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The Fox-Hare game is a graph game in which foxes move to try to catch an
escaping hare. We analyzed the minimum number of foxes needed to catch
a hare, defined as the ”fox number,” for different graphs varying in planar
dimension and loop structure for various numbers of foxes. Starting with a base
case of 1 fox and 1 hare, we found that any planar graph containing sub-loops
solely of 3 nodes or less have a fox number of 1. Graphs with a fox number
of 2 are found to have at least one sub-loop with 4 or greater nodes. We then
extrapolated to 3 foxes and found that non-planar graphs with connections
forming isomorphic patterns at all boundaries have a fox number of 3 or greater.
Through these results, we developed the Fox-Hare Theorem which states that
finite graphs with boundary nodes connected to at maximum 2 separate loops
must be at maximum a 2-fox graph.

1 Introduction

The Fox-Hare game is a very interesting
way of analyzing graphs. It is essentially a
simple chase game, but can be adapted to
reveal interesting ideas of thinking about
graph theory. In order to explore this con-
cept, we will first examine some base cases
of the scenario, and gradually add more
conditions to expand our views of this idea.

2 Analysis

2.1 Definitions

The Fox-Hare game is a two person game
played on any type of graph. In the base sce-
nario, there is 1 hare and n foxes, placed on
random spots throughout the graph. The
two players take turns moving their charac-
ters to adjacent nodes, or not moving for
a turn. There are two end scenarios: The
foxes can win by “capturing” the hare by oc-
cupying the same node as the hare, or there
can be stalemate where the hare can always
escape regardless of where the foxes go. In
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Figure 1: A basic planar graph where the
foxes have cornered the hare.

addition, for the base case, we require that
all graphs be planar, and that each fox or
hare can move at maximum to 1 adjacent
node (ie, no “daisy chain” moves). These
requirements will be changed as we progress
onwards to more advanced cases. Sub-loops
of the graphs are loops in which all included
nodes are of 2 degree with respect to each
other. They are denoted by the number of
nodes, e.g. 4-loop for a 4 node graph in the
shape of a quadrilateral. See Figure 1 for
an example of a standard graph that could
be played. Clearly, the foxes will win this
game.

When we have such planar graphs, we will
seek to find the ”fox number” for it. Fox
number is defined as the minimum number
of foxes required on an graph to capture the
hare. We assume that both the foxes and
hares play with optimal strategy, and that
the initial positions of the foxes and hares
are least optimal for the foxes. Fox number
can sometimes be tricky to get, because
optimal conditions must be followed.

Figure 2: A complete graph where one fox
could always capture the hare.

2.2 1-Fox Games

Before we explore the n-fox game, we will
choose to first explore the 1-fox game. We
will attempt to identify the characteristics
that allow for a graph to be won with only
1 fox. These graphs would seem to be the
most basic graphs, but we will fully investi-
gate to confirm these exact traits.

Our first note is that all complete graphs
must be a 1-fox graph. A complete graph is
defined as a graph where every node is con-
nected to every other node. The example in
Figure 2 would therefore be a 4-node com-
plete graph. Clearly, because every node
is connected with every other node, a fox
occupying any node can capture a hare on
any other node.

Next, we note that if a single node is con-
nected to all other nodes, then that graph
must be a 1-fox graph. Our reasoning is
that once the fox obtains that single node,
they would be able to capture the hare that
exists on any other node.

Next, we progress to a more complex se-
ries of logical determination methods. We
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use the following algorithm to first simplify
a graph in order to better analyze it.

The first step in this algorithm is to elim-
inate any ”dead-end” nodes. If a node is
of degree one, meaning that it has only one
connection, then it can be identified as a
useless node. If the hare ever goes into this
node, then the foxes can close off the one
escape route and win. Removing the node
would therefore not remove any information
from the graph.

Afterwards, we repeat this step as many
times as necessary until all of those nodes
are taken away. We ”prune” the graph until
it reveals only the viable spots that are
connected in several different ways.

Finally, we examine the remaining graph
for loops of 4 or more. A loop is defined by
a connection of n-nodes of degree 2. If there
is a loop of 4 or more nodes, we postulate
that the graph must NOT be a 1-fox graph.

