Consistent C-V timing across speakers of diaspora Tibetan with and without lexical tone contrasts

Christopher Geissler1, Jason Shaw1, Mark Tiede2, Fang Hu3

1Yale University, 2Haskins Laboratories, 3Chinese Academy of Social Sciences, Beijing

This material is based upon work supported by the National Science Foundation under Grant Number 1928750
Introduction: Gestures

- Articulatory gestures: abstract, dynamic representations of controlled movements of the vocal tract

 (e.g. Browman & Goldstein 1986)

- How are gestures timed with each other?

“C-V lag”

<table>
<thead>
<tr>
<th>Tongue</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>front</td>
<td>↓</td>
<td>back</td>
</tr>
<tr>
<td>Dorsum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>open</td>
<td>↓</td>
<td>closed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lips</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Questions

• How are speech gestures timed with each other?

 • Which gestures are encoded in the phonological representation?

• How are those gestures coordinated?
Which gestures?

- Strong Articulatory Phonology hypothesis: only gestures encoding phonological contrasts are represented

- C, V: specified for constriction location and degree

 (e.g. Browman & Goldstein 1986)

- tones: relative F0 excursions

 (Gao 2008, Katsika et al 2014)
How are gestures coordinated?

- *Planning oscillators* coordinate gestures with cyclic phasing.

- In-phase (0°) and anti-phase (180°) coupling modes learned more easily, as in general motor coordination (*Browman & Goldstein 2000, Saltzman et al 2008)*.

- Other phasing modes are possible, but more difficult (eccentric timing) (*Goldstein 2011)*.
Two stable coupling modes

- in-phase → synchronous start times
- anti-phase → sequential start times
Exceptional C-V timing

- Onset clusters often show partial overlap ("C-center")
 (Browman & Goldstein 1988, inter alia)
- Exceptional clusters:
 - some CV timing unchanged when add earlier C:
 - Italian /sC/ onsets (Hermes et al. 2008, 2011)
 - Moroccan Arabic (Shaw et al 2009), Tashlhyit Berber
 (Goldstein et al. 2007, Hermes et al. 2017)
Explanation: competitive coupling

- Account for partial overlap through competition between in-phase and anti-phase coupling:

 \((\text{Browman & Goldstein 2000, Nam & Saltzman 2003}) \)
C-V timing with tone

• Intonational tone doesn’t affect C-V timing in some languages: German and Italian (Niemann et al. 2011), Catalan (Mücke et al. 2012). C-V lag <10ms

• Longer C-V lag in Mandarin (Gao 2008), Thai (Karlin 2014), and Lhasa Tibetan (Hu 2016). C-V lag ~50ms

• Toneless syllables in Mandarin show reduced C-V lag relative to their fully-tonal counterparts (Zhang et al. 2019)
C-V lag and tone

- Different potential structures for tone gestures:
 - Mandarin
 - Thai
 - Tibetan

 [Diagram]

 [Diagram]

 Italian
 German
 Catalan
Evidence for tone ~ C-V lag

• Tone is associated with longer C-V lag:
 • in lexical tone languages
 vs. non-lexical tone languages
 • in tonal and toneless syllables
 in the same language
 • present study: across speakers with
 vs. without tone contrast in the same language
Hypothesis

- In a language where some speakers produce a tone contrast and others do not:

 tone-contrasting speakers \rightarrow positive C-V lag
 non-tone-contrasting speakers \rightarrow near-zero C-V lag
Tibetan

- Tonal and non-tonal dialects

- Tone contrast: H vs. LH

 (Duanmu 1992, Tournadre and Dorje 2003)

- Speakers raised in post-1959 diaspora (India, Nepal) exposed to mixed input, acquire mixed features

 (Geissler 2018)
EMA Experiment

- Electromagnetic Articulography (EMA) to track fleshpoints on the lips and tongue, alongside audio
 - goal: quantify timing of oral gestures
- 6 Tibetan speakers (4 female) raised in Diaspora
 - all multilingual, extensive dialect contact
Methods

• Speakers read words in carrier phrase on a screen, in Tibetan orthography

• EMA sensors on each lip and three on tongue; head movement corrected w/r/t/three sensors on rigid points of the head

• Gesture start labelled at 20% of peak velocity to target
Stimuli

- Bilabial onsets: separate C and V articulators
- Back vowels following front vowel in consistent frame sentence
- \(/m \, p \, p^h/ \) * 2 tones * /a \, o \, u/ * CV/CVC syllables * mono/disyllabic * 10 repetitions
Identifying tone contrast

