Economic Development, the Nutrition Trap and Metabolic Disease

Nancy Luke, Kaivan Munshi, Anu Mary Oommen and Swapnil Singh

September 16, 2020

Abstract

This research provides a single explanation for: (i) the persistence of malnutrition and (ii) the increased prevalence of metabolic disease (diabetes, hypertension, cardiovascular disease) among normal weight individuals with economic development. Our model is based on a set point for BMI or bodyweight that is adapted to conditions of scarcity in the pre-modern economy, but which subsequently fails to adjust to rapid economic change. During the process of development, some individuals thus remain at their low-BMI set point, despite the increase in their consumption, while others who have escaped the nutrition trap (but are not necessarily overweight) are at increased risk of metabolic disease. The model and the underlying biological mechanism, which are validated with micro-data from India, Indonesia and Ghana can jointly explain inter-regional (Asia-Africa) differences in nutritional status and the prevalence of diabetes.

Luke: Pennsylvania State University, nkl10@psu.edu. Munshi: Yale University, kaivan.munshi@yale.edu. Oomen: Christian Medical College, anuoommen@cmcvellore.ac.in. Singh: Bank of Lithuania and Kaunas University of Technology, ss-singh@lb.lt. We are grateful to Anne Ferguson-Smith, Nita Forouhi, Seema Jayachandran, K.M. Venkat Narayan, Nigel Unwin, and numerous seminar participants for their constructive comments. Johannes Maywald, Krithika Raghupathi, and Astha Vohra provided outstanding research assistance. Research support from the National Institutes of Health through grant R01-HD046940, Cambridge-INET, the Keynes Fund and the Newton Trust at the University of Cambridge, and the Agence Nationale de la Recherche (ANR) under the EUR Project ANR-17-EURE-0010 is gratefully acknowledged. We are responsible for any errors that may remain. The views expressed here are those of the authors and do not necessarily reflect the position of the Bank of Lithuania.
1 Introduction

This research is motivated by two recently documented facts that run counter to the conventional wisdom that higher incomes lead to better health: First, the relatively weak relationship between nutritional status (BMI, height) and income in developing countries; both across countries (Deaton, 2007) and within country over time (Deaton and Drèze, 2009). Second, the increased prevalence of metabolic disease (diabetes, hypertension, cardiovascular disease) among normal weight individuals with economic development (Narayan, 2016, 2017).\(^1\) Take India, for example, a country which has received much attention in the nutrition and health literatures. India has experienced substantial economic growth and sharp declines in the prevalence of poverty in recent decades. Nevertheless, a surprisingly large fraction of its population remains malnourished, while, simultaneously, the prevalence of metabolic diseases, including diabetes, has increased dramatically. There is an erroneous belief that the rapid increase in diabetes in countries like India is due to increased obesity; e.g. Diamond (2011). While obesity may well end up being the primary contributor to diabetes, once these countries have developed, we will see below that a relatively small fraction of the Indian population is currently obese and that the risk of diabetes starts to increase at a BMI level that is well within the normal range.

The mathematical model that we propose to explain why malnutrition stubbornly persists, even as metabolic diseases emerge is based on the following verbal argument. The pre-modern economy was characterized by low and fluctuating food supply for centuries. There is theoretical support (discussed below) for the assumption that the population in this economy adapted biologically to the low-nutrition environment that it faced over many generations. With economic development, there is a substantial increase in wealth or permanent income, which we refer to henceforth as “income,” and, with it, consumption. Figure 1, for example, plots GDP per capita (in logs) for India from 1600 to 2016. Income is stable (declining mildly) for the first 350 years, after which it starts to increase steeply. It has been hypothesized that the resulting mismatch between current and ancestral consumption (to which the population is adapted) has contributed to the high rates of metabolic disease in developing countries (Gluckman and Hanson, 2004; Narayan, 2016, 2017; Wells et al., 2016). We place additional structure on the mismatch and simultaneously explain the high rates of metabolic disease and malnutrition in these countries by tying the initial adaptation to a set point for body weight.

Experimental and non-experimental evidence in humans indicates that each individual is endowed with a set point for body weight or BMI, with metabolic and hormonal adjustments defending the set point against fluctuations in food supply. We postulate that the body will defend its inherited set point against the increases in consumption that accompany economic development, just as it responded to short-term fluctuations in food supply in the pre-modern economy. Once the mismatch between current and ancestral income, or consumption, crosses a threshold, however, the body will no longer be able to defend the set point; the individual’s BMI will track more closely with current income, but because the metabolic load

\(^1\)We use the term “metabolic disease” to describe a group of related disorders. This should not be confused with “metabolic syndrome,” which is associated with a cluster of conditions; e.g. high cholesterol, triglycerides, blood sugar, that are precursors to these disorders.
now exceeds the metabolic capacity, there will be in tandem an increased risk of metabolic disease (see Wells et al. (2016) for a similar argument). During the process of development, the population will thus be partitioned into two distinct groups: (i) Individuals who remain at their set point, despite the increase in their consumption, are responsible (in part) for the weak relationship between nutritional status and income. (ii) Individuals who have escaped the “nutrition trap,” but are not necessarily overweight, are the primary contributors to the increased prevalence of metabolic disease that accompanies economic development.

The pre-modern set point is not permanent. As discussed in the subsequent section, the available evidence indicates that the adaptation to pre-modern conditions is epigenetic (changing gene expression) and, hence, can be expected to persist for a finite number of generations. This might explain why European populations, which presumably underwent a similar transition more than a century ago, no longer display the same physiological traits. Although the friction that we incorporate in our analysis to explain the two stylized facts is biological, it thus has many features in common with economic models of institutional adaptation and persistence. For example, Munshi and Rosenzweig (2006) describe how caste-based networks, which emerged in response to labor market imperfections in the pre-modern economy, generated a dynamic inefficiency when they failed to adjust to subsequent structural change in the Indian economy. In the current analysis, the human body adapts to the environment in the pre-modern economy, which was stable for many centuries, but then fails to adjust to rapid economic development, resulting in the persistence of malnutrition and the emergence of metabolic disease.

If data on income, BMI, and metabolic disease were available for each dynasty (household) over many generations, going back to the pre-modern period, then we could test the proposed model directly. For a given dynasty, we would expect to observe a discrete increase in BMI in a particular generation (in which the gap between current and ancestral income exceeded a threshold) with an accompanying increase in
the risk of metabolic disease. In the absence of such multi-generational household-level data, we develop novel cross-sectional tests of the model by characterizing the evolution of income in the population during the process of development. By making plausible assumptions about the distribution of (permanent) income shocks in each generation, we can derive the following result at any point in time: (i) Although nutritional status is increasing in current household income at all levels, there is a discontinuous increase in the slope of this relationship at a particular income threshold. (ii) The risk of metabolic disease is constant below the same threshold and increasing in current income above the threshold.

We use nationally representative household data from the India Human Development Survey (IHDS) to test the cross-sectional implications of the model. Our main result is that the nutritional status-income relationship (separately for children and adults) and the metabolic disease-income relationship are precisely as predicted by the model. The presence of a slope discontinuity, which we detect statistically using Hansen’s (2017) threshold test, is indicative of a set-point threshold. The weak relationship between nutritional status and household income below the estimated threshold, which is located close to the median income level in the population, can explain (in part) the first stylized fact. The steep increase in the probability of metabolic disease with income above the same threshold, which corresponds to a BMI that is well within the normal range, helps explain the second stylized fact.

The predictions of the model do not apply to India alone. To assess the external validity of the model, we test its predictions with data from the Indonesia Family Life Survey (IFLS) and the Ghana Socioeconomic Panel Survey (GSPS). While the pre-modern set point may be relevant in all developing countries, the fraction of the population that has escaped the set point will depend on a country’s stage in the process of development. A cross-country comparison of current income and historical income indicates that the income-gap is substantially higher in Asia than in Africa; indeed, per capita income in Ghana is essentially unchanged from 1960 to 2010, whereas per capita incomes in India and Indonesia increased substantially. In line with the model, the results with the IFLS match what we obtain with Indian data. In contrast, there is a positive and continuous relationship between household income and nutritional status with the Ghanaian data (information on metabolic disease is not available in the GSPS). India and Indonesia are evidently at a stage of economic development where a substantial fraction of the population lies on either side of the threshold, resulting in the coexistence of malnutrition and metabolic disease. In contrast, the Ghanaian population appears to be largely at its pre-modern set point, which is why there is no discontinuity.

Although our model and the accompanying empirical tests provide a single explanation for the two stylized facts that motivate this research, we must still account for other independent determinants of nutritional status and metabolic disease. The estimating equations include a rich set of covariates, which control for the effect of son preference, food tastes, and the disease environment on these outcomes. In addition, we verify that two proximate determinants of nutritional status that are especially relevant in developing economies – nutrient intake and children’s illness, including diarrhoea – do not exhibit the same discontinuous relationship with household income. While changing social norms, with respect to food

2 Nutritional status is measured by height-for-age for children and BMI for adults in the empirical analysis. Alternative measures, based on weight-for-age for children and height for adults, deliver similar results.
consumption and health-seeking behavior, could potentially generate a discontinuous relationship between these variables and household income, this does not appear to be the case in practice. More generally, we are unaware of any alternative non-biological explanation that would generate a slope discontinuity at the same income level, with both nutritional status and metabolic disease as outcomes.

Although the basic paradigms of biological adaptation-persistence and the set point are well established, specific elements of our model’s biological foundations remain to be verified: (i) Our assumption that the body will defend its pre-modern set point up to a threshold has not been previously examined in the literature. (ii) There is no direct evidence in humans (although there is in small mammals) that prolonged exposure to a low-nutrition environment can result in an adapted phenotype (body type) that persists for multiple generations after the initial environment has ceased to be relevant. Our estimates of the model’s structural parameters and the accompanying test of its internal validity allow us to verify not just that a set point threshold is present, but also the specific form that is imposed on the threshold function. To test for biological adaptation-persistence, we construct exogenous measures of ancestral (pre-modern) income. Once the (current income) threshold has been located, based on the cross-sectional tests, these measures can be used to validate the biological relationships that are specified in the model: (a) Nutritional status should be determined by pre-modern income below the threshold and by current income above the threshold. (b) The risk of metabolic disease should be increasing in the difference between current and pre-modern income, above but not below the threshold.

We construct exogenous measures of pre-modern income in two ways: First, we use FAO-GAEZ crop suitability data to construct a measure of per-household ancestral income at the district level. This measure is merged with the IHDS and IFLS datasets that we use to test the cross-sectional implications of the model. Second, we use the agricultural revenue tax that was collected by the British colonial government in 1871, based on its independent assessment of local agricultural productivity, to construct a measure of per-household ancestral income at the village level. This measure, which is available for villages in the modern Indian state of Tamil Nadu, is merged with data from the South India Community Health Study (SICHS) which provides information on income, nutritional status and metabolic disease for a representative sample of households in rural Vellore district. The striking finding, obtained independently with IHDS, IFLS, and SICHS data is that pre-modern income determines nutritional status below the threshold, whereas current income determines nutritional status above the threshold. Moreover, the difference between current and pre-modern income determines the risk of metabolic disease, above but not below the threshold.

Having tested the predictions of the model and validated the biological foundations that it is built upon, we move from micro-data to cross-regional comparisons. Deaton (2007) observes that adult nutritional status in South Asia is lower than what would be predicted by GDP per capita, whereas the opposite is true for Africa. Moreover, there is an unusually high prevalence of diabetes and related metabolic disorders among South Asians, despite the fact that they have low BMI on average (Narayan, 2016, 2017). We show that these seemingly unrelated findings can be easily interpreted through the lens of our

3 As discussed below, selective child mortality as emphasized by Deaton (2007) or poverty traps as in Dasgupta and Ray (1986); Galor and Zeira (1993); Banerjee and Newman (1993) cannot explain all the results that we obtain.
model once we take account of the cross-regional income dynamics; i.e. that current income is higher in Asia (not just South Asia) but historical income (which determines the set point) was higher in Africa.

While the model is informative about a variety of health outcomes, at the micro and the macro level, it is important, particularly from a policy perspective, to go further and quantify the effect of the set point on malnutrition and the prevalence of metabolic disease. A comparison of counter-factual nutritional status and actual nutritional status (predicted by the estimated model) with IHDS data indicates that stunting among children and the fraction of underweight adults would have declined substantially, by 30% and 50% respectively, in the absence of a set point. To quantify the contribution of the set point to metabolic disease, we first show, based on the model, that the risk of disease will not respond to variation in BMI below a threshold, but will be increasing in BMI above the threshold. Estimates with IHDS data locate this threshold at a BMI that is at the lower end of the normal range; just under 22 for the country as a whole and below 21 for South India. We might expect to observe a similar co-existence of malnutrition and metabolic disease in other countries in the coming decades as they develop. Although the prognosis for the future thus seems bleak, there is a glimmer of hope. Recent experimental evidence from rural Guatemala indicates that intense and sustained nutrition supplementation through early childhood can improve nutritional status and reduce the risk of metabolic disease in adulthood (Ford et al., 2018). This finding implies, in our framework, that the early childhood intervention shifted the set point upward, suggesting a promising way forward that we return to in the concluding section.

