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Abstract— Recently, Recurrent Neural Network becomes a
very popular research topic in machine learning field. Many
new ideas and RNN structures have been generated by different
authors, including long short term memory (LSTM) RNN and
Gated Recurrent United (GRU) RNN ([1],[2]), a number of
applications have also been developed among various research
labs or industrial companies ([3]-[S]). Most of these schemes,
however, are only applicable to machine learning problems, or
static systems in control field.

In this paper, a new concept of applying one of the most
popular RNN approach - LSTM to identify and control dynamic
system is to be investigated. Both identification (or learning)
dynamic system and design of controller based on identification
are going to be discussed. Also, a new concept of using a
convex-based LSTM networks for fast learning purpose will
be explained in detail. Simulation studies will be presented to
demonstrated the new LSTM structure performs much better
than conventional RNN and even single LSTM network.

I. INTRODUCTION

Neural Network has a long history in scientific research.
The earliest description about neural networks can be traced
back to the early 1940s, psychologist Donald Hebb invent
a learning scheme known as Hebbian Learning base on the
neural plasticity mechanism ([6]). In 1958, Frank Rosenblatt
created the perceptron, which is known as the principal
components of neural network nowadays, and built a two
layers neural network without any training procedure ([7]).
The current most widely back-propagation algorithm was
designed and published by Paul Werbos in his Ph.D thesis
in 1975([8]). Since then, various neural network structures
are proposed for different problems in control and machine
learning fields, which includes feed-forward neural network,
recurrent neural network, auto-encoder, time-delayed neural
network and etc. The development of training large scale
complex neural networks had become very slow or even
stagnated. There are main two reasons:

1) The computational powers is not fast enough for training
neural networks by computing their weights through back-
propagation, especially when the networks has multiple
layers and vast numbers of hidden nodes.

2) The vanishing gradient problem: the gradient of errors
will vanish gradually through the back-propagation process.
This issue was firstly addressed by Hochreiter in 1991 ([10]),
which is also treated as the seed of deep learning. During
more than one decade since early 2000s, more researchers
started working on numerous deep neural network structures,
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most of which contain complex network structures with still
reasonable training speeds.

Long-short term memory network, or abbreviating as
LSTM, is one of most popular recurrent neural network
structure in deep learning field. Invented by Schmidhuber
in 1997 ([1]), LSTM avoids the vanishing gradient issue by
adding three gated units: forget gate, input and output gates,
through which the memory of past states can be efficiently
controlled. LSTM is widely used in many areas, mostly in
machine learning application field, including speech recogni-
tion, natural language processing and other pattern recogni-
tion applications. The use of LSTM for system identification
in control field, however, has never been addressed by any
existing literature. The reasons is mostly because:

1) Most of the system identifications using neural networks
are nonlinear system, which requires multiple layers neural
network and vanishing gradient is an issue during earlier
years.

2) Unlike a typical machine learning problem, most of
the systems to be controlled are in a dynamic and on-line
manner, hence the speed requirement for designing a neural
network structure for system identification is very high.

In the paper, both of these two problems will be addressed.
The first problem can be mainly solved by the LSTM
structure itself and the second one will be conquered by
using the main technique to be introduced in this paper: a
convex-based LSTM neural networks structure.

II. MATHEMATICAL PRELIMINARIES

In this section, concepts related to dynamic systems,
neural networks, long-short term memory neural network and
system identification would be presented and explained. The
major objective of this section is to provide readers some of
the important prior knowledge before the main parts of the
paper and also for easy reference purpose.

A. Dynamic System Representation

In conventional control theory of dynamic systems, there
are mainly two types of system representations: state-space
form and input-output based. The major difference between
two forms is that, input-output approach mainly assume the
inaccessibility of states while state-space form assume the
full or partial accessibility of systems states. In this paper,
due to the necessity of states information of system, the
state-space approach is used as the major form. Follow are
the differential equation representations of the system in a



general form:

(t) = flo(t),u(t)] teRT

y(t) = gl=(1)]

where x(t) = [z1(t),z2),...2m(t)]T is the system states,
u(t) = [ui(t),..ur(t)] is the input, and y(t) =
[41(t), ..., yn(t)] is the output. f is a mapping from R™ x R¥
to R™, and g is also a mapping from R™ to R™. Notice that
both f and g can be linear or non-linear, but the approaches
to deal under two different scenarios will be totally different.