• measured F0 at ten time-normalized points along [mV] syllables (60 words per speaker)

• acoustic analysis in Praat *(Boersma and Weenink 2018)*; VOT and time-normalized pitch calculated using Praat scripts *(DiCanio 2011, 2018)*
Results: tone contrast

- fitted GAMMs to predict F0 based on:
 - parametric term for tone
 - smooth for timestep at reference value for tone
 - difference smooth across tones
 - random smooths by word
Results: tone contrast

- 4 speakers produce a tone contrast, two do not (/mV/)
Results: tone contrast

- Confirm with GAMM (smooths for tone plotted)
Results: tone contrast

<table>
<thead>
<tr>
<th>term</th>
<th>F01</th>
<th>F02</th>
<th>F03</th>
<th>M02</th>
<th>M01</th>
<th>F04</th>
</tr>
</thead>
<tbody>
<tr>
<td>tone (parametric)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>time smooth</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>difference smooth by tone</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>random smooths by word</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Deviance explained</td>
<td>67.8%</td>
<td>94.8%</td>
<td>80%</td>
<td>71.6%</td>
<td>77%</td>
<td>8.57%</td>
</tr>
</tbody>
</table>
Results: C-V lag

- Among tone-contrasting speakers, C-V lag is positive!
Results: C-V lag

• ... but also for non-contrasting speakers
Results: C-V phasing

- C-V lag relative to C duration also similar for speakers with and without tone contrast
Results: C-V phasing

- Confirmed results with comparison of LMMs:
 - baseline model: fixed effect of onset, random effects of speaker and word
 - comparison: baseline plus fixed effect of tone contrast

<table>
<thead>
<tr>
<th>model</th>
<th>Df</th>
<th>AIC</th>
<th>logLik</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>6</td>
<td>12461</td>
<td>-6224.5</td>
</tr>
<tr>
<td>comparison</td>
<td>7</td>
<td>12462</td>
<td>-6223.7</td>
</tr>
<tr>
<td>Tone contrast</td>
<td>Predicted</td>
<td>Observed</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No tone contrast</th>
<th>Predicted</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26
<table>
<thead>
<tr>
<th>Tone contrast</th>
<th>Predicted</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No tone contrast</th>
<th>Predicted</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary

• Some diaspora speakers contrast tone, others don’t

• Observe long C-V lag in Tibetan, like Thai and Mandarin

• ... but speakers with and without tone show similar C-V lag

• C-center-like timing learned even by speakers lackng the tone contrast
Interpretation

• How to account for similar C-V lag across speakers with and without tone production contrast?

• Possibility 1: Non-contrasting speakers have a non-contrastive (tone?) gesture

• Possibility 2: Non-contrasting speakers use eccentric C-V timing
Interpretation

• How account for similar C-V lag across speakers with and without tone production contrast?

• Possibility 1: Non-contrastting speakers have a non-contrastive (tone?) gesture

• different from “Strong AP hypothesis” where only contrastive gestures are in the coupling graph
Interpretation

• How account for similar C-V lag across speakers with and without tone production contrast?

• Possibility 2: Non-contrasting speakers learn the same C-V timing spoken around them

• without competitive coupling, as eccentric timing

(e.g. Marin & Pouplier 2010, Goldstein 2011)
Conclusions

• Tibetan speakers with and without a tone production contrast showed similar C-V lag

• Speakers can learn eccentric timing relations resembling those of other members of the speech community

• Eccentric timing can resemble competitive coupling
References I

References II

C-V lag by tone

- No effect of tone on C-V lag

Density plot of C-V lag

Density plot of C-V phasing
Results: C-V timing

- C-V lag not significantly different by aspiration either (/pV/ vs. /pʰV/)

- LMM: random effects of speaker, word; fixed effect of tone contrast

- model not improved by adding effect of onset
Results: C-V timing

- C-V lag not significantly different across tones (/mV/)

![C-V lag by speaker and tone graph](image)
Results: C-V Phasing / Cdur

Effect of C duration on C–V lag (normalized)
Tibetan

- Tonal and non-tonal dialects

- Tonal dialects:
 - One tone per word
 - Two tone type: high-level and low-rising

\[
\begin{align*}
\sigma & \quad \sigma_1 & \quad \sigma_2 \\
H & \quad H \quad H & \quad L \quad H \quad L \quad H
\end{align*}
\]