2 Biological Foundations

This section briefly reviews the scientific literature on biological adaptation-persistence and a set point for body weight, which are the building blocks of our analysis. The available evidence, and the current gaps in the evidence, are also discussed.

2.1 Adaptation and Persistence

Developmental plasticity – the shaping of later life traits by early life environments – has been well documented in animals and humans (Lea et al., 2017). Two models of developmental plasticity have been proposed in the literature: (a) The developmental constraints model in which developing organisms in resource limited environments make tradeoffs to protect critical functions and improve survival in early life (Barker, 1995). In this model, the fetus adapts to the immediate availability of nutrition in utero. (b) The predictive model in which maternal cues in utero predict the adult environment and the organism evolves accordingly in anticipation of future conditions (Gluckman and Hanson, 2006). Theoretical modelling indicates that if the prediction is correct and confers fitness more than 50% of the time, then such anticipation is advantageous from an evolutionary perspective (Jablonka et al., 1995). This will be the case in a slowly fluctuating environment in which conditions in past generations are an accurate predictor of conditions in the current generation (Jablonka and Lamb, 1999; Lind and Spagopoulou, 2018).

The pre-modern economy was characterized by large short-term fluctuations in food supply across
seasons and years, but remained essentially stagnant with growth rates close to zero for centuries (Galor and Weil, 2000). In this environment, predictive maternal cues, based on conditions over many past generations, would have provided better information about extraterrestrial conditions in a given generation than nutrition availability \textit{in utero}. The pre-modern population would thus have been adapted to long-term conditions of low food supply, with the adaptation varying across space with fixed growing conditions (agricultural productivity). The exception to this argument would have been generations in which there was an acute environmental shock, such as a famine. In those generations, the developmental constraints model would have applied and, indeed, many tests of this model, as discussed below, have been based on acute environmental shocks to the fetus. Such acute events, however, have always been rare.

The assumption in both models of developmental plasticity is that the initial adaptation is epigenetic; i.e. it involves changes in gene expression. This adaptation persists over the (animal or human) organism's lifetime and, in theory, can persist over multiple generations even after the conditions that gave rise to it have ceased to be relevant (Jablonska and Raz, 2009; Miska and Ferguson-Smith, 2016; Sales et al., 2017; Radford, 2018; Lind and Spagopoulou, 2018). In contrast with traditional genetic alterations, epigenetic changes persist for a limited number of generations. As noted, this allows us to explain why European populations, which were also under-nourished historically, no longer exhibit the traits we document in developing-country populations. The additional assumption in both models of developmental plasticity, when applied to human populations, is that if there is a mismatch between the conditions to which individuals are adapted and the conditions they face in the extraterrestrial environment, then this will give rise to an increased risk of metabolic disease. Based on the predictive model, this implies that a population that is adapted to the low nutrition environment in the pre-modern economy will be at increased risk of metabolic disease with economic development, potentially for multiple generations (Gluckman and Hanson, 2004). We explain the coexistence of metabolic disease and malnutrition in developing economies by tying the initial adaptation to a set point for body weight.

2.2 The Set Point

Set point theory was originally motivated by the observation that a typical individual’s body weight is remarkably stable over time (Leibel, 2008). The basic assumption underlying the theory is that each individual inherits a set point for his bodyweight and that, given the physiological cost of weight-cycling (Brownell and Rodin, 1994) the body defends that set point against fluctuations in food supply by making metabolic and hormonal adjustments (Müller et al., 2010). In our model, the set point during the process of development is determined by ancestral income (consumption) in the pre-modern period.4 We postulate, in addition, that as long as current and pre-modern income remain sufficiently close to each other, the body will successfully defend its set point. Nutritional status will be determined by pre-modern rather than current income and the risk of metabolic disease will be low. Once the gap between current and pre-modern income crosses a threshold, however, the body will no longer be able to defend the set point.4

\footnote{As noted, recent experimental evidence (Ford et al., 2018) indicates that nutrition supplementation through early childhood can shift the set point. The implicit assumption in our analysis is that the increase in nutrient intake that accompanies economic development is not sufficient to shift the set point in the same way.}
point. Nutritional status will now start to track current income and, in tandem, there will be an increased risk of metabolic disease (even among normal weight individuals) because the fine metabolic balance that maintained the set point has been disrupted.\(^5\)

Although there is robust empirical support for the basic elements of set point theory, as discussed below, the theory has been criticized for its inability to explain the obesity epidemic in advanced economies (Speakman et al., 2011; Müller et al., 2018). In response to this criticism, set point models that apply more specifically to populations in these economies have been proposed: (i) Nutritional status responds flexibly to food intake between genetically determined lower and upper set points. The upper set point (which becomes relevant in the modern economy) lies in the obese-overweight range for some individuals (Speakman et al., 2011). (ii) The inherited pre-modern low-BMI set point is replaced by “settling-points” which the body does not defend (Müller et al., 2010). The critique of the standard set point model does not apply to our analysis because (as seen below) a relatively small fraction of the population is obese in developing countries. The alternative models are nonetheless informative because they tell us what we might expect to observe in these countries in the future.

2.3 The Evidence

The evidence for biological adaptation and persistence in humans is largely based on the developmental constraints model, or what is commonly referred to in the literature as the ‘fetal origins’ hypothesis (Hales and Barker, 1992; Barker, 1995). The robust finding from many studies that have tested this hypothesis is that a combination of low birth weight, generated accidentally by famine or some other adverse shock, and high adult BMI puts individuals at greatest risk of metabolic disease; e.g. Ravelli et al. (1998); Bhargava et al. (2004); Li et al. (2010). Providing support for epigenetic adaptation to the adverse initial conditions, the elevated risk of metabolic disease has been shown to persist for up to two generations among the descendants of individuals who experienced famines in utero (Lumey, 1992; Bygren et al., 2014; Li et al., 2017).\(^6\)

Statistical tests of the predictive model of developmental plasticity, which is more germane to our analysis, are more difficult to implement because initial conditions are determined by fixed ancestral income, going back many generations, rather than by in utero shocks in the current generation.\(^7\) The best evidence to date in support of the predictive model comes from animal studies. For example, in a very relevant experiment, rats subjected to caloric restrictions over 50 generations continued to display altered epigenetic signatures and to have an elevated risk of metabolic disease two generations after

\(^5\)Wells et al. (2016) make the related argument that metabolic diseases increase with economic development because the metabolic load exceeds the inherited capacity.

\(^6\)A symmetric implication of the fetal origins hypothesis is that a sufficiently large positive nutrition shock, sufficiently early in life, will reduce the risk of metabolic disease. Evidence from developing economies (Ford et al., 2018) and advanced economies (Hoynes et al., 2016) is consistent with this implication.

\(^7\)Both the developmental constraints model and the predictive model imply that a positive shock to income (and accompanying food consumption) later in life will increase the risk of metabolic disease. Providing support for this (common) implication, Sekhri and Shastry (2019) exploit spatial variation in access to Green Revolution agricultural technology in rural India to document that a positive income shock associated with economic development is accompanied by an increased risk of metabolic disease.
normal nutrition was restored (Hardikar et al., 2015). In humans, the available evidence is less direct and is based on the experience of migrants from developing countries residing in advanced economies, and their descendants.

Given the enormous income differential between origin and host country, most migrants to advanced economies will escape the nutrition trap in the first generation. This is consistent with the empirical evidence that migrants’ nutritional status converges to the level of the native population very swiftly (Alacevich and Tarozzi, 2017). Nevertheless, their ancestral income should continue to determine the risk of metabolic disease, possibly for multiple generations, and inter-regional differences in historical income can thus be used to provide preliminary support for the predictive model. Immigrants from South Asia, a historically poor region, residing in the U.K. and the U.S. are indeed many times more likely to have metabolic diseases than the native population, despite having lower BMI’s (McKeigue et al., 1991; Oza-Frank and Narayan, 2010; Staimez et al., 2013; Kanaya et al., 2014). Other studies, cited in Gujral et al. (2013), document similar patterns in countries such as Fiji, South Africa, and Singapore to which South Asians moved many generations ago as indentured workers and subsequently became relatively wealthy.8

The second building block of our analysis – the set point paradigm – is by now textbook material in the biological sciences. Providing support for the presence of a set point, experimental and non-experimental evidence, in animals and humans, indicates that when the system is perturbed in either direction through a change in diet, the body returns to its original weight once the nutritional constraint is released (Rothwell and Stock, 1979; Pasquet and Apfelbaum, 1994; Keesey and Hirvonen, 1997). Furthermore, energy expenditures are modulated to resist the perturbation, indicating that the body is actively defending its set point (Dulloo and Jacquet, 1998; Leibel, 2008).

Our analysis assumes, in addition, that the body will defend its inherited set point up to a threshold. Recent evidence on diabetes reversal through a weight loss program (Taylor and Holman, 2015) is consistent with this assumption; there is an individual-specific BMI threshold, which is independent of initial BMI, below which diabetes is reversed. However, the heterogeneity in the BMI threshold is not explained and similar experiments have not been conducted in developing countries (where we would expect the threshold to be determined by pre-modern income).

Summarizing the discussion in this section, there is broad theoretical and empirical support for biological adaptation-persistence and a set point for body weight. However, specific elements of the model’s biological foundations remain to be verified in developing countries: (i) the assumption that the body defends its set point up to a threshold, and (ii) the assumption that the set point is determined by pre-modern (ancestral) income. A notable feature of our analysis is that we will independently validate each of these assumptions.

8 Approximately 5-10% of type-2 diabetes risk can be attributed to genetic factors (Voight et al., 2010) and, hence, these population differences are unlikely to be genetic. Given the enormous differential between pre-modern income and current income for migrants to advanced economies, we might expect their set points to have shifted up. However, a model in which their set points are determined entirely by nutrition in early life would be unable to explain why the elevated risk of metabolic disease persists for multiple generations post-migration.
3 The Model

3.1 Population and Income

The population consists of a large number of infinitely lived dynasties (families). Each dynasty consists of a single individual in each time period or generation, who is replaced by a single descendant in the period that follows. There is a fixed return on wealth in each period; i.e. an income flow, which is consumed, so that the stock is passed on (without depletion) to the next generation. We will thus use (permanent) income and wealth interchangeably in the discussion that follows. Denote the logarithm of the dynasty’s initial income, in period 0, by y_0. We normalize so that the distribution of initial income is bounded below at zero, which corresponds to a subsistence level of consumption. We place no other restrictions on this distribution. We can think of the initial period as describing the pre-modern economy, while subsequent periods describe the process of development. Permanent income in an economy is well approximated by the log-normal distribution (Battistin et al., 2009). We thus assume that each dynasty receives a permanent, additive and independent income shock u_τ in each subsequent period τ, where $u_\tau \sim N(\mu, \sigma^2)$. Solving recursively, log-income of a dynasty in period t is

$$y_t = y_0 + U_t,$$

where $U_t = \sum_{\tau=1}^{t} u_\tau \sim N(t\mu, t\sigma^2)$.\(^9\) For ease of exposition, we will denote $t\mu$ by μ_t and $t\sigma^2$ by σ_t^2.

3.2 Biological Relationships

We now characterize the biological relationships between (i) nutritional status, measured by BMI, and income, and (ii) the risk of metabolic disease and income, during the process of economic development. This characterization is based on the verbal arguments from the preceding section. We denote nutritional status in the model by BMI because the set point, which is a key ingredient in our analysis, is conventionally measured by bodyweight or BMI. However, we will experiment with alternative measures of nutritional status in the empirical analysis.

BMI is increasing continuously in consumption in the initial period; those dynasties that consumed at a higher level in the pre-modern economy will thus have a higher set point.\(^{10}\) Moreover, there is a positive and continuous relationship between consumption and income in all time periods, which implies that a dynasty’s set point is determined by it’s initial income. We thus specify the following relationship between initial BMI, z_0, or the set point, and initial income, y_0:

$$z_0 = a + by_0. \quad (2)$$

In subsequent periods, each descendant’s body will defend her dynasty’s set point in the face of fluctuations in consumption that arise due to the permanent income shocks. However, as noted above,

\(^9\)We do not include a dynasty-specific identifier when deriving and characterizing the income equation to simplify notation.

\(^{10}\)In practice, epigenetic adaptation occurs over a long period of time. We can thus think of period 0 in the model as spanning multiple generations in the pre-modern era.
the body can only respond up to a point to deviations in income from the initial level, \(y_0 \), that determined the set point. There is thus a threshold \(\alpha \), such that BMI in period \(t \),

\[
z_t = \begin{cases}
a + by_0 & \text{if } U_t \leq \alpha
a + by_t & \text{if } U_t > \alpha
\end{cases}
\] (3)

Equation (3) imposes the restriction that the relationship between BMI and income is the same, below and above the threshold; what changes is the relevant measure of income, from \(y_0 \) to \(y_t \). We will test this restriction by separately estimating the \(b \) parameter, below and above the (estimated) threshold.

