Errata: QFT and CMT
I am grateful to Ben Strekha for bringing the following to my attention.
Important errata in **boldface**

Chapter 1
page 6, equation (1.41) shouldn’t have a T in the denominator
page 9, 3 lines below equation (1.58), $d = 3N - 1 \simeq 3N \rightarrow d - 1 = 3N - 1 \simeq 3N$
Page 16, equation (1.120) is missing a dV in the numerator on the right hand side.

Chapter 2
page 23, equation (2.23) and (2.24) $dh \rightarrow \partial h$ and $d^2 h \rightarrow \partial^2 h$ in the denominators
page 24, equation (2.25) is missing an $i = 0$ in the limit of the sum
page 25, equation (2.28) the right hand side lower limit on sum: $t_i = \pm \rightarrow t_i = \pm 1$

Chapter 3
page 31, second line. $U(x, x' : t) \rightarrow U(x, x'; t)$
page 32, equation (3.22) should have an index n for the sum.
page 37, equation (3.58). $< s, s > \rightarrow < s >$
Page 38, in the sentence continuing after (3.60) $\exp(2K^*) \rightarrow \exp(-2K^*)$.

Chapter 5
page 57, equation (5.24) $\exp(-iS_c/h) \rightarrow \exp(iS_c/h)$.

Chapter 6
page 73, equation (6.2) drop the comma in $|\theta, \phi>$
page 89, equation (6.118) drop the vertical bar in $e^{-\beta H}|...$
page 90, equation (6.127) $\Psi(0)(\rightarrow (\Psi(0)$.
Page 92, equation (6.142) is missing the integration measure $d\tau$.
Page 96, equation (6.176) is missing the integration measure dx

Chapter 10
page 160, equation (10.18) is missing an “=” sign after \lim
Page 165, equation (10.36) $e^S(s) \rightarrow e^S(s)$
page 167, second to last paragraph before 10.2.3 $t_i = s_is_{i+1} \rightarrow t_i = s_is_{i+1}$.

Chapter 11
Page 190, equation (11.44), exponent on right hand side: $K'(s_0s_1 + .. \rightarrow K'(s_1s_2 + ..$
Page 194, Figure 11.3 second $K^* + \Delta K$ should be $K^* + \Delta K'$

Chapter 12
Page 205, equation (12.36) $3u_0 \rightarrow 4u_0$.
Chapter 13 page 226, equation (13.11) $S^*_0(\phi_f) \rightarrow S^*(\phi_f)$
page 226, equation (13.15) drop the comma after ϕ
page 226, equations (13.17) and (13.18) $s \rightarrow s$.
Page 230, equation (13.44) $u_0 \rightarrow \frac{u_0}{(2\pi)^n}$.
page 232, equation (13.53) $u_0 \rightarrow u_0$
Page 235 before equation (13.76) ” the u_0 term in Eq. (13.66)” \rightarrow the ”u_0 term in (13.67)”.
page 237, equation (13.93) in the argument of ϕ', $0/s \rightarrow 0 \cdot s$.
page 240, equation (13.111) $t \rightarrow |t|$.
Page 243, equation (13.134) $(4 - d) \rightarrow (d - 4)$ in the middle equality.
page 249, equation 3.157), (13.161), (13.162): need = sign after limits
Chapter 14
page 259, right after equation (14.51) \(l_0^2 \rightarrow \lambda_0^2 \)
page 260, equation (14.52) and a sentence between (14.52) and (14.53) \(l_0^2 \rightarrow \lambda_0^2 \).
page 260, after equation (14.53) \(l_0^2 \rightarrow \lambda_0^2 \)
page 260, equation (14.54) \(\lambda^2 \rightarrow -\lambda^2 \)
page 261, equation (14.60) \(B(m_0^2 \rightarrow B(m_0^2), ...) \) and in the mini-paragraph following (14.60).
page 261, equation (14.61) and (14.62) \(l_0^2 \rightarrow \lambda_0^2 \)
page 277, on (14.113), \(d \rightarrow \partial \), in the next line \(\partial \rightarrow d \)
Chapter 15
page 287, equation (15.12) \(\epsilon_2 \rightarrow \varepsilon_2 \).
Chapter 16
page 306, last paragraph: “could” repeated
Chapter 17 **page 321**, equation ((17.11) \(\exp(ipx) \rightarrow \exp(-ipx) \))
page 332, equation (17.102) is missing a “(” on the derivative term.
page 329, equation (17.76) \(\phi^2_+ \rightarrow \phi^2_+(0) \).