Adaptive Sequence Submodularity

Marko Mitrovic¹ Ehsan Kazemi¹ Moran Feldman² Andreas Krause³ and Amin Karbasi¹

¹Yale University, ²The Open University of Israel and ³ETH Zurich

1. Background

▶ In a nutshell, submodular functions are the class of functions that exhibit diminishing returns. As such, many machine learning applications fall under the umbrella of submodularity:

Mathematically, a function is said to be submodular if for all sets \(A \subseteq B \) and all elements \(v \in V \setminus B \):

\[
 f(A \cup \{v\}) - f(A) \geq f(B \cup \{v\}) - f(B)
\]

▶ In other words, the marginal value of any item is non-increasing as our set grows. For example, suppose we want to summarize a set of images about Vancouver. Once we already have one image of the convention centre, additional images of the convention centre will be much less valuable.

2. Problem Statement

▶ We view the problem of adaptive and sequential decision making through the lens of submodularity.

▶ We assume there is a directed graph \(G = (V, E) \), where each item in our ground set is represented as a vertex \(v \in V \), and the edges encode the additional value intrinsic to picking certain items in certain orders.

▶ A sequence of items \(\sigma \) induces a set of edges \(E(\sigma) = \{(\sigma_i, \sigma_j) \mid (\sigma_i, \sigma_j) \in E, i \leq j\} \)

▶ To include adaptivity, we assume that each vertex has some (initially unknown) state \(o \in O \), each edge has a state \(q \in Q \) that is determined entirely by the states of its endpoints. Another way to look at this is to say a realization \(\phi \) of the vertices induces a realization \(\phi^E \) of the edges.

▶ This allows us to define \(f(\sigma, \phi) = h_i(E(\sigma), \phi^E) \), where \(h \) is a weakly-adaptive set submodular function, \(\sigma \) induces \(E(\sigma) \), and \(\phi \) induces \(\phi^E \).

This example gives a possible partial realization of the vertices \(\psi \) and an associated partial realization of the edges \(\psi^F \). In this case, the state of an edge is equal to the state of its start point.

▶ Suppose our function \(h \) counts all induced edges that are in state \(1 \). Furthermore, let us simply assume that any unknown vertex is equally likely to be in state 0 or state 1. This means that the self-loop \((R, R) \) is also equally likely to be in either state 0 or state 1. Therefore, \(\Delta(\{(R, R) \mid \psi^F\}) = \frac{1}{2} \times 0 + \frac{1}{2} \times 1 = \frac{1}{2} \).

3. Algorithm and Theoretical Results

Algorithm 1 Adaptive Sequence Greedy Policy \(\pi \)

1. Input: Directed graph \(G = (V, E) \), weakly adaptive sequence submodular \(f(\sigma, \phi) = M(\sigma(\sigma), \phi^E) \), and cardinality constraint \(\kappa \)
2. Let \(\pi = [\{\}] \)
3. While \(|\pi| < \kappa \) do
 4. \(E = \{e \mid e \in E \mid \psi_e \neq \pi\} \)
 5. If \(E = \emptyset \) then
 6. \(\pi = \pi \cup \{a\} \)
 7. \(\pi = \pi \cup \{a\} \)
 8. Else
 9. \(\sigma = \sigma(\pi) \) and \(\phi = \phi(\pi) \)
 10. \(\pi = \pi \cup \{a\} \)
 11. \(\pi = \pi \cup \{a\} \)
 12. End if
 13. Break
 14. End if
16. End while
16. Return \(\pi \)

Theorem 1. For adaptive monotone and weakly adaptive sequence submodular function \(f \), the Adaptive Sequence Greedy policy \(\pi \) represented by Algorithm 1 achieves

\[
 I_{\text{act}}(\pi) \geq \frac{1}{2 \delta_{\text{min}} + \gamma} I_{\text{opt}}(\pi),
\]

where \(\gamma \) is the weakly adaptive submodularity parameter, \(\sigma^* \) is the policy with the highest expected value and \(\delta_{\text{min}} \) is the largest in-degree of the input graph \(G \).

4. Applications

▶ Product Recommendation

▶ We use the Amazon Video Games dataset (McCaulay et al., 2015), which contains 10,672 products, 24,303 users, and 231,780 confirmed purchases.

▶ Given the first 4 products that a user has purchased, our goal is to recommend \(k \) products that we think she will purchase.

▶ Wikipedia Link Prediction

▶ We use the Wikispeeda dataset (West et al., 2009), which consists of 51,138 completed search paths on a condensed version of Wikipedia that contains 4,604 pages and 119,882 links between them.

▶ Given the first 3 pages a user has visited, we want to guide her to her target page.

5. Acknowledgements

This work is partially supported by NSF (1845032), ONR (N00014-19-1-2406), AFOSR (FA9550-18-1-0160), ISF (1305/16), and ERC StG SCADAPT.