Notice that the set point, \(z_0 \), determined in period 0, is assumed to be fixed across all subsequent generations. Although an epigenetically determined set point may be heritable, it will ultimately cease to be relevant once a changed economic environment has been in place for a sufficient number of generations. Our model thus describes the relationship between nutritional status and income over a finite number of generations during the initial rapid-growth phase of economic development.

Notice also that we do not specify a lower threshold for the set point; the implicit assumption is that dynasties do not regress with regard to nutritional status during a period of rapid economic growth. Given historically low levels of food supply in developing countries, the metabolism would have adapted to defend the set point especially vigorously against downward fluctuations in consumption.\(^\text{11}\) Although mean income is increasing in our model, the distribution of income shocks is unbounded and, hence, a small number of dynasties could, nevertheless, accumulate a sequence of very negative shocks that the body could not defend. However, all societies have consumption-smoothing mechanisms in place to insure against precisely such negative outcomes and these mechanisms improve with economic development. We thus assume that dynasties always successfully defend the set point \(z_0 \) in the face of negative income shocks, either biologically or by taking advantage of social safety nets to augment their consumption.\(^\text{12}\)

As long as consumption remains within the threshold associated with the dynasty’s set point, metabolic and hormonal adjustments ensure that the increases in consumption that accompany the increases in income due to economic development do not translate into increases in BMI. Once consumption crosses the threshold, however, the metabolism can no longer maintain the energy balance and BMI starts to track with current income. As discussed in the preceding section, the accompanying mismatch between metabolic capacity and metabolic load simultaneously increases the risk of metabolic diseases. As in the developmental plasticity literature, this risk is specified to be increasing in the gap between current income, \(y_t \), which determines current BMI (conditional on having crossed the threshold) and initial income, \(y_0 \), which determines the BMI set point.\(^\text{13}\) The relationship between the probability of metabolic disease,

\(^\text{11}\)This is consistent with the conventional view that the regulation of body weight is more responsive to weight loss than to weight gain (Müller et al., 2010). For example, despite repeated weight cycling in response to seasonal fluctuations in food supply, minimal body weight in a sample of rural Gambian women remained extremely stable (within 1.5 kg.) over a period of 10 years (Prentice et al., 1992).

\(^\text{12}\)Given that income shocks are positive on average and their distribution is symmetric, such redistribution is feasible. We are effectively ignoring catastrophic common shocks, such as famines, that can shift set points in an entire generation. Such events have always been rare and are less relevant in the modern economy.

\(^\text{13}\)This implies that \(\gamma_1 > 0, \gamma_2 > 0 \) in equation (4). The implicit assumption with this specification, which is consistent with recent evidence discussed below, is that the risk of metabolic disease can change in both directions over time as the
Figure 2: BMI - Income Relationship (within dynasty over generations)

\[P(D_t) = \begin{cases}
\gamma_1 & \text{if } U_t \leq \alpha \\
\gamma_1 + \gamma_2(y_t - y_0) & \text{if } U_t > \alpha
\end{cases} \quad (4) \]

3.3 Cross-Sectional BMI-Income Relationship

Figure 2 describes the evolution of BMI across multiple generations (time periods) for a single dynasty, based on the biological relationship specified above. For expositional convenience, we assume that the dynasty only receives positive income shocks. Starting from an initial income, \(y_0 \), the dynasty’s income thus increases monotonically over time. However, it’s members’ BMI will remain at the dynasty’s set point, \(z_0 = a + by_0 \), until \(y_t \) exceeds \(y_0 + \alpha \). At that point in time, there will be a discrete increase in BMI, after which BMI will track with current income. If data over many generations, going back to the pre-modern period, were available for each dynasty, then these predictions could be tested directly. In the absence of such multi-generational data, we proceed to derive the cross-sectional relationship between BMI and income, as implied by equation (3), when a dynasty-specific set point for body weight is present.

Recall that we normalize so that the initial income distribution is bounded below at zero. We also do not specify a lower threshold for the set point. It follows that all individuals with \(y_t \leq \alpha \) must lie within their dynasty’s set point threshold; some of these individuals will belong to dynasties that had initial incomes below \(\alpha \) and which subsequently increased their income by relatively little, whereas others will belong to dynasties whose income has drifted down over time. Given the assumed (normal) distribution of income shocks, mean BMI at any given level of income, \(y_t \), for \(y_t \leq \alpha \) is determined by the following individual’s BMI shifts on either side of the threshold.
expression:

$$
\mathbb{E}(z_t|y_t, y_t \leq \alpha) = \int_{-\infty}^{y_t} \left[a + b(y_t - U_t) \right] \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t \\
= a + b \left(y_t - e^L(y_t) \right), \quad e^L(y_t) = \frac{1}{\Phi(y_t; \mu_t, \sigma_t^2)} \int_{-\infty}^{y_t} U_t \phi(U_t; \mu_t, \sigma_t^2) \, dU_t
$$

(5)

The implicit assumption when deriving the preceding expression is that y_0 is unbounded above, which is why the range of integration extends to $-\infty$. Although the subsistence constraint in the pre-modern economy provides an obvious reason to bound the distribution below, there is no similar reason to impose an upper bound (although, in practice, extremely high values of y_0 would have very low probability). Nevertheless, we solve the model with an upper bound on y_0 in the Appendix. Although the results that we derive below cannot be obtained analytically, numerical solutions indicate that they continue to go through even when y_0 is bounded above.

For individuals with $y_t > \alpha$, some will have crossed their set point threshold, while others (who started with a higher initial income) will remain within their thresholds. The expression for mean BMI at income level y_t, given that $y_t > \alpha$, thus includes both types of individuals,

$$
\mathbb{E}(z_t|y_t, y_t > \alpha) = \int_{-\infty}^{\alpha} \left[a + b(y_t - U_t) \right] \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t + \int_{\alpha}^{y_t} \left[a + b(y_t - U_t) \right] \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t \\
= a + b \left(y_t - e^H(y_t) \right), \quad e^H(y_t) = \frac{1}{\Phi(y_t; \mu_t, \sigma_t^2)} \int_{-\infty}^{\alpha} U_t \phi(U_t; \mu_t, \sigma_t^2) \, dU_t
$$

(6)

As shown in the Appendix, closed-form expressions for $e^L(y_t)$ and $e^H(y_t)$ can be derived using the properties of the normal and standard normal distributions:

$$
e^L(y_t) = \mu_t - \sigma_t \frac{\phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right)}{\Phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right)} = \mu_t - \sigma_t \Lambda \left(\frac{y_t - \mu_t}{\sigma_t} \right)
$$

(7)

$$
e^H(y_t) = \frac{\mu_t \Phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right) - \sigma_t \phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right)}{\Phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right)}
$$

(8)

where $\Lambda(\bullet)$ is the inverse Mills ratio with the property that its derivative, $\frac{d\Lambda(\bullet)}{d(\alpha)}$, is negative, increasing and bounded on the interval $(-1, 0)$. Given the properties of the inverse Mills ratio, and noting that $e^H(y_t)$ is decreasing in y_t, we obtain the following result (the proof is in the Appendix):

Proposition 1 (i) The slope of the BMI-income relationship is positive but less than b for $y_t \leq \alpha$ and greater than b for $y_t > \alpha$. (ii) There is a discontinuous change in the slope of the BMI-income relationship at $y_t = \alpha$. (iii) There is no level discontinuity in the BMI-income relationship at $y_t = \alpha$.

The relationship between BMI and income implied by Proposition 1 is described graphically in Figure
3. Each dynasty transitions discretely to a higher BMI level, at a particular point in time, in Figure 2. This level-shift is smoothed out, and translates into a slope change, when we derive the corresponding cross-sectional BMI-income relationship across dynasties at any point in time.

3.4 Cross-Sectional Disease-Income Relationship

Taking as given the biological relationship between the probability of metabolic disease, $P(D_t)$, and income, as specified in equation (4) for a single dynasty, the corresponding relationship in the cross-section across dynasties can be derived as follows:

Proposition 2

(i) There is no relationship between $P(D_t)$ and y_t for $y_t \leq \alpha$, and a positive relationship for $y_t > \alpha$. (ii) There is a discontinuous change in the slope of the $P(D_t) - y_t$ relationship at $y_t = \alpha$. (iii) There is no level discontinuity in the $P(D_t) - y_t$ relationship at $y_t = \alpha$.

The proof (in the Appendix) follows the same steps as the proof of Proposition 1. The $P(D_t) - y_t$ relationship specified by Proposition 2 is described graphically in Figure 3. This relationship is qualitatively the same as the $\mathbb{E}(z_t) - y_t$ relationship, except that the slope is zero below the threshold. This is because the risk of metabolic disease is constant (and the same) for all individuals who remain at their set point. Recall that all individuals below the income threshold are at their set point. Above the threshold, in contrast, the risk of metabolic disease is increasing in income. This is due to (i) the greater fraction of individuals who have escaped their set point, and (ii) the increased risk for those who have escaped. Note that the model predicts that the $\mathbb{E}(z_t) - y_t$ and $P(D_t) - y_t$ relationships will exhibit a slope discontinuity at the same income level: $y_t = \alpha$.\(^{14}\)

\(^{14}\)Although we normalize so that the initial income distribution is bounded below at zero, it can more generally be bounded below at some income level y_0, in which case the threshold would be located at $y_t = y_0 + \alpha$. This would change the interpretation of the threshold location, but otherwise leave the analysis unchanged.
4 Cross-Sectional Analysis

4.1 Descriptive Statistics

The key variables in the model are income, nutritional status, and the probability of metabolic disease. Although there is a single individual in each generation in our model, multiple individuals will reside in a household. Income will thus be measured at the household level. Nutritional status is measured for each (available) member of the household; by height-for-age for children and BMI for adults in the benchmark specifications. The model’s implications for metabolic disease, in contrast, only apply to adults.

As discussed, the set point is typically associated with body weight or BMI, which is why we measure nutritional status (in later generations) by BMI in the model. However, biological adaptation to pre-modern conditions has been characterized more broadly in terms of a particular body type; e.g. (Narayan, 2016). When the body escapes the nutrition trap, this would imply that there is a change in both weight and height. As a robustness test, we will thus examine the cross-sectional implications of the model with height as an alternative measure of adult nutritional status; the additional advantage of this exercise is that it connects our analysis more directly to Deaton’s (2007) analysis of the relationship between adult height and income. A similar motivation leads us to use height-for-age as the primary measure of age-specific nutritional status for children. While we verify that the results are robust to using weight-for-age to measure children’s nutritional status, the core analysis uses height-for-age to link more directly to the literature on stunting; e.g. Jayachandran and Pande (2017).

The primary tests of the model are implemented with Indian data. This is because the rapidly developing Indian economy is simultaneously characterized by high levels of malnutrition and a high prevalence of metabolic disease; the two stylized facts that motivate our research. The core data set that we use for the analysis is the India Human Development Survey (IHDS). This nationally representative household survey, which was conducted in 2004-2005 and 2011-2012, includes detailed information on household income, nutritional status for children and adults residing in the household at the time of the survey, and the prevalence of metabolic diseases (diabetes, hypertension, and cardiovascular disease) among adult members of the household. The survey includes, in addition, information on household composition, food consumption expenditure in the last month, morbidity among the children in the last month, and detailed geographic locators, which will be used to supplement the analysis.15

Figure 4 describes the distribution of household income in the IHDS data, measured as the log of monthly income in thousands of Rupees, averaged over the two survey rounds.16 The vertical dashed line in Figure 4 denotes the median income, which is 1.8 in the nationally representative sample of households.

15The Demographic Health Survey (DHS), which is used by Deaton (2007) and Jayachandran and Pande (2017) also contains many of these variables. However, the DHS is not suitable for our purposes because it only collects indicators of asset ownership, which must then be converted into a crude wealth statistic using principal component analysis. The tests of the model, particularly the statistical tests to locate a slope-change at an income threshold, cannot be implemented without fine-grained income data.

16Household income includes farm income, non-farm business income, wage income, remittances, and government transfers. To make incomes in the two rounds comparable, we adjust 2004-2005 incomes to 2011-2012 prices. For rural areas, the correction is based on the Consumer Price Index (CPI) for agricultural wage labor and for urban areas it is based on the CPI for industrial workers.
Our tests of a slope-change, reported below, will locate an income threshold close to the median income, which tells us that it is not just the poorest who remain in the nutrition trap in this economy.

