






























{ a) STAGE 1: OFFSCRAPING & UNDERPLATING 
FROM SEDIMENT COVER 

{b) STAGE 2: ACCRETION OF MAFIC ROCKS 
OPTION A:  EPISODIC ACCRETION OF OCEANIC CRUST AND MANTLE 

OPTION 8: CONTINUOUS ACCRETION OF OCEANIC CRUST 

• 

{c )  STAGE 3 :  ONCE AGAIN, ACCRETION DOMINANTLY 
RESTRICTED TO SEDIMENT COVER 

Fm. 10. Schematic illustrations of the fonnation of the undeiplated region. (a) Stage 1: The C -D2 interval (equivalent to the Core rocks) is formed by accretion of material dominantly 
from the sediment cover on the downgoing plate. (b) Stage 2: Options A and B show two alternative possibilities for the fonnation of the D2 - E 1 interval. Option A shows episodic accre
tion of a single, thick slice of oceanic lithosphere. Option B shows continuous accretion of imbricated slices of mafic rock derived from the top of the downgoing plate. ( c) Stage 3: In the 
formation of the El -E2 interval, accreted materials are derived once again from the sediment cover, similar to stage 1 .  

(") 
> 
z 
:-
t:1 
> 
::<> --l 
::c 
"' 0 
< 0 r 
N !"' 
::c 
00 
___, 



CLOWES ET AL. 47 

TABLE 1 .  Aggregate compressional 
velocities of minerals common in 

blueschist-facies mafic rocks 

v 
Mineral (km/s) 

Glaucophane - 8. 7* 

Crossite - 7 . 1  * 
Lawsonite - 7. 8* 
Epidote - 7 .43t 

Omphacite (50 % jadeite) - 8.5* 
Gamet (almandine) - 8.52t 
Chlorite (clinochlore) - 8 .4* 

*Estimated velocity at room tempera
ture and 10 kbar ( l  GPa), using empiri
cal relationship of Birch ( 1961 ) .  

tMeasured velocity at room tempera
ture and atmospheric pressure, calculated 
for isotropic aggregate (Christensen 
1982). 

basin, a forearc basin that developed above the underplated 
region (Fig. 7), shows no evidence of the rapid, kilometre
scale uplift that might be expected with the accretion of a 
single 10- 1 5  km thick slice of oceanic lithosphere. Instead, it 
records relatively slow changes in water depths, ranging from 
1000- 3000 m (midbathyal) during the Late Eocene through 
Early Pliocene to about 100 m (neritic) during the Late 
Pliocene and Pleistocene (Shouldice 1 97 1 ;  Tiffin et al. 1 972), 
indicating that the underplated region grew in a relatively slow 
and continuous fashion. 

A second and preferred alternative (option B in Fig . l Ob) is 
that the D2 - E 1 interval consists of imbricated slices of mafic 
rocks derived from the top of the subducting plate during a 
period when offshore sedimentation was low or most of the 
sediments were offscraped at the front of the accretionary 
wedge. In this case, slices of mafic rocks would have been 
continuously added to the base of the underplated region, 
whereas in the first alternative, accretion would have occurred 
rapidly during a single event. High-pressure metamorphism of 
the imbricated mafic rocks could account for the relatively 
high refraction velocities. Temperatures and pressures for this 
region are about 300 - 500°C (based on heat-flow studies by 
T. Lewis, personal communication, 1985) and 5 .5  8 .5  kbar 
(550-850 MPa), which correspond to blueschist-facies condi
tions (Turner 1 98 1  ). Table 1 lists seismic velocities for the 
dominant metamorphic minerals stable under these conditions. 
A typical mafic rock would be converted into a glaucophane or 
crossite schist with subordinate epidote or lawsonite and minor 
amounts of the other minerals shown in Table 1 (Ernst 1 965; 
Ernst et al. 1970; Turner 1 98 1 ,  pp. 329, 330, 428) . Velocity 
measurements for blueschist-facies mafic rocks are rare; Ernst 
(1965) reported a value of 7 . 3  km/s for a crossite schist. 
According to Table I ,  a glaucophane schist should yield an 
even higher value. Weak reflections in the D2 - E l  interval 
could be due to lithological layering (metamorphic foliation?) 
or to fault zones. 

Origin of the El -E2 layer 
As discussed above, the E 1 - E2 layer, which is  present in 

all four LITHOPROBE lines (Green et al. 1 986), is a rela
tively thick (up to 5 km) layer with numerous high-amplitude 
reflections. The problem in interpreting this interval is that we 