Our final stipulation implies that any
finitely tessellated group of 3-loops in a
graph will be a 1-fox graph. Through exper-
imentation, we have shown that any large
graph can be solved in this fashion. The
optimal strategy for the fox is to chase the
hare until the hare reaches the boundary
of the graph, at which point the hare must
start circling the boundary, and the fox can
circle nodes adjacent to the boundary, even-
tually catching up to the hare. As long as
the fox plays with this optimal strategy, it
can always limit the possible moves that the
hare has. Eventually, the hare is forced of
to the side, and is then captured.

With this, we conclude our conditions for
1-fox games. Any graph that can be ana-
lyzed with our above conditions will result
in capture by a single fox, given our original
definitions. The next step seems to be to
find the conditions for 2-fox games

Figure 3: A planar 4-loop graph in which
the foxes have cornered the hare.

2.3 2-fox game

To analyze the 2-fox game, we first break
our previous conditions of 1-fox games by
creating a graph of 4-loops rather than 3-
loops. As shown in Figure 3, it requires
a minimum of 2 foxes in order to capture
the hare. An even simpler case of only one
4-loop can also be considered. Clearly, if
there exists only 1 fox, the hare and fox
could always go in a loop, and result in a
stalemate condition.

It is rather difficult to directly analyze
the differences between the 2-fox game and
the 1-fox game. It seems that as long as
a loop greater than 4 exists, it must be at
least 2 foxes. However, there is no upper
limit of the number of foxes that would
be appropriate for the graph. In order to
further analyze, we must compare the 2-fox
graph with the hypothetical 3-fox graph.
What makes our 2-fox graphs solvable with
only 2 foxes?

2.4 3-fox game

Through experimentation, it appears as if
there are no planar graphs that allow for the
3-fox stipulation. Therefore, we began to
consider other 3D shapes that, when trans-
lated into graph theory, might be able to
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Figure 4: A non-planar graph where the
foxes have cornered the hare.

satisfy the conditions. The first one of these
that we found was a hollow cylinder that
connects the center tube with the outer tube.
The graphical representation of this sphere
can be found in Figure 4.

We find that on this graph, 2 foxes are
not sufficient to capture. This is because
there is no possible way for the foxes to
corner the hare in any corner or boundary
of the graph, and that even if 2 foxes cover
all possible nodes where the current hare
could escape to, neither fox can move in for
the kill without giving up an escape route.
Therefore, we find that this cylinder graph
is clearly a 3-fox graph.

What differentiates this graph from the
2-fox graph? As mentioned before, this
graph is no longer planar as there are con-
nections that cross each other. However,
it also means that there is no clearly de-
fined boundary to this graph - any point
can be defined as the center of the graph, as
it is isomorphic in all directions. There is
therefore no ”boundary” or ”corner” in the
graph. Regardless of where the hare and
fox moves, it is not possible to differentiate
the new position from the previous moves.

Can we set this as our key differential

between the 2-fox and 3-fox conditions?
We note that any planar graph must have
a boundary, and therefore a hare can be
pushed towards that side. However, what
defines an boundary? If we observe our
graphs, we realize that any boundary or
corner point can be defined as a node that
is part of at maximum 2 different loops.

Given all of this information, we conclude
with the Fox-Hare theorem:

(Fox-Hare Theorem) Let G be a finite
graph. Given that any node in G is con-
nected to at maximum 2 separate loops, G
must be at maximum a 2-fox graph.

3 Extension

Up to this point, we have analyzed all of our
graphs using our initial conditions. That
is, we assume that all graphs have only one
hare, and that the hares and foxes can only
move to one adjacent node (or choose to
maintain position). Therefore, we shall be-
gin to break down these conditions and ex-
tend the exploration.

3.1 n-hare Games

Let us change the conditions that there re-
quires to be only 1 hare on the graph. In-
stead, we shall place n hares on the graph.
In order for the fox to capture the hare, we
shall define that both fox and hare need
to continuously occupy the same location,
thus blocking off that location. This results
in the obvious condition that for n hares,
a minimum n foxes are required. For the
foxes to win, there must be sufficient foxes
to capture each hare!