Figure 5a describes the nutritional status of children in the IHDS, separately for children aged 0-59 months and 5-19 years. Nutritional status, measured by the height-for-age, is reported as a z-score, based on child growth standards provided by the WHO.\(^{17}\) We see that a substantial fraction of Indian children are stunted; with a z-score less than -2. Figure 5b describes the corresponding distribution of adult nutritional status, measured by the BMI.\(^{18}\) The vertical dotted line in the figure denotes a BMI of 18.5, which is a cutoff conventionally associated with being underweight. We see that a substantial fraction of the Indian population remains below this cutoff, despite the economic progress of the past decades. By international standards, individuals are underweight if their BMI is below 18.5, the normal range is 18.5-25, the overweight range is 25-30, and obesity is defined by a BMI above 30. Based on this convention, most Indians are underweight or normal weight, and only a small fraction are obese. BMI that is too low or too high is physiologically damaging, but the latter is evidently less of a problem in India. We will see below that diabetes and related metabolic disorders, which are commonly associated with obesity in advanced economies, largely affect normal weight individuals in India.

\(^{17}\)Given that the nutritional status measures are age-specific, information from both survey rounds is separately included for those children who appear in both rounds. The growth standard for children aged 0-59 months is based on the Multicentre Growth Reference Study (MGRS), conducted between 1997 and 2003. For children aged 5-19, we use the 2007 WHO Reference, which is a reconstruction of the 1977 National Center for Health Statistics (NCHS) growth standard. Following the recommendation of the WHO, height-for-age z-scores outside the (-6,6) interval are dropped from the analysis.

\(^{18}\)The BMI is defined as the weight in kilograms divided by the square of the height in meters. Height and weight was measured for men and women in the 2011-2012 round, but only for a small fraction of men in the 2004-2005 round. As with the children, we include the BMI statistic separately from the two survey rounds when it is available for an adult.
4.2 Cross-Sectional Tests

Proposition 1 derives the cross-sectional relationship between nutritional status and income when a dynasty-specific set point is present: although the relationship is positive at all income levels, there will be a discontinuous shift to a steeper slope at a particular income threshold.\(^{19}\) Proposition 2 derives the corresponding relationship between the risk of metabolic disease and income: while a slope-change at the same income threshold is predicted, the difference is that variation in income is not expected to affect the risk of disease below the threshold.

We test these predictions with data from the India Human Development Survey (IHDS) by separately estimating the relationship between income and both nutritional status and the probability of metabolic disease. Household income is measured as the average over the 2004 and 2012 survey rounds. This smooths out noise in the round-specific income measures and, given that the rounds were conducted nearly a decade apart, provides a more accurate estimate of the household’s permanent income. Nutritional status in the benchmark analysis is measured by BMI for the household head and his spouse and by height-for-age for their children, with individual information from both survey rounds included in the estimation sample when available. Metabolic disease is constructed as a binary variable that indicates whether the household head or his spouse has been diagnosed with diabetes, hypertension, or cardiovascular disease.\(^{20}\)

Figure 6a nonparametrically estimates the relationship between the nutritional status of the children

\(^{19}\)A large epidemiological literature; e.g. Subramanian et al. (2007) documents the coexistence of under-nutrition and over-nutrition in developing countries, which is attributed to wealth inequality; i.e. the simultaneous presence of poor and wealthy households. Our model generates the additional (and novel) prediction that the positive cross-sectional relationship between nutritional status and household income (wealth) is characterized by a discontinuity.

\(^{20}\)Hypertension can be controlled by changes in lifestyle and recent evidence indicates that diabetes can be reversed with sufficient weight loss (Taylor, 2013). The model implicitly assumes that metabolic disease is reversible and we allow for this possibility in the empirical analysis by measuring metabolic disease in each survey round. As a robustness test, we also estimate the metabolic disease equation at a single point in time, with data from the final (2011-2012) survey round.
Figure 6: Nutritional Status and Metabolic Disease with respect to Household Income

(a) Children
(b) Adults
(c) Children
(d) Adults

Source: India Human Development Survey (IHDS)

The standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies are partialled out prior to nonparametric estimation. The same set of covariates are included in the estimating equation at each assumed threshold for the threshold test. The vertical lines mark the estimated threshold location and the shaded areas demarcate the corresponding confidence intervals. Cluster bootstrapped 5% critical values are used to bound the threshold location.

and household income. Figure 6b repeats this exercise with nutritional status and the probability of metabolic disease among adult members of the household as outcomes. Although our analysis focuses on the relationship with income, other individual and household characteristics could also determine nutritional status and the risk of metabolic disease. All of the estimating equations in our analysis thus include the following standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies. The effect of gender

\[\text{Observations in the top and bottom 1\% of the outcome distribution are excluded from the estimation sample in all of our analyses. This ensures that the estimation results are not driven by extreme outliers.} \]

\[\text{Age is measured in years, except for the analysis with 0-59 month children where it is measured in months. The birth} \]
bias on nutritional status, as documented by Jayachandran and Pande (2017), is captured by the gender and birth order dummies. Geographical variation in food tastes, as emphasized by Atkin (2013, 2016) or in the disease environment, as documented by Spears et al. (2013), Duh and Spears (2017), and Dandona et al. (2017) is captured by the district dummies and the rural-urban dummy. The covariates listed above are partialled out using the Robinson (1988) procedure prior to the nonparametric estimation reported in Figures 6a and 6b.

The vertical lines in Figure 6a and 6b mark the point where we locate an income threshold, based on the statistical test described below. The shaded area around each line marks the 95% confidence interval for the threshold location, based on the same test. It is evident from both figures, and with all four outcomes, that the relationship with income is relatively weak below the estimated threshold, and much stronger above the threshold. The threshold location matches closely for the 0-59 month and the 5-19 year old children, with an almost complete overlap of the 95% confidence intervals. Despite the fact that we are using different measures of nutritional status for children and adults, the estimated threshold for the adults in Figure 6b, with BMI as the dependent variable in the estimating equation, is very close to what we obtain for the children in Figure 6a, with height-for-age as the dependent variable. Although the estimated threshold location with the probability of metabolic disease as the outcome is just slightly higher than the corresponding income level with adult BMI as the outcome, there is no overlap in the 95% confidence intervals. These confidence intervals are very precisely estimated, and we will see below that the threshold locations for adult BMI and the risk of metabolic disease are even closer to each other (and statistically indistinguishable) with alternative estimation samples from South India and Indonesia.

The threshold locations and confidence intervals in Figures 6a and 6b are estimated using a procedure developed by Hansen (2017). This procedure involves sequential estimation of the following piecewise linear equation:

$$z_i = \beta_0 + \beta_1 y_i + \beta_2 (y_i - \gamma) \times \mathbb{I}(y_i - \gamma > 0) + x_i \lambda + \epsilon_i,$$ \hspace{1cm} (9)

where z_i is an outcome of interest; e.g. nutritional status, y_i is household i's income, γ is the location of the income threshold (which must be estimated), $\mathbb{I}(\cdot)$ is an indicator function, β_1, β_2 are slope parameters, and x_i is a vector of additional covariates. This equation is estimated at different assumed income thresholds (values of γ), starting at a very low income level and then covering the entire income range in small increments. An F-type statistic is computed at each assumed threshold, based on a comparison of the sum of squared residuals at that assumed threshold and the minimized value across all assumed thresholds. This statistic will have a minimum value of zero by construction, and the assumed income threshold corresponding to that value is thus our best estimate of the true threshold. If there is indeed a slope-change, then the F-type statistic will increase steeply as the assumed threshold moves away (on either side) from the income level at which it is minimized.

Figures 6c and 6d plot the F-type statistic across the range of assumed thresholds for children’s nutritional status and the adult outcomes, respectively. Bootstrapped, outcome-specific 5% critical values for the F-type statistic are also reported in the figures, allowing us to locate the threshold with the requisite...
Table 1: Piecewise Linear Equation Estimates - nutritional status and metabolic disease

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>adult BMI (3)</th>
<th>metabolic disease (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.049 (0.072)</td>
<td>0.024 (0.044)</td>
<td>0.239** (0.057)</td>
<td>0.002 (0.002)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.365** (0.073)</td>
<td>0.206** (0.045)</td>
<td>0.940** (0.066)</td>
<td>0.028** (0.003)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.40 [1.20, 2.05]</td>
<td>1.50 [1.20, 1.95]</td>
<td>1.65 [1.55, 1.75]</td>
<td>1.90 [1.80, 2.05]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.991</td>
<td>-1.649</td>
<td>22.002</td>
<td>0.074</td>
</tr>
<tr>
<td>N</td>
<td>21,633</td>
<td>48,845</td>
<td>76,949</td>
<td>148,928</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)

Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease. Logarithm of household income is the independent variable.
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies are included in the estimating equation.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses. Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.

** significant at 5%, based on cluster bootstrapped confidence intervals.

degree of statistical confidence. The F-type statistic increases steeply as the assumed threshold moves away from the income level at which it is minimized, which implies, in turn, that the location of the threshold can be bounded with a relatively high degree of statistical precision. The estimated threshold locations in Figures 6a and 6b correspond to the income levels (assumed thresholds) at which the F-type statistic is minimized. The estimated confidence intervals are determined by the points of intersection between the F-type statistic and the critical value lines.

The same (wild) bootstrap procedure, clustered at the level of the Primary Sampling Unit, that is used to compute the critical values and, hence, the 95% confidence interval for the threshold location in Figures 6c and 6d can also be used to compute standard errors for the slope coefficients, β_1 and β_2, in a piecewise linear equation estimated at the threshold we have located. Moreover, a similar bootstrap procedure can be used to test our statistical model with a slope change at an income threshold, as described in equation (9), against the null hypothesis that there is a linear relationship between household income and each of the outcomes. These results are reported in Table 1. We can easily reject the null that the relationship is linear, without a discontinuity at a threshold, with each outcome. The reported point estimates of the baseline slope coefficient (β_1) and the slope-change coefficient (β_2) are obtained at our best estimate of the true threshold, γ, for each outcome. As predicted by our model with a set point, the

Following Hansen (2017) and Roodman et al. (2019), a coefficient’s significance at the 5% level is determined by cluster bootstrapped 95% confidence intervals. For ease of exposition we report cluster bootstrapped standard errors for each coefficient.
slope increases to the right of the threshold with each outcome (the slope-change coefficient is positive and significant). Proposition 1 indicates, in addition, that the slope to the left of the threshold should be positive with nutritional status as the outcome. This result is obtained for adults (Column 3) but not children (Columns 1-2), perhaps because sample sizes are smaller for the children or because the income relationship strengthens over the life-course. In line with Proposition 2, there is no relationship between the probability of metabolic disease and household income below the threshold in Column 4, in contrast with the strong positive relationship above the threshold.

The estimated threshold location ranges from 1.4 to 1.9 for the four outcomes, with some amount of overlap in the confidence intervals between any pair of outcomes (the only exception is adult disease and nutritional status, as discussed above). Recall that the median income in our nationally representative sample of households is 1.8. Based on our model, all households with income to the left of the threshold remain in the nutrition trap, as do some households to the right of the threshold. This implies that a substantial fraction of the Indian population remains in the nutrition trap at this stage of economic development, with this group being partly responsible for the weak relationship between nutritional status and income that has been documented in the literature. Among the households to the right of the threshold, those that have escaped the nutrition trap are at elevated risk of metabolic disease. The micro-evidence we have provided can thus explain the co-existence of malnutrition and a high prevalence of diabetes and other metabolic disorders at this stage in India’s economic development, as a consequence of underlying predetermined dynasty-specific set points in the population.

We complete this section by verifying the robustness of this evidence in a number of ways: (i) We show in Appendix Table A1 that the results are robust to including period-specific income in place of average income (over the two survey rounds). (ii) We show in Appendix Table A2 that the results continue to be obtained when the outcomes are restricted to the 2011-2012 survey round. (iii) We include average education among adult women and adult men in the household, as well as household composition, measured by the number of children, the number of teens, the number of adults, and the number of adults engaged in physical labor as additional covariates in the estimating equation in Appendix Table A3.

While these variables could independently determine feeding practices, health seeking behavior, and other decisions that determine nutritional status and health outcomes, we see that the results are robust to their inclusion. (iv) We show in Appendix Table A4 that the results for adults, with both nutritional status and metabolic disease as outcomes, are robust to separating men and women. (v) We show in Appendix Table A5 that the results continue to be obtained with alternative measures of nutritional status; weight-for-age for the children and height for adults. (vi) We show in Appendix Figure A1 and Appendix Table A6 that the implications of the model are obtained with individual metabolic diseases, although a slope discontinuity cannot be located (statistically) with cardiovascular disease. It is particularly striking that the risk of hypertension and diabetes track very closely with income and that the precisely estimated

\[\text{The number of observations in Column 4 is substantially greater than in Column 3 for two reasons: (i) BMI, based on height and weight, can only be measured for individuals who were physically present at the time of the survey interview. (ii) BMI data were only collected for a small number of adult men in the 2004-2005 round.} \]

\[\text{Household income and both average education and household composition are closely related, which is why we exclude these variables from the estimating equation in the benchmark specification.} \]
threshold location is the same for both disorders.

