10.3 Polar Coordinates

Mikey Chow

April 22, 2021
Intro to polar coordinates

Cartesian Coordinates

Polar Coordinates

Example: Plot the point

\[r = -\sqrt{2}, \quad \theta = \frac{9\pi}{4} \]

\[(r, \theta) = (-\sqrt{2}, \frac{9\pi}{4}) = (-\sqrt{2}, \frac{\pi}{4})\]
Intro to polar coordinates

Cartesian Gridlines:

\[x^2 + y^2 = r^2 \]

Polar Gridlines:

\[\theta = \frac{\pi}{2} \]

\[\theta = \frac{5\pi}{2} \]

\[\theta = \frac{9\pi}{2} \]

\[\theta = -\frac{3\pi}{2} \]
Consider the point defined by the Cartesian coordinates \((x = 1, y = 1)\).

Which polar coordinates, \((r, \theta)\), do NOT identify the same point?

A \((\sqrt{2}, \frac{\pi}{4})\)

B \((\frac{9\pi}{4}, \sqrt{2})\)

C \((\sqrt{2}, -\frac{7\pi}{4})\)

D \((-\sqrt{2}, \frac{5\pi}{4})\)
Example

Sketch the curve \(r = 2 \sin \theta \).

\(\theta = 0 \), \(r = 0 \)

\(\theta \) increasing to \(\frac{\pi}{2} \); \(r \) increase to 2.

\(\theta \) increasing to \(\pi \); \(r \) decrease to 0.

\(\theta \) increasing to \(\frac{3\pi}{2} \); \(r \) decreases to -2.

\(\theta \) increasing to \(2\pi \); \(r \) increase to 0.
Example

Sketch the curve \(r = \cos(3\theta) \).

Graph \(r \) vs \(\theta \) in Cartesian, just to get an idea of how \(r \) changes as \(\theta \) changes.

“Loop pieces of the graph in polar coordinates”
Matching. \textbf{Homework.}

(i) \(r = 2 \sin(\theta) + 1 \)
(ii) \(r = 3 \sin(2\theta) \)

(iii) \(r = \sin(2\theta) + 2 \)
(iv) \(r = 2 \sin(3\theta) \)
Polar coordinates ↔ Cartesian coordinates

\(x = r \cos \theta \), \(y = r \sin \theta \)

\(r = \sqrt{x^2 + y^2} \), \(\theta = \arctan \frac{y}{x} \)
Poll.

\[x = r \cos \theta \]
\[y = r \sin \theta \]
\[r = \sqrt{x^2 + y^2} \]
\[\theta = \arctan \frac{y}{x} \]

Which parametric equations describe the polar curve below?

\[r = \cos(\theta) \]

A. \(x = \cos(\theta), \quad y = \sin(\theta) \)

B. \(x = \cos^2(\theta), \quad y = \cos(\theta) \sin(\theta) \)

C. \(x = \theta, \quad y = \cos(\theta) \)

D. \(x = \frac{1}{2} \cos(2\theta) + \frac{1}{2}, \quad y = \frac{1}{2} \sin(2\theta) \)
Poll.

Which polar equation describes the line \(x = 3 \)?

A. \(r = 3 \)

B. \(r = 3 \cos(\theta) \)

C. \(r = \frac{3}{\cos(\theta)} \)

D. \(r = 3 \tan(\theta) \)