Also, the general system can be considered in discrete
space, which will put it into a form as :

(1)

z(k) = fle(k—=1), - ,x(k —n),ulk — 1), - ,u(k — m)]
(kez")

y(k) = gle(k)]
2

where the system mapping for f and g are the same as in
general case, instead that k& € ZT, and the inputs, internal
states and outputs are discrete sequences.

The system can be further simplified to linear systems
by mapping systems representation into a linear space.
The illustration, identification and controller design of such
systems are very mature and well developed, hence it will
not be discussed in detail in this paper. In this paper, we
will use the discrete form of general system representation
for further explanation.

Comment 1: Assuming f and g are known will not
simplify finding the solution to the system shown in (2).
Actually, even the algebraic solutions to the non-linear
discrete system are very hard to obtain. This brings out the
reason of using LSTM neural networks to identifying the
system where the system is treated as a black box, hence the
focus will be on finding the weights and other coefficients
of neural networks.

B. Some Theorems

In this subsection, two important theorems will be
presented: the Stone-Weierstrass Theorem, and Universal-
Approximation Theorem. Following is the well-known The
Stone-Weierstrass Theorem

Theorem 1 The Stone-Weierstrass Theorem:

Suppose X is a compact Hausdorff space and A is a
subalgebra of C(X,R) which contains a non-zero constant
function. Then A is dense in C(X,R) if and only if it
separates points.

By using this theorem, it can be shown that the a nonlinear
equation under certain conditions can be represented by
series like Wiener series. This will then lead to the discover
of universal approximation theorem.

In 1989 and 1991, Cybenko and Hornik gave two different
versions of universal approximation theorem for neural net-
work, which currently being treated the foundation of all the
identification and convergence proofs in the Neural Network
field. A general well-accepted form is as following:

h(k —1)

MR

u(k—1)

Fig. 1: RNN Structure

Theorem 2 The Universal-Approximation Theorem

Let ¢(t) be a nonconstant, bounded, and monotonically-
increasing continuous function. Let I,, denotes the m-
dimensional unit hypercube [0,1]™. The space of continuous
functions on I, is denoted by C(I,,). Then, given any
Sunction f € C(I,,) and € > 0, there exists an integer N,
real constants v;,b; € R and real vectors w; € R™, where
i=1,---, N, such that we may define:

N
F(z) = Z Vi (wlTx +b;) 3)
i=1

as an approximate realization of the function f where f is
independent of ¢ ; that is,

|F(z) - f(z)] <e )

or all x € I,,. In other words, functions of the form F(x)
are dense in C(I,).

III. LSTM NEURAL NETWORKS

In this section, a brief overview of LSTM Neural Network
will be introduced. Before that, some basic information on
conventional Recurrent Neural Network, back-propagation
and their common issue: vanishing gradient problem, will
be presented. These together will give a solid reason for
alternating from Simple Neural Network Structure to LSTM
for the system identification purpose.

A. Conventional RNN

Recurrent neural network is a well known neural network
structure by taking advantage its feed-back loop to store past
input information, hence reduce the complexity and number
of layers in its structure. A basic graphical structure is shown
as Figure (5):

The general mathematical representation is:

h(k) = g(Zjw(h)ish(k = 1) + 3 w(@)io(k) +b(k))

(k) = 3 w()h(k)

&)



Where w(h), w(x) and w(y) are the states weight, input
weights and output layer weight correspondingly, all of them
are functions of k. And g is a nonlinear activation function.

From both the graphical illustration and mathematical
presentation, it is shown that the output of recurrent neural
network y(k) is dependent on two parameters, i.e. input z (k)
and the feed-back internal state h(k — 1).

Theoretically, due to the recurrent property as demon-
strated in equation (5), current output y(k) should be affected
by all the internal states h(k) where k = {0,--- ,m — 1},
and m is the memory step. However, the stored information
over extended time intervals is very limited in a short term
memory manner due to the decaying error feedback. This
effect is also normally called as Vanishing Gradient Issue,
which will be explained in detail in next section.