4.3 Alternative Explanations

The additional covariates that we include in the estimating equations account for two independent determinants of nutritional status in India: gender bias and a culturally determined preference for particular foods. The district dummies and the rural-urban dummy will subsume spatial variation in the infectious disease environment and the availability of health services, which is especially relevant in a country such as India that is undergoing the epidemiological transition. In the analysis that follows, we examine the possibility that important proximate determinants of nutritional status during the process of development – nutrient intake and children’s illness, particularly diarrhoeal disease – vary with household income in a way that independently generates our results. Our model assumes a positive and continuous relationship between nutrient intake (consumption) and income. It is the biologically determined set point that breaks the smooth relationship between nutritional status and consumption and, by extension, income. Suppose, instead, that the nutrient intake-income relationship strengthens discontinuously above an income threshold. Alternatively, suppose that there is a discontinuous change in the children’s illness-income relationship. Either way, the nonlinear nutritional status-income relationship that we estimate could be obtained without a set point.

To assess the validity of these alternative explanations, we nonparametrically estimate the nutrient intake-household income relationship in Figure 7a and the children’s illness-household income relationship in Figure 7b using IHDS data. Nutrient intake is measured by the consumption of calories and fat (in grams) at the household level. Children’s illness is measured by whether the child (aged 0-19) is reported to have had diarrhea and cough in the past month. The standard set of covariates, plus household composition and the number of adults engaged in physical labor, are partialled out prior to estimation using Robinson’s procedure. We see that there is a positive and continuous relationship between the intake of calories and fat and household income in Figure 7a. In contrast, there is a negative and continuous relationship between the incidence of both diarrhea and cough with household income in Figure 7b. In neither figure do we observe a discontinuous slope-change at any income level. Indeed, Hansen’s test cannot place bounds on the threshold location and, hence, fails to locate a slope-change at any assumed threshold in Figure 7c and Figure 7d. The same result (not reported) is obtained with other measures of nutrient intake – sugar consumption – and children’s illness – the incidence of fever. The discontinuous

26Deaton (2007) also considers energy expenditure (physical activity) as a determinant of nutritional status. Ng and Popkin (2012) decompose total energy expenditures into types of activity: work, active leisure, travel, and domestic tasks. The work category accounted for over 80% of the total energy expenditure in 2000 and 2005 in India. We will thus incorporate the type of work activity in the analysis that follows.

27Social norms determine feeding practices, health seeking behavior, sanitary practices, and other behaviors that contribute to nutrient intake and the disease environment. These norms can change discontinuously when income in the relevant social group, consisting of multiple dynasties, crosses a threshold level, providing an alternative explanation for our results.

28We include all children aged 0-19 when estimating the children’s illness-income relationship to increase the sample size and, hence, the likelihood of detecting a threshold. The corresponding tests (not reported) that separate the children into 0-5 year olds and 5-19 year olds also fail to detect a threshold. With regard to the nutrient intake-income relationship, there has been some controversy in the literature about the strength of this relationship; see, for example, Behrman and Deolalikar (1987) and Subramanian and Deaton (1996). However, none of these previous analyses suggest that there will be a discontinuity in this relationship.
Figure 7: Nutrient Intake and Children’s Illness with respect to Household Income

(a) Nutrient intake

(b) Children’s illness

(c) Nutrient intake

(d) Children’s illness

Source: India Human Development Survey (IHDS).

For the nutrient intake figures, the following covariates are partialled out prior to nonparametric estimation and included in the estimating equation at each assumed threshold: dummies for the number of children, adults, and teens in the household, occupation dummies, caste group, rural-urban dummy, district dummies, survey year dummy, and reported local price of rice, wheat, cereals and their derivative products, pulses, meat, sugar, oil, eggs, milk and its derivative products, and vegetables. For the children’s illness figures, the standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order, caste group, rural-urban dummy, and district dummies are partialled out prior to nonparametric estimation and included in the estimating equation at each assumed threshold. Cluster bootstrapped 5% critical values are used to bound the threshold location.

relationship between income and both nutritional status and metabolic disease is not being driven by an underlying discontinuous relationship between income and either food intake or children’s disease (particularly diarrhoeal disease).

Although the proximate determinants of nutritional status do not vary discontinuously with household income, could the observed nonlinearity be generated by selective child mortality?20 Suppose that there

20For example, Deaton (2007) considers the possibility that variation in child survival with income could explain the weak
is a positive and continuous relationship between mean nutritional status and household income, with a fixed dispersion in nutritional status at each level of income, as in Figure 8. If children can only survive above a subsistence nutrition level, and this constraint only binds at lower income levels, then as observed in the figure there will be a discontinuous relationship between mean nutritional status and income. Although the nutritional status-income relationship now precisely matches the prediction of our model, notice that it is driven entirely by households at the lower end of the nutritional status distribution, at each income level. Child mortality is concentrated in the first five years and, hence, if the nutritional status-income relationship is distorted by child mortality, this will show up most clearly among the 5-19 nutritional status-income relationship that he documents across countries.
year olds. Figures 9a and 9b report quantile regression estimates of the baseline slope coefficient (β_1) and the slope-change coefficient (β_2) in a piecewise linear equation with child (aged 5-19) height-for-age as the dependent variable. Coefficient estimates for the same equation, evaluated at the mean of the dependent variable rather than at each quantile, were reported earlier in Table 1, Column 2. It is evident from Figures 9a and 9b that those results were not driven by a small fraction of households at the bottom of the nutritional status distribution, as the alternative explanation based on selective child mortality would imply. We cannot statistically reject the hypothesis that the estimated coefficients at each quantile are equal to the corresponding conditional mean coefficient.

Finally, could poverty trap models generate the results that we obtain? When poverty traps are generated by credit constraints and non-convexities, as in Galor and Zeira (1993) and Banerjee and Newman (1993), households with sufficiently low initial income y_0 will remain permanently at that level. This will change the distribution of current income, y_t, but without a set point, there will be no discontinuity in the cross-sectional BMI-income ($z_t - y_t$) relationship. Poverty trap models generated by malnutrition; e.g. Dasgupta and Ray (1986) could potentially generate such a discontinuity because of the feedback from z_t to y_t below a current income threshold. However, there is no role for y_0, conditional on y_t, below the threshold in this model. In contrast, as assumed in our model and verified below, z_t is determined exclusively by y_0 below the threshold. Moreover, no poverty trap model has implications for the risk of metabolic disease, and even if it did, it would not predict a discontinuous increase in this risk and in nutritional status at an income level close to the median in the population as we observe. Indeed, Subramanian and Deaton (1996) go even further and argue, based on data from rural India, that there is no evidence that nutrition constrains income.

Although we are unable to come up with an alternative explanation for the results that are obtained, some caveats are in order. First, we use coarse measures of nutrient intake – calories, fat, sugar – measured at the household level in our analysis. Food intake at the individual level is difficult to measure and recent evidence (Forouhi et al., 2014) indicates that nutrient-types must be measured at an extremely fine level to accurately predict the risk of diabetes. Second, while our nutritional status measures, based on weight and height, are directly measured, metabolic diseases (although diagnosed) are self-reported. It is possible that wealthier households are more likely to visit the doctor and, hence, to be diagnosed with these conditions. However, for such differential reporting, mis-measurement of food intake, or any other omitted variable to explain all of our results, it must explain the discontinuity in the relationship between household income and both nutritional status and the risk of metabolic disease, as well as the fact that the threshold is located at the same income level for both outcomes. There is no obvious reason why this would be the case.

4.4 Internal Validity

As noted, our assumption that the body defends its inherited (pre-modern) set point up to a threshold has not been previously verified in developing country populations. Moreover, the model places additional structure on the threshold function in equation (3) by specifying that there is a linear relationship, with
slope b, between BMI, z_t, and income, both below and above the threshold, with the relevant income measure switching from y_0 to y_t. We now proceed to validate not just the threshold assumption, but the specific form we have imposed on the threshold function.

Based on the assumed distribution of income shocks, equation (3) implies the following cross-sectional $z_t - y_t$ relationship, as specified in equations (5) and (6):

$$
E(z_t | y_t, y_t \leq \alpha) = a + b(y_t - e_L(y_t))
$$

$$
E(z_t | y_t, y_t > \alpha) = a + b(y_t - e_H(y_t)).
$$

Closed-form expressions for the adjustment terms, $e_L(y_t)$, $e_H(y_t)$, as functions of y_t and the parameters α, $\mu_t \equiv t\mu$, and $\sigma^2_t \equiv t\sigma^2$ are derived in equations (7) and (8). If the parameter values can be independently obtained, then the appropriate adjustment term can be computed for each y_t. Once the adjustment term is included in the estimating equation, the structural slope parameter, b, can be independently estimated, below and above the income threshold. If the nutritional status-income relationship is correctly specified, the estimated b parameter will be statistically indistinguishable below and above the threshold.

The value of the α parameter can be obtained directly from the estimated location of the threshold from the cross-sectional tests. To determine the value of t, recall from Figure 1 that economic development in India commenced in the middle of the twentieth century. If each generation spans 30 years, then the grandparents of current working-age adults would have been the first generation to experience development; i.e. we are now in generation $t = 3$ of the model. To estimate the parameters of the distribution of income shocks, μ and σ^2, we require data on the income distribution over multiple time periods or generations. The distribution of pre-tax national income is available from the World Inequality Database from 1951 onwards for India (Chancel and Piketty, 2017). Assuming that each generation spans 30 years, as above, we use the (real) income distribution in 1951, 1981, and 2011 and, in particular, the change in these distributions, to estimate the μ and σ parameters.\footnote{The World Inequality Database provides the 99 fractiles of the income distribution; p_0, p_1, ..., p_{98}, where $p_x p_y$ refers to the average income between percentiles x and y, in each of the three years. We set the number of dynasties in the economy to be equal to 10,000. We draw 10,000 times from the 1951 income distribution, with each fractile being equally represented, to generate the initial income distribution. For a given value of μ and σ^2 this allows us to simulate the income distribution in 1981 and 2011. Our best estimate of the parameters of the income-shock distribution is the value of μ and σ^2 for which the simulated income distribution in 1981 and 2011 matches most closely with the actual distribution.}

Table 2 reports coefficient estimates from a piecewise linear equation, using IHDS all-India data, with child (aged 5-19) height-for-age in Columns 1-2 and adult BMI in Columns 3-4 as outcomes. In addition to household income, the standard covariates are included in each estimating equation. The slope-change in the estimating equation is imposed at the income level where the threshold was previously located, separately for each outcome. Columns 1 and 3 report benchmark estimates without including the $e_L(y_t)$, $e_H(y_t)$ adjustment terms. This specification is essentially the same as what we estimated earlier in Table 1, except that we now report the slopes below and above the threshold (rather than the slope-change). Columns 2 and 4 report estimates with the adjustment terms included in the estimating equation. The slope coefficients can now be interpreted as the structural, b, parameter in the model. Although we can
Table 2: Piecewise Linear Equation Estimates - with and without adjustment terms

<table>
<thead>
<tr>
<th>Specification:</th>
<th>Dep. variable:</th>
<th>HFA 5-19</th>
<th>adult BMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>without</td>
<td>with</td>
<td>without</td>
</tr>
<tr>
<td></td>
<td>adjustment</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Slope below threshold (β_L)</td>
<td>0.011</td>
<td>0.132***</td>
<td>0.223***</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.019)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Slope above threshold (β_H)</td>
<td>0.221***</td>
<td>0.166***</td>
<td>1.140***</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.033)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>$F-$statistic ($\beta_L = \beta_H$)</td>
<td>44.69</td>
<td>0.78</td>
<td>234.45</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.374]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Imposed threshold</td>
<td>1.50</td>
<td>1.50</td>
<td>1.65</td>
</tr>
<tr>
<td>N</td>
<td>48,846</td>
<td>48,846</td>
<td>76,949</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)
Logarithm of household income is the independent variable.
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies are included in the estimating equation.
Least Squares standard errors are reported in parentheses and $p-$values associated with F-statistic are in square brackets.
* significant at 10%, ** at 5% and *** at 1%

easily reject the null hypothesis that the slopes below and above the threshold are equal in Columns 1 and 3, without the adjustment, we cannot reject the null once the adjustment terms are included. Indeed, the point estimates of the slope coefficient are now remarkably similar, below and above the threshold. A comparison of the point estimates indicates, in addition, that the slope without the adjustment term is less than (greater than) b, below (above) the threshold, as implied by Proposition 1.

One benefit of the structural estimation is that it allows us to validate particular functional form assumptions in the model. An additional benefit is that it allows us to quantify the consequences of the nutrition trap. If the set point is irrelevant, there will be a linear relationship between household income and nutritional status: $E(z_t) = a + by_t$. The estimated b parameter can thus be used to predict what nutritional status would have been in the absence of the nutrition trap. Figure 10a reports actual height-for-age, predicted height-for-age (based on the model), and the counter-factual height-for-age (in the absence of the nutrition trap) for children aged 5-19. Figure 10b reports the corresponding relationships with adult BMI as the outcome. The standard set of covariates are partialled out, and the dotted vertical line in each figure marks the location of the income threshold. Based on these estimates, the fraction of stunted children (with a z-score below -2) would decline by 30% and the fraction of underweight adults (with a BMI below 18.5) would decline by 50% if the set point were absent.31

31These statistics are based on a comparison of predicted and counter-factual malnutrition, taking account of the independent impact of the covariates.
dampening of the nutritional status-current income relationship below the threshold, which we attribute to a predetermined set point, has important consequences for child and adult nutritional status in India, and we will return to this point in the concluding section of the paper.