have no definitive evidence in any of the LITHOPROBE lines 
on the position of the downgoing plate. Furthermore, other 
studies of the subducting Juan de Fuca plate (refraction: Taber 
( 1983), Spence et al. ( 1985); gravity: Riddihough ( 1 979); 
Benioff-zone seismicity : Rogers ( 1983), Taber and Smith 
( 1985); magnetotellurics:  Kurtz et al. ( 1986) ) have given only 
poorly constrained results, especially at the scale with which 
we are concerned; a 1 -2 km change in depth corresponds to a 
0.3 - 0.6  s (two-way time) change in the reflection profiles. 
Two interpretations are considered. The first is that the 
E l  - E2 interval represents a sequence of interbedded sedi
ments and basalts presently being subducted with the Juan de 
Fuca plate (Yorath et al. l985a ; Clowes et al. 1984) . A 
problem with this interpretation is that the reflective sequence 
is more than twice as thick as the sedimentary section presently 
overlying the Juan de Fuca plate, seaward of the subduction 
zone (Connard et al. 1984) . Furthermore, the preferred refrac
tion model of Spence et al. ( 1985) places the top of the sub
ducting slab about 10 km (2 - 2 . 5  s two-way time) beneath E l ,  
although this position i s  not well constrained. 

A second and preferred interpretation, schematically illus
trated in Fig. lOc, is that the reflective sequence represents the 
upper part of a zone of active accretion in which oceanic mate
rials of the downgoing plate are presently being underplated to 
the base of the overriding subduction complex. We suggest 
that the anomalously thick reflective layer has been structurally 
thickened by imbrication of sediments, and perhaps volcanics , 
sliced from the top of the subducting Juan de Fuca plate. 
Therefore, the reflective layer, E l  - E2, delimits a region of 
active decoupling between the overriding continental plate and 
the subducting oceanic plate. This interpretation has the addi
tional advantage that an upward shift by about 1 s (3 . 5  km) of 
the oceanic plate in the Spence et al. ( 1 985) model would 
effectively align the top of the crustal section with E2, the base 
of the reflective interval. Such a shift would also conveniently 
align the base of the oceanic crust (oceanic Moho) with the 
weak but clear reflection labelled F in lines 2 and 4 (Figs. 4, 5 ,  
and 8). 

A recently interpreted magnetotelluric profile recorded along 
lines 1 and 3 as part of phase 1 LITHOPROBE (Kurtz et al. 
1986) gives further evidence that the E l  - E2 layer consists of 
recently subducted oceanic materials. The two-dimensional 
conductivity model required to fit the data has a highly conduc
tive, northeasterly dipping layer, with its top boundary at about 
the same depth as E L  Saline fluids filling the pore spaces of 
interbedded sediments and basalts are presumed to account for 
the high conductivity . The presence of trapped fluids at these 
depths suggests a relatively short residence time for the sub
ducted materials in which the fluids are present. 

Mass-balance calculation 
Our interpretation of the LITHOPROBE reflection profiles 

indicates that the modem Vancouver Island subduction com
plex contains a relatively large volume of accreted material . A 
crude test of this result is provided by comparing the volume of 
sediment carried into the subduction zone on the downgoing 
plate with the volume of accreted sediment in the subduction 
complex. As discussed previously, the subduction complex 
beneath Vancouver Island has formed over the last 40 Ma. 
Plate reconstructions (Wells et al. 1 984; Engebretson et al. 
1 985) indicate that the Farallon plate was offshore during that 
time. Table 2 summarizes the relative motion between the 
Farallon and North America plates and shows that about 
1 800 km of plate has been subducted during the last 40 Ma. 
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TABLE 2. Estimated length of Farrallon plate subducted beneath Vancouver Island during 
the last 40 Ma 

Approximate strike 

Time (Ma) of subduction Convergence 
zone* angle Ve VT Ve f>.t 

To From ( 0 from N) ( 0 from N) (km/Ma) (km/Ma) (km) 

0 5 155 85 43 4 2 1 5  
5 9 155 71 41 14 164 
9 17  1 54 58 39 24 3 1 2  

17  28 157 52 40 3 1  440 
28 37 158 58 50 3 1  450 
37 40 1 60 6 1  7 1  39 2 1 3  

1 794t 

NOTES: Calculated from velocity vectors in Engebretson et al. ( 1985) (location, 48°N, 236°E); 
Ve, velocity perpendicular to strike of subduction zone; VT, velocity parallel to strike. 

*Paleostrike of subduction zone. Based on orientation of the margin after correction for rotation of 
the North American plate with respect to the spin axis. 

tTotal length of subducted plate. 

TABLE 3. Volume of sediment cover subducted during the last 40 Ma compared with 
volume of accreted sediment in subduction complex 

Average thickness of 
sediment cover (km) 

Initial* 

2 (n := 35 %) 
1 .5 (n := 38 % )  

1 (n := 45 %) 

Finalt 
(n=4%) 

1 .38 
1 .04 
0.69 

Final volume of subducted 
sediment cover (km3/km)t 

2475 
1 865 
1240 

Volume of accreted 
sediments (km3/km)U 

1 725 

NoTEs: ii, average porosity . All volumes are in cubic kilometres per kilometre length parallel 
to trench axis. 