B. Back-propagation and Vanishing Gradient Issue

In 1991, Hochreiter explained in his paper [10] about the
vanishing gradient issue in detail when back propagation
approach (BPTT) is applied to the error signal for generating
network weights. It is claimed in the paper that the error
trained by conventional BPTT approach will be decaying
exponentially as time elapsed. A simple explanation is as
following. Considering the mathematical equation for output
error e (k)

er(k) = fr(gi(k) (ye(k) — G(k)) ©6)

where §;(k) = fi(gi(k)) the identification result or learning
result obtain from the neural network by using the activation
function g; (k). Here the ey (k) is the output error. Similarly,
for any non-output error e;(k) within the hidden layers, the
error can be represented as:

ei(k) = fi(gi(k) Zwijei(k +1) @)

Once one have obtained the error equations (6) and (7), it
is very easy to further derive the scaling factor for the error
occurred at iteration k propagated backed into m time steps.
The detail derivation will be omitted due to space limitation,
only the result is shown as below:

a k— n n m ,
e(eb(k)m) => - > I k= wg,. ®

l1=1 lm—1=1¢=1

where ¢ is from 1 to m, and the error flow from [{ to [,,.
It is stated in the paper that when the term in the product
-1< flq (91,(k — Qwi,i,_, < 1 for all g, then the largest
product decrease exponentially with ¢, i.e. gradient of error
vanishes.

C. LSTM with Gated Units

To overcome the issue of vanishing gradient, in 1997,
Hochreiter proposed a RNN structure with Gated Units,
named LSTM. A simple overview of the scheme will be
discussed in this subsection.

To ensure a constant error overflow in LSTM, a memory
cell, is added to the structure. Functioned as a sluice gate and

Output
Gate

k)

k)

Forget
Gate

Fig. 2: LSTM Structure

controller of storing past states, the memory cell contained
three gated units: input gate i(k), output gate o(k) and forget
gate f(k). The structure of LSTM is below:

The math formulation of LSTM is as below:

f(k) = g(Wy(h(k = 1), z(k)) + by)

i(k) = g(Wi(h(k — 1), z(k)) + b;)
o(k) = g(Wo(h(k —1),z(k)) + bo) ©)
C(k) = gWea(h(k — 1), z(k)) + b.
(

C(k) = f(k)C(k) +i(k)C(k)

where g(-) is the activation function for input, output and
forget gates, which is normally chosen as the sigmoid func-
tion. g(-) is the activation function for the memory cell state
C, which can use tanh for general cases. From the equation
above, f(k) is the forget gate which will select which part
of memory is going to be passed to next step. The output of
f (k) is a number between 0 and 1 (when choosing sigmoid as
g(+)). And from the last formula in the equation list, memory
cell will be fully passed to next state when f(k) is equal to 1
and forgotten or thrown away when f(k) is equal to 0. That
is also why it is called Long-Short Term Memory. The main
advantage of LSTM is that this structure can effectively avoid
the vanishing gradient phenomenon and hence be selected as
the RNN structure for system identification in this paper.

IV. A CONVEX-BASED LSTM CLUSTER

Though the universal approximation theorem indicated
that when appropriate activation functions and number of
hidden nodes are chosen, the LSTM RNN structures can
identify any nonlinear system structures described in equa-
tion (2), the training speed of a conventional BPTT as shown
in equation (8) will be still very slow. In this section, a newly
designed convex-based LSTM structure will be introduced,
and the general idea is inspired by the author’s early work
in the field of adaptive control [11].

In adaptive control, one of the popular research direction
is Multiple Models based adaptive structure. The principal
idea is to use more than one models to make decisions for
the identification or control purpose. The information can
be obtained by a selected model among multiple models,
or the collective information from all the models, which is
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Fig. 3: Convex based LSTM Structure

also called as the second level adaptation in previous paper
[11]. The major advantage of using second level adaptation
is that it dramatically increases the convergence speed during
system identification by updating the convex coefficients of
each model instead of models themselves. Here, a similar
concept will be applied on identifying the discrete system
using multiple LSTM neural networks. Following is a struc-
ture of the convex-based LSTM neural networks:

In the structure, n multiple LSTM Neural Networks
N;(i = {1---n}) with the same network structure (number
of layers and hidden nodes)are used and connected by n
convex coefficients c;, which have values within the range
[0,1]. The convex-based LSTM Neural Networks satisfy the
following three properties:

LY, au=1l.(i={1---n})
2. 55, ai(0)N; (0)=N(0)
3.5, ai(00) Ny (50)=N (c0)

where N (-) is a virtual LSTM model satisfying the prop-
erties 2 and 3, and sharing the same structure as each single
model NN;. The first property is the convex criteria need to be
satisfied for ;. The second property claims that the convex
sum of the initial values for each LSTM model should be
equal to that of the virtual model, and the third one indicate
that the convergence of each single LSTM neural network
in the convex-based structure should be equal to that of the
virtual model.

Comment 2: The major reason to introduce a virtual model
is to simplify the representation of n multiple convex-based
LSTM models. Also it will be used as a comparison model to
conventional LSTM/RNN network for identification purpose.

V. SYSTEM IDENTIFICATION USING LSTM

Recent years, LSTM has become a popular recurrent
neural network (RNN) structure in the field of machine
learning, and has been widely applied in many areas in indus-
try [12]-[14]. Among these applications, most of them has
inputs with long time lags, like: speech recognition or query
classification in Natural Language Processing problems [15]-
[16]. However, few literatures have ever been addressed on
applying LSTM Neural Networks in system identification,

though the network itself has been discussed extensively in
the literature. In this section, a detail description on neural
network identification of discrete dynamic system, and how
to further extend the LSTM structure into the identification
process will be discussed.

A. Single Input- Single Output (SISO) Discrete System Struc-
ture

In section II, a general form of discrete system has been
discussed using the state-space representation. By limiting
that only the inputs and outputs being accessible, the system
representation can be further simplified as:

y(k) = fly(k=1),..,y(k—n);u(k—1),...u(k—m)) (10)

where f(-) is a nonlinear mapping: R™*™" — R.Noticing
that here the system structure is a SISO plant, which can be
also extended to multi-variable case.

The system described in (2) is the most general case for
nonlinear discrete system. There are also some of simpler
forms widely accepted and applied in control applications.
For instance:

y(k) = fy(y(k=1), ., y(k=n)]+ fu(u(k=1), .., u(k—m)]
an
where the output y(k) is assumed to be non-linearly related
to its past and current input and output signals u(k—1) where
i€ {l,---,m} and y(k — j) where j € {1,--- ,n}, which
is particularly suited for control problems.
Comment 3: The systems described thus far are all dis-
crete system plants. Continuous time systems can be easily
obtained by changing the difference equation to differential

equations.

B. Identification using LSTM Neural Networks

The identification process includes building (an) appropri-
ate identification model(s) to estimate the real system, which
is defined by equation (10) and (11). The basic target is
to minimize the identification error between the constructed
LSTM based model and real plant model. According to
the Universal Approximation Theorem introduced in section
II, by properly choosing the size and parameters of neural
network, any nonlinear function f can be identified or learnt
by NN under relatively weak pre-conditions. In some of
the early literatures [9], two major types of identification
structures are used, as shown in the following:

1) Parallel Identification Model

The parallel identification model only uses the input and
output information from the identification model itself, i.e.
y(k). The mathematical representation for identifying (11) is
as following:

g(k) = Ny[g(k = 1), 9(k —n)]

+Nu[U(k5—1)’... ,U(k—m)] (12)

where N, (-) and N, (-) are two general neural network struc-
tures only depends on early outputs y(k—i) (i = {1,--- ,n})
and inputs u(k —4) (i = {1,--- ,m}). A graphical structure
is shown as in Figure (4):
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Fig. 5: Series-Parallel Identification Model

Though the simple representation of parallel model, the
stability of such representation cannot be guaranteed [9], it
is only suitable for the cases where the plant is stable itself
(which is true for most of the application in industry). To
further ensure the stability of the identification system, a
series-parallel identification model is designed, which is as
descried in the following subsection.