At this point, there appear to be three
different possibilities that encompass all
graphs: an n fox game, an n ` 1 fox game,
and an n ` 2 fox game. Initially, it seems
that it is quite simple for what might have
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previously been considered an n`1 fox game
to be turned into an n fox game through
clever manipulation by the foxes. If the
foxes could force a hare to die in a certain
location, the fox might be able to change a
graph to be more favorable for the foxes.

However, we must also consider that the
hares are very smart as well! The hares
always have the option of not moving and
staying on a single location. Therefore, the
hares can strategically choose the locations
where they die, such that at least one hare
can survive in a stalemate. In this, we could
then apply the same strategies of the 1-hare
game to all of the n-hare games.

Of course, there are boundary conditions -
if there are more hares than half the number
of nodes on the graph, for instance, the
foxes could not win. In addition, if the
hares could essentially wall off a single hare,
preventing any fox from coming through,
there can never be a win situation either.
Therefore, it is difficult to establish all of
the n-hare cases as it is so close between
different ideals.

3.2 n-hop Games

Finally, we attempt to analyze the n-hop
games. This game requires only 1 hare, but
the hare is allowed to travel up to n hops
each turns. What could our analysis tell us
about the differences of n-hop games on the
same graphs as viewed before?

First, we shall analyze the differences be-
tween a 2-hop game and an 1-hop game,
using the layered 4-loop that can be found
in Figure 3. As we can tell, the 2 foxes are
no longer sufficient for capturing the single
hare, although it was possible in the previ-
ous setting. Therefore, we see that we must
entirely reevaluate the n-hop games in order
to build it upwards.

An interesting extension is that now, we

not only must define the hares and foxes,
but also need to define the graph. Without a
clear definition of the graph, it could quickly
be the limiting factor. If we wanted to find
all possible 2-fox graphs for a certain n-hop
hare, we would need to know the dimensions
of the graph. Otherwise, a scaled version of
a graph with the same characteristics could
become a higher fox number graph just by
becoming bigger. In these scenarios, it is
common for the hare to find a hole in the
line of foxes, and escape through.

For simplicity, we will only analyze 4-loop
graphs (found in Figure 3) with an n-hop
hare. We will build up our knowledge using
this case scenario, and allow the rest of the
permutations of cases to be left as exercise
for the reader.

3.3 n-hop, 4-loop Games

Considering a n by n 4-loop graph in which
only the hare is given n hops, we examine
the ability of the hare to escape various
numbers of foxes, up to n ´ 1.

When there are n ´ 1 or fewer foxes, the
hare can always create a stalemate by es-
caping the encroaching foxes. The hare can
stay in the corner of the graph and as soon
as the foxes approach, escape through the
inevitable hole in the line of foxes. For ex-
ample, with a 3-hop fox on a 4 by 4 graph,
with 1 or 2 foxes, the hare can easily out-
maneuver the foxes.

When we consider the case of 3 foxes on
the same graph, however, we find that the
hare cannot escape.

4 Discussion

Through our analysis of variations of this
simple graph game, we have found many in-
teresting aspects of graph theory. This anal-
ysis has given insight into a novel branch of
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graph theory concerned with moving enti-
ties on nodes. As we examined up to the
3 dimensional non-planar graph, some fur-
ther extensions to consider include higher
dimensional graphs and relationships be-
tween numbers of hares and foxes to the
”fox number.” If we are to extend the prob-
lem such that there are values assigned to
each connection, we could better model real
conditions in which hares have to consider
different factors such as underbrush or food
availability before moving. By creating al-
gorithms for understanding such graphs, we
could extrapolate to algorithmically under-
stand real-life behaviors capable of taking
into account many factors.

Thus, the Fox-Hare problem has many
facets still left to explore. Our two extension
cases, leave us with many more questions
on this topic for extension. We have deter-
mined several ways to continue extending
the problem, including the n-hop game, the
n-graph game, and the value assignment to
each connection. These are very interesting
aspects for future study.
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