maximum of $N + K - 1$ signals
Conclusion

- characterized novel revenue maximizing auctions for a class of common value models
- common value models with qualitative feature that values are more sensitive to private information of bidders with more optimistic beliefs
- second interpretation as auction with intermediary/resale market
- countering the winner’s curse
- optimal auctions discriminate in favor of less optimistic bidders since they obtain less information rents from being allocated the object