4.5 External Validity

The presence of a set point is not unique to India. The next step in the analysis is thus to assess the applicability of the model to other developing countries. To test the cross-sectional implications of the model, the following data are required: (i) Household income, preferably at multiple points in time. (ii) Nutritional status of adults and children. (iii) Indicators of metabolic disease. (iv) Household composition and detailed geographical indicators. The additional requirement is that a large sample is needed to locate a slope-change with precision. A search of publicly available data sets from other countries recovered just two data sets that are suitable to test our model: the Indonesia Family Life Survey (IFLS) and the Ghana Socioeconomic Panel Survey (GSPS), although the GSPS does not contain information on metabolic disease.32 We thus proceed to test the model with these two data sets, just as we did with the IHDS for India.

While a set point may be present in other countries, the fraction of the population that has escaped its pre-modern set point will depend on a country’s stage in the process of development. In the initial phase, when current income is relatively close to pre-modern income, most of the population remains in the nutrition trap. In the intermediate phase, as observed for India, a substantial fraction of the

32 Other well known data sets that we considered, but were determined to be unsuitable, include the Demographic Health Survey (DHS), the Living Standards Measurement Study (LSMS), Young Lives, and the China Health and Nutrition Survey (CHNS).
population continues to remain in the nutrition trap, but now a large number of individuals have also crossed the income threshold. This stage of development is characterized by the co-existence of low nutritional status, conditional on current income, in one segment of the population and a high prevalence of metabolic disease in a different segment of the population. At later stages of development, most of the population will have escaped the nutrition trap. Given that epigenetic inheritance will cease after a few generations, the pre-modern set point will also be irrelevant by that point in time.

At what stage in the development process are Indonesia and Ghana or, equivalently, how does current income in those countries compare with historical (pre-modern) income? Although income data only go back to 1960, adult height is available for many developing countries as far back as the nineteenth century. It is standard practice to use adult height as a proxy for income, and the standard of living, in historical research (Steckel, 1995). We thus use adult height in 1900 to measure historical income. Note that our use of historical height as a proxy for historical income does not contradict Deaton’s (2007) observation that height and income are weakly correlated in developing countries today. Recall from the model that nutritional status, which can be measured by height, is increasing continuously in contemporaneous income in the pre-modern economy (period 0). This relationship only weakens in subsequent periods (generations) with economic development on account of the persistent set point. Figure 11a plots the relationship between per capita GDP in 2010 and adult height in 1900 for a number of developing countries, including India, Indonesia, and Ghana. The first point to take away from the figure is that there has been a reversal of fortunes over the past century, reflected by the negative relationship between current

33 As noted by Steckel (1995) and Deaton (2007), genes are important determinants of individual height (and nutritional status more generally) but cannot explain variation across populations.

34 We include all countries in South and South East Asia and Sub-Saharan Africa that satisfy the following requirement: their GDP per capita must be less than $12,000, which roughly corresponds to the upper bound for lower-middle income countries set by the World Bank. The same criterion is applied in the cross-regional analysis below.
income and our proxy for historical income. The second point to take away from the figure is that the gap between current income and historical income is greater in Asia than in Africa. This is also true for the specific countries that we care about; the gap is greater for India and Indonesia than for Ghana (they have lower historical income but higher current income).

Figure 11b plots the relationship between per capita GDP, in 2010 and 1960, and height in 1900. Notice that there is no apparent relationship between 1960 income and 1900 height across countries, in contrast with the negative relationship that is observed with 2010 income. Given the change in the slope over time, we expect that the sign would have been reversed – turning positive – if cross-country data were available a few decades prior to 1960. Even if we restrict attention to the 1960-2010 period, it is evident that the gap between current and historical income is greater in Asian than in African countries (on either side of the vertical line). Focusing on individual countries, income in India and Indonesia increases substantially between 1960 and 2010, whereas it is unchanged in Ghana. Based on the preceding discussion, we expect that a substantial fraction of the Indonesian population will have crossed the income threshold, just as we observed for India. In contrast, we expect the population in Ghana to have remained (for the most part) at its set point.

Figure 12a nonparametrically estimates the relationships between adult BMI, the probability of metabolic disease, and household income using Indonesia Family Life Survey (IFLS) data. The same set of covariates that were included in the estimating equation with Indian data are included here as well, except that caste is replaced by ethnicity. These covariates are partialled out, using Robinson’s procedure, prior to nonparametric estimation. The IFLS has been conducted in five waves. To be consistent with the analysis using IHDS data in 2005 and 2011, the outcomes with IFLS data are measured in the last two
(2007 and 2014) waves. However, household income is averaged over all available waves to span as wide a
time-window as possible and to smooth out transitory income shocks. The vertical lines in the figure mark
the income levels at which Hansen’s test locates thresholds for each outcome in Appendix Figure A2a and
the shaded areas demarcate the corresponding confidence intervals. The estimated threshold locations
are extremely close to each other, with an almost complete overlap in the confidence intervals. Moreover,
as documented formally in Appendix Table A7, there is a weak relationship between household income
and each outcome below the estimated threshold and a positive and significant slope-change above the
threshold. As described above, the gap between current and historical income is even greater in Indonesia
than in India. We would thus expect a larger fraction of the population to have escaped the nutrition
trap in Indonesia and, based on our estimates of the threshold location, it appears that three-quarters of
the Indonesian population has indeed crossed the threshold.

Figure 12b reports the nonparametric relationship between adult BMI and household income, using
data from the Ghana Socioeconomic Panel Survey (GSPS). As noted, the GSPS does not collect data
on metabolic disease. However, the full set of covariates that were used in the Indian and Indonesian
analyses are available, with tribal affiliation replacing caste category and ethnicity, respectively. These
covariates are partialled out prior to nonparametric estimation, as usual. The GSPS was conducted in
three waves; 2009-2010, 2013, and 2017. The outcomes are measured in the 2009-2010 and 2013 waves,
which correspond most closely to the IHDS waves, while household income is averaged over all three
waves. In contrast with the nonlinear income effects that we estimated with Indian and Indonesian data,
nutritional status is increasing continuously in income in Figure 12b. Formal statistical support for this
observation is provided in Appendix Figure A2b, where the Hansen test is unable to detect an income
threshold. As reported in Appendix Table A7, there is a positive and statistically significant relationship
between household income and adult BMI in Ghana. Where the Ghana data differ from the Indian and
Indonesian data is that there is no slope change. Our interpretation of this finding, which is in line with
the fact that current and historical incomes are relatively close in Africa and the observation that the
GSPS income coefficient is substantially smaller than the IHDS and IFLS income coefficients above the
threshold, is that the bulk of the Ghanaian population remains at its pre-modern set point.

5 The Biological Mechanism

The model is based on the following biological relationships:

(a) nutritional status - income

\[z_t = \begin{cases}
 a + by_t & \text{if } U_t \leq \alpha \\
 a + by_0 & \text{if } U_t > \alpha
\end{cases} \]

(b) probability of metabolic disease - income

\[P(D_t) = \begin{cases}
 \gamma_1 & \text{if } U_t \leq \alpha \\
 \gamma_1 + \gamma_2(y_t - y_0) & \text{if } U_t > \alpha
\end{cases} \]
As noted, two assumptions that underlie these relationships have not been previously verified in developing country populations: (i) the body will defend its inherited set point up to a threshold (α in the expressions above), and (ii) the set point is determined by conditions in the pre-modern economy (which we denote by ancestral income y_0). The test of internal validity provides support for the first assumption (and the form that we have imposed on the threshold function). We now proceed to verify the second assumption by constructing exogenous measures of y_0 and then directly estimating the biological relationships, above and below the threshold. As with the cross-sectional tests of the model, we focus on India in the analysis that follows, but verify that the results also hold up with Indonesian data (with which a threshold can also be located).

5.1 District-Level Evidence

Measures of ancestral income going back many generations are unavailable at the family (dynasty) level. Our first measure of y_0 is constructed at the district level and is based on data from the Food and Agriculture Organization (FAO) Global Agro-Ecological Zones (GAEZ) project. The FAO-GAEZ database provides estimates of potential crop yields for 48 crops in 5 arc-minute by 5 arc-minute grid cells across the world. These grid cells can be matched to any administrative unit, such as a district, for which spatial shape files are available. Galor and Özak (2016) convert the potential yields to caloric production and then average across crops to construct a Caloric Suitability Index (CSI) which they document is a good indicator of the historical level of economic development or, equivalently, aggregate wealth across countries. We use the same measure to construct y_0 at the district level, except that the baseline specification restricts attention to six staple crops – wheat, rice, barley, sorghum, rye, and millet – that would have dominated historical agricultural production (and continue to account for a large share of agricultural production) in India.

The potential yields in the FAO-GAEZ database account for soil characteristics, temperature, moisture, and other growing conditions (including the impact of pests, disease, and weeds). They are provided for different levels of technology and for different levels of irrigation. We use low technology-rainfed agriculture to construct the CSI, as do Galor and Özak (2016), to match as closely as possible with historical output. Agriculture was the dominant activity in the pre-modern economy. Aggregate wealth in this economy was determined by agricultural productivity, which would, in turn, have determined the population (density) that could be supported in a local area (Galor and Weil, 2000). If the CSI is a good measure of pre-modern aggregate wealth, then it should be more closely related to historical population density than to current population density. Figure 13a verifies this hypothesis by estimating the relationship between CSI and both historical (1951) and current (2001) population density, at the district level, in India.35

Recall from Figure 1 that the Indian economy only starts to develop, after centuries of stagnation, in the middle of the twentieth century. The 1951 population densities, which are obtained from the first post-Independence census covering the entire country, will thus proxy for aggregate wealth prior to the

35All variables in Figure 13 are standardized by subtracting their means and dividing by their standard deviations. Moreover, the hill states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, and the Northeastern States, which have exceptionally low population densities, are omitted in the figure, but not from the regressions that follow.
onset of economic development. The 2001 population densities, which are obtained from the population census in that year, will reflect the large changes that accompanied 50 years of economic development. We see in Figure 13a that the CSI is more strongly correlated with 1951 population density than with 2001 population density, as predicted.\footnote{Estimates based on a pooled regression (not reported) indicate that there is a positive and significant relationship between population density and CSI in each year, with a significantly steeper slope in 1951.}

Although the preceding results provide empirical support for our measure of historical aggregate wealth, they also indicate that the relationship between CSI and population must be accounted for when constructing measures of historical per household wealth. We do this by specifying that historical per household wealth is a flexible function of the CSI, \(f(CSI) \), where this function can be potentially non-monotonic, depending on the endogenous population response. We then estimate the following equation:

\[
y_t = f(CSI) + \epsilon_t, \tag{10}
\]

where \(y_t \) is household income, which is obtained as in the cross-sectional tests from the India Human Development Survey (IHDS), and CSI is based on the household’s district of residence (the IHDS does not provide location identifiers below the district level). Equation (10) can be compared with the income equation (1) in the model:

\[
y_t = y_0 + U_t. \tag{11}
\]

Predicted income in equation (10) corresponds to ancestral income, \(y_0 \), and the residual in that estimating equation corresponds to the income mismatch, \(U_t \equiv y_t - y_0 \).\footnote{The residual is mean-zero by construction, whereas \(U_t \) has positive mean \(\mu_t \). Our estimates of \(y_0 \) and \(U_t \) are thus only identified up to a constant, but this has no bearing on the analysis that follows.} In our benchmark specification, the \(f(CSI) \)
function allows for a state-specific linear mapping from CSI to y_t; i.e. CSI is interacted with state fixed effects. This accounts for variation in historical population, as well as a differential mapping due to the underlying social structure, across states. The functional form we have specified is very flexible and we see in Figure 13b that predicted income tracks closely with actual income, despite the highly nonlinear relationship with CSI.

Table 3 reports the relationship between adult BMI, z_t, and both ancestral (predicted) income, y_0, and current income, y_t, below and above the estimated threshold. y_0 and y_t are normalized, by dividing by their respective standard deviations, to allow the magnitude of the income coefficients to be comparable. The standard set of covariates are included in the estimating equations in all of the analysis that follows. The limitation of the district-level analysis is that ancestral income is constructed at an aggregate level and is based on a variable, CSI, that is not directly derived from pre-modern income. Nevertheless, as observed in Columns 1-2 with IHDS data, ancestral income has a positive and significant effect on adult BMI below the threshold but not above it. Although the current income coefficient is also significant below the threshold, it is substantially smaller than the historical income coefficient and, moreover, is four times larger above the threshold. We verify the robustness of this result in Appendix Table A8 by (i) estimating a more flexible specification of the $f(CSI)$ function that allows for a state-specific quadratic mapping from CSI to y_t, and (ii) including a larger set of 18 crops when constructing the CSI. Although the F-statistic measuring joint significance of the CSI terms, interacted with state fixed effects, increases substantially when we move from the linear to the quadratic specification, the estimated y_0, y_t coefficients are qualitatively unchanged with both robustness tests.