2) Series-Parallel Identification Model:

Unlike parallel model where only the output from the
identification model is used as the feedback signal during
the identification process, the series-parallel model takes
advantage of both the output signal y(-) from the real plant
and §(-) from the estimator. The model has the form:

Q(kj) = Ny[y(k - 1)7 e ’y(k - n)]

+ Nyfu(k — 1), ,u(k —m)] (13)

Noticing that on the right hand of the equation, y(-) is used to
substitute §(-) to ensure stability. The identification process,
on the other hand, requires the accessibility of past plant
system output, which is true for most of the time. Following
is a graphical illustration for the series-parallel model (Figure
5)):

Comment 4: Noticing that the values of m and n are
chosen before the identification process. n is the output
memory indicating that how many past steps of output to
be used in system identification. and m is generally called

WE) = fOk=1)..... Wk —n):u(h =), ....u(k—m))

Delay

e(k)
|
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Fig. 6: Convex-based LSTM neural network for identification

as the time-step in our LSTM structure, which is longest
memory an LSTM can store. Simply speaking, the larger of
the values m and n are chosen, the better identification result
will be given by the design network system.

In this section, one discrete system representation and two
corresponding identification structures are introduced. The
identification structure, however, is taking the advantage of
one LSTM neural network and its universal approximation
property. Besides avoiding the commonly addressed van-
ishing gradient issue appeared in RNN based identification
network, the speed of the identification (or on-line learning)
process does not increase dramatically. (assuming the same
gain factor is used in reducing the identification error y(k) —
7 (k) through the back propagation procedure). To overcome
the slow convergence speed issue, a new design back-
propagation scheme based on convex-based LSTM Neural
Network is going to be discussed next section.

VI. A NEW ADAPTIVE LEARNING APPROACH FOR
CONVEX-BASED LSTM NEURAL NETWORK

In section III, a convex-based LSTM structure is intro-
duced. The corresponding adaptive learning approach for
obtaining the convex coefficients a; will be discussed in this
section.

Figure (6) shows a detail structure of a convex-based

LSTM neural network. The output of the identification
model y(k) is a convex sum of n LSTM models’ outputs

k), -, gn(k), as follows:
g(k) = ar(F)gu(k) + - - + an(kK)gn(k) — (14)
Also defining the system output errors as:
e(k) = y(k) — 9(k) (15)

Substituting (15) into (14), and combining with the convex
property that an=1-2?:_11 «;, a rearranged form of e(k) can



be obtained

e(k) = y(k) — (a1 (k)gr (k) + - - + an(k)gn(k))

n—1
= Y (ke (k) + ealk)
i=1
(16)
where e;(k) is defined as the error between the i** LSTM
model and the plant output, i.e. y(k) — 9;(k), and ¢&;(k) is
the difference between ¢;(k) and e, (k), i.e. & (k) £ e;(k) —
en(k), which is the error differences between the i‘* and n'"
node.
The error equation obtained from (16) can be further
simplified as:

é(k) = ET (k)a(k) (17)

where € is a scalar value, which is equal to e — e,, and
E € R™ ("1 is a vector defined as [é1, - - -, é,_1], as well
as o = [al, s ,Oén,ﬂ S Rix(n=1)

The update rule for & can also be derived by multiplying
E on both sides of the equation, and move the left hand side
of the equation to the right:

ak)—ak—1)=-EETa(k — 1) + Eé(k — 1)
ak)=ak—-1)—EETak — 1)+ Eé(k — 1)
(18)

Hence, equation (18) has become the new back propagation
law for updating the convex parameter au(k), which will give
us the first n — 1 elements in the convex coefficient vectors

a = [ag,--,a,]. By the convex property of «, the last
element «, can be obtained by 1 — ;L_l a; once & is
obtained.

Also, for each single LSTM model, its weights will be
updated by the standard back-propagation law using the
model error ¢;, which has been illustrated in detail in section
IIT B. It should be noticed that the update procedure of &
and networks’ weights are both on-line and in a simultaneous
manner.

A. Performance Analysis of Convex Coefficients «:

In the convex-based LSTM Neural Networks structure, a
new convex coefficient vector « is introduced. The question
involved is that how this new parameter can change the
performance of LSTM networks. Two properties will be
claimed here as below:

1) The error between « and its true value a* is decreasing
exponentially with respect to the iteration round number &.
2) The identification system will converge when « converges,
regardless of whether the standard back-propagation process

converges or not. i.e. > ; a;N;=y(k), once a;=a; for all
ie{l---n}.

