Homework 8

(1) Let A, B and C be defined by

$$A = \begin{pmatrix} 2 & 0 \\ 3 & 1 \\ -1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 2 \\ 1 & 4 \end{pmatrix}.$$

Compute each of the following matrix products if possible. (Some are not possible.)

$$AB, BA, AC, CA, BC,$$
 and CB

(2) Find all solutions to each system of equations by Gaussian elimination.

(a)

$$x_1 + x_2 + x_3 = 7$$
$$2x_1 - x_2 - x_3 = -4$$
$$2x_1 - 2x_3 = -2$$

(b)

$$\begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} 3 \\ 8 \\ 5 \end{pmatrix}$$

(c)

$$\left(\begin{array}{cc} 5 & 1\\ 1 & 2\\ 3 & 4 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right) = \left(\begin{array}{c} 6\\ 3\\ 0 \end{array}\right)$$

- (3) Compute the determinant of the matrix $\begin{pmatrix} 1 & -2 & 2 & 4 \\ 1 & 1 & 3 & 2 \\ 0 & 2 & 0 & -1 \\ 0 & 1 & 0 & 2 \end{pmatrix}$.
- (4) Find the inverse of the matrix $A = \begin{pmatrix} 5 & 3 & 4 \\ 3 & 2 & 3 \\ 1 & 0 & 0 \end{pmatrix}$. Then use A^{-1} to solve the systems

$$Ax = \begin{pmatrix} 3\\2\\1 \end{pmatrix}$$
 and $Ax = \begin{pmatrix} 0\\-1\\5 \end{pmatrix}$