Table 3, Columns 3-4, reports the adult BMI-income relationship with Indonesian (IFLS) data to verify its external validity. The analysis proceeds in exactly the same way as above, except that state-specific coefficients are replaced by province-specific coefficients in the $f(CSI)$ function to reflect the fact that the social structure (ethnicity) varies by province in Indonesia. The set of staple crops now consists of rice, sorghum, cassava, and maize. The samples in Table 3 and Table 4 that follows are restricted to rural households, the implicit assumption being that these households would have resided in their district of residence for many generations. While this may be true of the Indian sample, given that permanent migration by entire households in that country is especially low (Munshi and Rosenzweig, 2016), Indonesia has a long history of government sponsored internal migration (Bazzi et al., 2016). Despite this caveat, Equation (10) is at odds with the Malthusian model, which predicts that the endogenous population response would push per-household ancestral income down to its subsistence level, regardless of aggregate wealth (CSI). It is, however, consistent with historical statistics reported in Galor and Weil (2000), which indicate that the population did not grow as fast as total output in the pre-modern economy. Our explanation for spatial variation in per-household ancestral income is based on a societal response; the society that emerged in each region (state) would have regulated the population and vertical social stratification would have generated wealth inequality (the elites would have consumed above subsistence levels). The latter is relevant because $f(CSI)$ effectively measures the historical wealth of a representative household in the district. We implicitly assume that the social structure varies across states because castes or jatis, which are the building blocks of Indian society, rarely cross (linguistic) state boundaries.

Although actual and predicted household incomes diverge in both tails of the CSI distribution, these variables track closely in the range where the CSI variable is concentrated. Appendix Figure A3 uses a binned scatter plot to describe the relationship between predicted and actual income. This relationship is linear, matching the structure of the income equation in the model, although the correlation coefficient is less than one (which can be explained by the fact that predicted income is measured at the district level and, hence, measures y_0 with error).
Table 3: Nutritional Status - Income Relationship (below and above the threshold)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>adult BMI</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Country:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample:</td>
<td>below</td>
<td>above</td>
<td>below</td>
<td>above</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Ancestral income</td>
<td>0.583***</td>
<td>0.386</td>
<td>0.384***</td>
<td>-0.067</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td>(0.214)</td>
<td>(0.110)</td>
<td>(0.145)</td>
</tr>
<tr>
<td>Current income</td>
<td>0.181***</td>
<td>0.861***</td>
<td>0.140</td>
<td>0.634***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.048)</td>
<td>(0.124)</td>
<td>(0.072)</td>
</tr>
<tr>
<td>Prediction F-statistic</td>
<td>5.06</td>
<td>5.06</td>
<td>10.76</td>
<td>10.76</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Threshold location</td>
<td>1.65</td>
<td>1.65</td>
<td>6.10</td>
<td>6.10</td>
</tr>
<tr>
<td>Dep. var. mean</td>
<td>20.479</td>
<td>21.844</td>
<td>22.263</td>
<td>22.999</td>
</tr>
<tr>
<td>N</td>
<td>26,871</td>
<td>19,693</td>
<td>2,602</td>
<td>8,902</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group in India and ethnicity in Indonesia, rural-urban dummy, and district dummies are included in the estimating equation.
Prediction F-statistic measures the joint significance of the CSI terms in the estimating equation (10) that is used to construct ancestral income.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
* significant at 10%, ** at 5%, *** at 1%, based on cluster bootstrapped confidence intervals.

which would weaken the relationship between our measure of ancestral income and nutritional status, the results in Columns 3-4 match closely with the assumptions of the model. Ancestral income has a positive and significant effect on adult BMI below but not above the estimated threshold, whereas the converse is true for current income.40

Table 4 reports the relationship between the risk of metabolic disease and the income mismatch, $y_t - y_0$, below and above the threshold. While the standard assumption in models of developmental plasticity is that the risk of metabolic disease is increasing in the mismatch, the additional assumption in our model is that this relationship should be observed above but not below the threshold. Table 4, Column 1 tests this relationship with Indian (IHDS) data, using the residual from equation (10) to measure the income mismatch. As assumed, the mismatch has an economically and statistically insignificant effect on the risk of metabolic disease below the threshold and a positive and significant effect above the threshold. Appendix Table A9 verifies the robustness of the results, as above, to (i) a more flexible specification of the $f(CSI)$ function, and (ii) construction of the CSI with an expanded set of 18 crops. Table 4, Column 3 completes the test of the metabolic disease-mismatch relationship by reporting results with Indonesian (IFLS) data. It is quite striking that the coefficient estimates are almost identical with Indian data in

40 The ancestral income coefficient is smaller in magnitude than the current income coefficient with both IHDS and IFLS data. This can be explained by the measurement error in ancestral income that is generated mechanically when a household-level variable is measured at the district level. Recall that our tests of internal validity established that the slope of the BMI-income relationship was indeed the same below and above the threshold once the appropriate adjustment terms were added to the estimating equations.
Table 4: Metabolic Disease - Income Relationship

<table>
<thead>
<tr>
<th>Dependent variable: Metabolic disease</th>
<th>India</th>
<th>Indonesia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent variable:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope below</td>
<td>-0.001</td>
<td>0.019**</td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.006)</td>
<td></td>
</tr>
<tr>
<td>Slope above</td>
<td>0.019***</td>
<td>0.009</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.011)</td>
<td></td>
</tr>
</tbody>
</table>

F–statistic		
H₀: slope below = slope above	24.852	0.677
	[0.000]	[0.411]
Prediction F–statistic	5.06	5.06
	[0.000]	[0.000]

Threshold location	1.90	1.90
Dependent variable mean	0.054	0.054
N	89,126	89,126

Source: India Human Development Survey (IHDS), Indonesia Family Life Survey (IFLS)

The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group in India and ethnicity in Indonesia, rural-urban dummy, and district dummies are included in the estimating equation.

Prediction F–statistic measures the joint significance of the CSI terms in the estimating equation (10) that is used to construct ancestral income.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.

* significant at 10%, ** at 5%, *** at 1%, based on cluster bootstrapped confidence intervals.

Column 1 and Indonesian data in Column 3.

Our cross-sectional tests of the model indicate that current income has no effect on the risk of metabolic disease below the threshold and a positive and significant effect above the threshold. The preceding exercise decomposes current income, \(y_t \), into two components: the income mismatch, \(y_t - y_0 \), and ancestral income, \(y_0 \). We then show in Table 4, Columns 1 and 3 that it is the mismatch component of current income that is driving the observed cross-sectional relationship, as assumed in the model. To complete the analysis, we estimate the relationship between the risk of metabolic disease and ancestral income, below and above the threshold. Based on the biological relationship specified in the model, ancestral income should not affect the risk of metabolic disease, it is the deviation from ancestral income that matters, and as expected three of the four income coefficients are statistically insignificant in Columns 2 and 4. Given that the magnitude of these coefficients is relatively large, however, and that we cannot reject the hypothesis that they are equal below and above the threshold, we consider an alternative specification in which ancestral income has a constant effect on the risk of metabolic disease at all income levels; i.e. \(\gamma_1 \) is replaced by \(\gamma_1 y_0 \) in the probability of metabolic disease - income relationship above. Following the same steps as in the derivation of Proposition 2, it is straightforward to verify that while a slope discontinuity
at the current income threshold α continues to be obtained, the relationship between the probability of metabolic disease and current income will now be positive (and not zero) below the threshold. Based on the cross-sectional evidence, we obtain no support for this implication, with Indian or Indonesian data.

5.2 Village-Level Evidence

The district-level measures of ancestral income, y_0, allow us to validate both biological relationships specified in the model. The advantage of these measures is that they can be constructed, in a consistent fashion, using nationally representative data from India and Indonesia. However, as noted, the district is an aggregate spatial unit and the CSI is not a direct measure of pre-modern income. We improve on both of these dimensions by using data from the South India Community Health Study (SICHS) for the analysis that follows. The SICHS covers a rural population of 1.1 million individuals residing in Vellore district in the South Indian state of Tamil Nadu. Two components of the SICHS are relevant for our analysis: a census of all 298,000 households residing in the study area, completed in 2014, and a detailed survey of 5,000 representative households, completed in 2016. The SICHS census collected each household’s income in the preceding year. The SICHS survey collected information on the marriage of the household head and his spouse, and their parents, and in addition covers all variables included in the analysis using IHDS and IFLS data above. More importantly, the SICHS data are supplemented with historical records, obtained from the British Library in London, on the agricultural revenue tax per acre of cultivated land that was collected from each village in the Northern Tamil Nadu region (encompassing the study area) in 1871. The revenue tax was based on a detailed assessment, made by the colonial government, of crop suitability, soil quality, precipitation, and other growing conditions. Like the CSI, this is a measure of potential agricultural productivity, but it is (i) defined at the village level, (ii) based explicitly on pre-modern growing conditions, and (iii) provides a direct measure of pre-modern income; i.e. the monetary value of agricultural output.

We begin the analysis with SICHS data by establishing that the cross-sectional relationships estimated above with nationally representative IHDS data are obtained in the study area as well. Figure 14a reports the relationship between adult BMI, for the household head and his spouse, and current household income. To smooth out transitory shocks, we take the average of the household income reported in the SICHS census and the SICHS survey as our measure of permanent household income. The standard set of covariates are partialled out prior to nonparametric estimation. The SICHS study area was purposefully selected to be representative of rural South India, defined as in Munshi and Rosenzweig (2016) by the states of Tamil Nadu, Andhra Pradesh, Karnataka, and Maharashtra, with respect to socioeconomic and demographic characteristics. As a basis for comparison, we thus report the corresponding nonparametric

41There are 377 panchayats or village governments in the SICHS study area. These panchayats were historically single villages, which over time sometimes divided or added new habitations. The panchayat as a whole, which often consists of multiple modern villages, can thus be linked back to a single historical village. What we refer to as a “village” in the discussion that follows is thus a historical village or, equivalently, a modern panchayat.

42Borker et al. (2018) provide a detailed description of the study area, documenting that it is representative of rural Tamil Nadu and rural South India with respect to socioeconomic and demographic characteristics; e.g. age distribution, marriage patterns, literacy rates, and labor force participation.
Figure 14: Nutritional Status and Metabolic Disease with respect to Income (IHDS and SICHS)

(a) BMI

(b) Metabolic disease

Source: India Human Development Survey (IHDS), South India Community Health Study (SICHS)

The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group, and (for IHDS) rural-urban dummy and district dummies are partialled out prior to nonparametric estimation. The same set of covariates are included in the estimating equation at each assumed threshold for the threshold test.

The vertical lines mark the estimated threshold location and the shaded areas demarcate the corresponding 95% confidence intervals.

plot obtained with IHDS data, for the South Indian states, in Figure 14a. We go through the same steps as above to plot the relationship between the risk of metabolic disease and current income, with SICHS and IHDS South India data, in Figure 14b.

The estimated relationships, with SICHS and IHDS South India data, match very closely across the income distribution in both figures.43 The vertical lines mark the spot where Hansen’s test (shown in Appendix Figure A4) locates an income threshold, with the shaded area demarcating the associated 95% confidence interval. The threshold locations with adult BMI as the outcome are precisely estimated and almost identical with the two data sets. With the risk of metabolic disease as the outcome, in contrast, a threshold is precisely estimated with IHDS South India data but not SICHS data.44 The tests of the biological mechanism that follow will thus be restricted to the adult BMI-income relationship.

One advantage of the SICHS analysis is that ancestral income can be measured at the village level. However, this creates a new complication because ancestors can be drawn from multiple villages. Epigenetic inheritance was traditionally assumed to occur along the female line; i.e. via the mother, although recent evidence indicates that paternal traits can also be transmitted epigenetically (Sales et al., 2017;...)

43 Nutritional status and the risk of metabolic disease are systematically higher with SICHS data relative to IHDS South India data (this can be observed by comparing the range of the Y-axes in Figure 14). In line with this finding, Alacevich and Tarozzi (2017) document that average heights for children under 5 are lower in the IHDS than in the Demographic Health Survey (DHS). They also document that heights and weight are measured with error in the IHDS, with heaping at particular focal points. Once we control for the level, however, the SICHS and the IHDS South India data track very closely with household income.

44 This is because the sample size is much smaller with SICHS data and the threshold location is more difficult to estimate with the risk of metabolic disease as the outcome. For those outcomes for which thresholds can be located, the piecewise linear equation estimates at the estimated thresholds are reported in Appendix Table A10.
Historical income is measured by tax revenue per acre of cultivated land in 1871 in the individual’s natal village. The number of bins in the binned scatter plot is set equal to 20.