The first property can be easily obtained from equation
(18). As it is shown, the change difference of « is pro-
portional to its last iteration’s value. Hence, an exponential
property will be given by solving the difference equation.
The interesting property is the second one, which indicates
that the convergence speed of o dominates the identification
speed , as that of conventional back-propagation part for the
LSTM network is far inferior than the exponential conver-
gence. The error e is defined as the convex combination of
each single model’s error:

n

e= Z%‘Ni -y
i=1
n

= Z%(Ni )

= g Qi€

=1

19)

where the convex property of > ; o; = 1 is used. Equation
(19) indicates that only the convex sum of error e;, i.e.
Z;;l a;e;, needs to be zero for identification, instead of
single model error e; — 0. It gives the theoretical foundation
that why the convex-based approach is much faster than
conventional LSTM Neural Networks.

Comment 5: The convex property of Y . a; = 1 gives
us a possibility to design the adaptive update law as shown in
equation (18), by ensuring the robustness of the system and
speed of convergence at the same time. Also, noticing that
«a; is within a range [0, 1], which gives us a relatively short
range for parameter to update. this is another potential reason
that why it will converge much faster than the network itself
using backpropagation. The choice of n, which is the number
of models, depends on system complexity, and normally
with larger value when the nonlinear system become more
complex.

VII. CONTROLLER DESIGN OF DYNAMIC SYSTEMS

The controller design for the discrete system is quite stan-
dard. As described in section VI, once the system is identified
online using convex-based LSTM neural networks together
with its linear dynamical elements, the controller based on
Neural Networks can be designed. Various controller designs,
including adaptive controller, backstepping controller or H-
oo controller, can works effectively with neural network
identified system. As the major target of this paper is about
the design of a convex-based LSTM neural network for
discrete system identification, the controller design for an NN
identified nonlinear system will not be discussed in detail. A
graphical representation of the controller design is shown as
in Figure (7).

VIII. SIMULATION STUDIES

In this section, two simulations are conducted for identify-
ing non-linear dynamic systems. A comparison between the
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results from convex-based LSTM method and conventional
RNN approach is also given for each system.

A. Simulation 1:

Here we consider a system structure in a form:

2
y(k) = fy(y(k = 1),y(k = 2)) + > u(k—i)  (20)
=1
The system equation is
y(k) = 0.7y(k — 1) — 0.8y(k — 1)e¥*~V
—0.6y(k —2) — 0.5y(k — 2)e?" =D (1)

+u(k —1) +0.3u(k — 2)

The identification error y(k) — y(k) is plotted for both
convex-based LSTM approach and Conventional RNN ap-
proach in Figure (8). The input is used as wu(k) =
sin(2mk/125) + cos(2mk/50)

From the simulation result, it is easy to figure out that
the identification error obtained by convex-based LSTM
neural network converges much faster and smoother than the
conventional RNN approach.

B. Simulation 2:

In the second simulation, a discrete system with both
nonlinear inputs and outputs terms is identified. Similarly,
the result given by conventional RNN and convex-based

—Conventional RNN
---Convex-based LSTM
1 |e 4
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Fig. 9: Identification error for Simulation 2

LSTM will be compared in Figure (9). The system equation
is defined as:
(k) = y*(k — Dy(k — 2) + 5y(k — Dy (k — 2)
1+y?2(k—1)+y2(k—2) +y2(k - 3)
+ud(k —1)

(22)

Also, the response of identification error generated by the
new convex-based LSTM approach is far superior than the
conventional RNN.

IX. CONCLUSION

In this paper, a new concept using LSTM neural networks
for dynamic systems identification has been proposed. By
taking the LSTM advantage over vanishing gradient issue,
together with the convex multiple models for increasing
the speed, the designed structure has shown far superior
performance compared with conventional RNN and LSTM,
as shown in section VIII. Theoretical explanations why the
convex-based approach gives a faster convergence speed
than the other RNN-based neural network methods are also
given in section VI. A brief controller structure is shown
graphically in chapter VII. From the theories and simulations
discussed in this paper, it is confident to conclude that the
newly proposed LSTM based identification scheme is well
suited to identify the discrete dynamic systems, especially
when there is a requirement for a high speed and accuracy
during identification procedure.
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