*ii is estimated from basinal reference sections of Bray and Karig ( 1985, Fig. 1 ) .  
tThe equivalent thickness o f  the sediment cover after accretion. ii i s  estimated from accreted 

sediments at 3 - 24 km depth in Bray and Karig ( 1 985, Fig. 1) .  
+Volumes are corrected for the oblique angle between the section line B - B '  and the strike of 

the subduction complex ( - 1 55°). 
!Volume of subduction complex in Fig. 7 (stippled region, 2040 km3/km) minus volume of 

accreted mafic rocks (D2 - E l ,  3 1 5  km3/km). 

f 

The mass-balance calculation is summarized in Table 3 .  
Porosity curves from Bray and Karig ( 1985) were used to esti
mate the average porosity of the sediment cover on the down
going plate and the average porosity for those sediments after 
accretion, thereby giving a rough estimate of the volume loss 
due to tectonic compaction and deep burial during subduction. 
The largest uncertainty in this calculation is the time-averaged 
thickness of the sediment cover on the downgoing plate. 
Table 3 shows results for varying initial thicknesses of the 
sediment cover, ranging from 1 to 2 km, which over 40 Ma 
yields an equivalent final volume (average porosity , 4 % ) 
between 1 240 and 2475 km3/km (volume is in cubic kilometres 
per kilometre length parallel to the trench axis). These figures 
are probably conservative estimates when compared with the 
modem Cascadia basin, which is about 2 km thick at the sub
duction zone (Connard et al. 1984). The cross section in Fig. 7 
was used to estimate the volume of accreted sediments in the 
subduction complex, which is about 1 725 km3/km, after 
correction for the oblique angle of the section and after sub
traction of the approximate volume of the accreted mafic rocks 
in the D2 - El interval . Therefore, this mass balance calcula-

tion shows that there is reasonable agreement between the esti- t .  
mated volumes of subducted sediment cover and accreted 
sediment in the subduction complex. Perhaps more important, 
however, this calculation also serves to illustrate that in cases 
where sediment cover is relatively thick, such as on the Juan de ' 
Fuca plate west of Vancouver Island, it does not take much 
time to form a relatively large subduction complex. 

Summary 

In summary , our preferred interpretation is that the region 
from C to E2 has formed by steady-state accretion and under- , 
plating of materials from the downgoing plate. Vertical varia
tions in reflection character and velocity probably indicate 
changes in the type of accreted materials. As interpreted, the \ ) underplated region consists of three major lithologic com-
ponents : ( 1 )  the highest (C - D2), consisting of accreted turbi
dites, similar to the Core rocks of the Olympic Peninsula; (2) a 
middle package, consisting of imbricated mafic rocks; and 
(3) a lower package of turbidites and perhaps basalts. This 
sequence suggests that the position of the subduction-zone 
thrust in the downgoing plate has changed with time, some-
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times riding high, so that only the sedimentary cover of the 
plate is accreted, and other times incising deeply into the plate 
and accreting mafic crustal rocks (e . g . ,  Fig. l Ob).  This migra
tion of the thrust may occur in a random fashion; alternatively, 
it may be controlled by the thickness of the sediment cover on 
the downgoing plate. 

The data of phase 1 LITHOPROBE and their interpretation 
probably provide the first direct evidence for the process of 
subduction underplating or subcretion (Scholl et al. 1980; von 

I 
Huene and Uyeda 198 1 ,  Moore et al. 1982; Karig 1983). The 
El -E2 interval is a region where oceanic sediments and (or) 
basalts are being accreted at depth beneath an overriding sub
duction complex. It coincides with a highly conductive layer 
attributed to saline fluids carried down with the subducting 

' 
plate (Kurtz et al. 1 986). The lower part of the subduction 

"ff complex (02 -E 1 )  could have formed by a similar process 
involving imbrication of mafic rocks from the subducting slab 
(our preferred interpretation) or by an episodic event that 
resulted in a remnant oceanic slab being emplaced above the 
currently descending plate. 

We suspect that subduction underplating may be a more 
widespread phenomenon than heretofore considered, and 
therefore it may be an important process by which continents 
can grow (see also Green et al. 1 986). Evolutionary models for 
continental growth generally do not consider this possibility ; 
we suggest it requires serious consideration . 

Another important general result of phase 1 LITHOPROBE 
is the discovery of a series of terrane-bounding thrust faults 
and the fact that the intervening terranes have thicknesses sig
nificantly less than their original lithospheric dimensions. This 
is illustrated in Fig. 7 ,  where, for example, Wrangellia is 
shown to be only 14 - 1 8 km thick (Yorath et al. 1985b) .  This 
discovery underscores the importance of the process of thin
skinned thrusting during the accretion of allochthonous 
terranes (cf. Cook et al. 1979). Furthermore, it may have sig-

' nificant implications for the manner in which the other terranes 
� of the Canadian Cordillera (Monger et al. 1982) have accreted. 

I Have subduction, removal of the original lower lithosphere , 
and its replacement by a younger oceanic plate (as may have 
occurred beneath Vancouver Island) also been features of the 
older terranes east of Wrangellia? This is a problem that will be 
addressed during LITHOPROBE phase 2 .  
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