Lind and Spagopoulou, 2018). We allow for both possibilities, in which case ancestral incomes along the male and female line are relevant. Marriage in India is patrilocal, with women often leaving their natal (birth) village when they marry. In a patrilocal society, men do not move when they marry and, hence, ancestral income along the male line is determined by historical income in the individual’s natal village. Ancestral income along the female line, in contrast, will be determined by historical income in the (possibly) many different villages from which the female ancestors were drawn.

To construct a single measure of ancestral income, we take advantage of the fact that families in rural India match assortatively on wealth in the marriage market, as documented with SICHS data by Borker et al. (2018). Although ancestral income, \(y_0 \), will not match perfectly on the male and female side in any marriage on account of the \(U_t \equiv y_t - y_0 \) term in the income equation, it will still be highly correlated for husbands and wives. We verify that this is the case, with SICHS data, for the household head and his spouse in Figure 15a and for their parents in Figure 15b, using the 1871 tax revenue in each individual’s natal village to measure \(y_0 \). The strong correlation in ancestral income that we document does not arise mechanically because couples are drawn from the same natal village. 80% of women in the SICHS study area leave their natal village when they marry, although almost all of them marry within the district, and we expect that similarly strong correlations in ancestral incomes would be observed if data from earlier generations were available. This implies that the 1871 tax revenue in any village from which ancestors were drawn could be used to construct \(y_0 \). To be consistent with our measure of current income, we use 1871 tax revenue in the current village of residence, both for the household head and his spouse, to construct their ancestral income.

\[\text{The household’s ancestral income, } y_0, \text{ is specified as a continuous function of the 1871 village-level tax revenue below. However, this has no bearing on the analysis of assortative matching.} \]
Table 5: SICHS Nutritional Status - Income Relationship (below and above the threshold)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>adult BMI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(R)$ specification:</td>
<td>quadratic</td>
<td>cubic</td>
</tr>
<tr>
<td>Sample:</td>
<td>below</td>
<td>above</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Ancestral income</td>
<td>0.375***</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>(0.128)</td>
<td>(0.123)</td>
</tr>
<tr>
<td>Current income</td>
<td>0.048</td>
<td>0.834***</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
<td>(0.120)</td>
</tr>
<tr>
<td>Prediction $F-$ statistic</td>
<td>6.92</td>
<td>6.92</td>
</tr>
<tr>
<td></td>
<td>[0.001]</td>
<td>[0.001]</td>
</tr>
<tr>
<td>Threshold location</td>
<td>1.69</td>
<td>1.69</td>
</tr>
<tr>
<td>Dependent var. mean</td>
<td>23.033</td>
<td>23.755</td>
</tr>
<tr>
<td>N</td>
<td>1810</td>
<td>3844</td>
</tr>
</tbody>
</table>

Source: South India Community Health Study (SICHS)

The following covariates: gender, age (linear, quadratic, and cubic terms), and caste group are included in the estimating equation.

Prediction $F-$ statistic measures the joint significance of the R terms in the estimating equation that is used to construct ancestral income.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.

* significant at 10%, ** at 5%, *** at 1%, based on cluster bootstrapped confidence intervals.

The tax revenue per acre of cultivated land in 1871 measures historical wealth at the level of the village. As with the construction of the district level measure of ancestral per household income, we allow for an endogenous (village level) population response by specifying that per household ancestral income, y_0, is a flexible function, $g(R)$, of the 1871 tax revenue, R. The analysis thus proceeds in two steps: First, we estimate the relationship between current household income, y_t, and $g(R)$; the predicted income provides us with a measure of y_0, following the same argument as above. Second, we estimate the effect of y_0 and y_t on adult BMI, below and above the threshold located in Figure 14. As seen in Table 5, ancestral income has a positive and significant effect on adult BMI, below but not above the threshold. In contrast, current income has a positive and significant effect on adult BMI above but not below the threshold.\(^{46}\) This result is robust to alternative (quadratic and cubic) specifications of the $g(R)$ function.\(^{47}\)

We close this section by considering alternative explanations for the results in Table 5. Village-level tax revenue in 1871 measures pre-modern aggregate wealth and contemporaneous levels of economic development. Historical conditions could potentially determine nutritional status today through a variety of independent channels. A second alternative argument posits that ancestral income proxies for poorly

\(^{46}\)As with the district level analysis, the coefficient on ancestral income below the threshold is smaller than the coefficient on current income above the threshold. Although the village-level measure of ancestral income does reduce measurement error, relative to the district-level measure, it does not eliminate it entirely.

\(^{47}\)This result is also robust to a more flexible nonparametric specification of the $g(R)$ function (not reported). The advantage of the parametric specification is that we can test for joint significance of the R terms in the estimating equation that is used to construct ancestral income.
measured current income at low income levels. However, any alternative mechanism must explain why
the ancestral income effect is entirely absent above the threshold or, for that matter, why the precisely
estimated current income effect above the threshold disappears entirely below the threshold. These
patterns cannot be explained without an underlying discontinuity, which is not present with historical
persistence or with measurement error, and they continue to hold in Appendix Table A11 even when
ancestral income and current income are included separately in piecewise linear equations. Ancestral
income continues to determine nutritional status below (but not above) the threshold, whereas the converse
is true with current income.\footnote{We include ancestral income and current income, above and below the threshold, in Tables 3 and 5 to avoid the possibility that one variable simply proxies for the other. This is because ancestral income and current income are correlated by construction.}

6 Cross-Regional Implications

The nutrition-income puzzle that Deaton (2007) uncovered is that nutritional status in South Asia is
lower than what would be predicted by GDP per capita, whereas the reverse is true for Africa. To
explain this stylized fact through the lens of our set point model, consider a variant of the model that
is adapted to a cross-country setting with aggregate data. We make the following assumptions: (i) A
fixed fraction of the population, π, remains within its set point in each country, j, in the current time
period, t. This simplifying assumption is evidently at odds with the preceding results and we will discuss
the consequences of relaxing it below. (ii) Log income, $y_j^t \sim N(\mu_j^t, \sigma_j^2)$. (iii) Each dynasty in country j
has the same income, y_{j0}^t, in the initial period, 0. Given these assumptions, and taking advantage of the
properties of the normal distribution, equation (3) implies that average BMI in country j in the current
period, z_j^t, can be expressed as a weighted average of initial income, y_{j0}^t, and average current income, μ_j^t
(the derivation is in the Appendix):

$$z_j^t = a + b \left[\pi y_{j0}^t + (1 - \pi) \left(\mu_j^t + \sigma_j \phi \left[\Phi^{-1}(\pi; 0, 1); 0, 1 \right] \right) \right]$$

(11)

Taking expectations conditional on μ_j^t, $E(z_j^t | \mu_j^t)$ is increasing in $E(y_{j0}^t | \mu_j^t)$. Looking back at Figure 11, if
we drew a horizontal line through the figure at any level of current (average) income, it is evident that
historical heights (which proxy for historical incomes) would be higher for African countries. $E(y_{j0}^t | \mu_j^t)$
is higher in Africa, which implies that $E(z_j^t | \mu_j^t)$ is higher in Africa from equation (11). The qualifier to
this hypothesis is that a greater fraction of Asian populations have escaped their set point; i.e. π is not
constant, but is in fact smaller for Asian countries. Given that $\mu_j^t > y_{j0}^t$, this adjustment will weaken
the preceding hypothesis. Keeping this in mind, we plot average BMI against current GDP per capita in
Figure 16. Drawing a vertical line through the figure at any level of current income, BMI is indeed higher
in African countries than in Asian countries. The same result (not reported) would be obtained if we
replaced adult BMI with the fraction of children that are (not) stunted or with adult height (the measure
used by Deaton). Our model, based on a biological friction, is able to explain the well documented
differences in nutritional status, conditional on income, between South Asia and Africa. Indeed, it can explain the wider difference between Africa and Asia, not just South Asia, as observed in Figure 16.

Although other mechanisms have been proposed to explain Deaton’s puzzle, an appealing feature of our mechanism, based on a biologically determined set point is that it also has implications for the emergence of metabolic diseases during the process of economic development. The micro evidence, presented above, indicates that the risk of these diseases increases when (normal weight) individuals escape the nutrition trap. While we expect to observe this phenomenon in any developing economy, the prevalence of metabolic disease at a particular point in time will depend on the fraction of the population that has escaped the nutrition trap, together with the mismatch between current income and historical income for those who have escaped. We would expect these conditions to vary across populations, and the literature has indeed identified large differences in the prevalence of diabetes and related metabolic conditions. As with the nutrition literature, South Asians have received disproportionate attention. While diabetes was virtually nonexistent in South Asia until a few decades ago, rapid economic growth in India in particular has been accompanied by a substantial increase in the prevalence of the disease among normal weight adults (Ramachandran, 2005; Narayan, 2016, 2017).

Making the same assumptions as above, the aggregate version of the disease-income relationship specified in equation (4) can be expressed as:

$$D_t^j = \gamma_1 + \gamma_2 (1 - \pi) \left[\mu_t^j + \sigma_t \frac{\phi^{-1}(\pi; 0, 1); 0, 1}{1 - \pi} - y_0^j \right],$$

(12)

where D_t^j is the fraction of the population in country j in the current period t that has contracted metabolic disease and $(1 - \pi)$ is the fraction of the population that has escaped the nutrition trap and is at elevated risk of the disease. The term in square brackets in the preceding equation measures the
average mismatch between current income and historical income (which determines the pre-modern set point) for individuals who have escaped the nutrition trap. As in equation (4), the risk of metabolic disease is increasing in this mismatch, whereas the risk is constant below the threshold.

Taking expectations conditional on average BMI, \(z_j^t \), in equation (12), \(E(D_j^t | z_j^t) \) is increasing in \(E(\mu_j^t - y_0^j | z_j^t) \). Recall from Figure 11 that for any level of average current income, \(\mu_j^t \), average historical income, \(y_0^j \), is higher in African countries than in Asian countries. We know from equation (11) that \(z_j^t \) is a weighted average of \(\mu_j^t \) and \(y_0^j \). Thus, if an African and Asian country have the same average BMI, then the Asian country must have higher \(\mu_j^t \) and lower \(y_0^j \). Based on this argument, \(E(\mu_j^t - y_0^j | z_j^t) \) is higher in Asia than in Africa and, hence, \(E(D_j^t | z_j^t) \) must be higher as well. This prediction is reinforced by the fact that a larger fraction of Asian populations have escaped the nutrition trap; i.e. \((1 - \pi) \) is larger for Asian countries in equation 12.

Figure 17 tests the preceding prediction by plotting diabetes prevalence against average BMI across countries. Drawing a vertical line through the figure at any BMI level, diabetes is higher in Asian countries than in African countries. Notice that while India is somewhat of an outlier in the figure, other Asian countries are even bigger outliers and not all of them are South Asian. Although the diabetes literature has tended to focus on South Asians as a particularly vulnerable group, our analysis, as with the analysis of the nutritional status - income relationship, indicates that inter-regional differences in diabetes prevalence extend to the Asian continent as a whole.

7 Conclusion

This paper provides a single explanation for two seemingly unrelated stylized facts: (i) the relatively weak relationship between nutritional status (BMI, height) and income in developing countries, and (ii) the
increased prevalence of metabolic disease (diabetes, hypertension, cardiovascular disease) among normal
weight individuals with economic development. Our explanation is based on a set point for body weight or
BMI, which is adapted to economic conditions in the pre-modern economy, but which fails to subsequently
adjust to rapid economic change. This implies that during the process of development, the population
will be divided into two distinct groups: Individuals in the first group remain at their set point BMI,
despite the increase in their consumption, and are (partly) responsible for the weak relationship between
nutritional status and current income. Individuals in the second group, who have escaped the nutrition
trap, but are not necessarily overweight, are the primary contributors to the increased risk of metabolic
disease.

To provide support for the preceding argument, we develop a model of nutrition and health that
incorporates an individual-specific set point. A notable feature of the model is that it generates predictions
for the cross-sectional nutritional status-income and metabolic disease-income relationships that can be
tested without knowledge of the set point. These predictions are validated with micro-data from multiple
countries; India, Indonesia, and Ghana. Additional tests verify the biological assumptions underlying the
model: (i) the body will defend its set point up to a threshold, and (ii) the set point in developing country
populations is determined by ancestral (pre-modern) income. To complete the analysis, the model is
adapted to aggregate data, allowing us to simultaneously explain why nutritional status in Africa (Asia)
is higher (lower) than what would be predicted by current GDP per capita, as well as why there is higher
prevalence of diabetes, for given BMI, in Asian versus African countries.

Our structural estimates and accompanying counter-factual simulations for India, a country where
both stylized facts have been well documented, indicate that stunting among 5-19 year olds would have
dropped by 30% and the fraction of underweight adults (with BMI below 18.5) in the population would
have declined by 50% in the absence of a set point. Malnutrition is associated with physical and cog-
nitive under-development among children and physiological and psychological impairment among adults
(Dasgupta and Ray, 1986; Dasgupta, 2013). While nutrition programs are an obvious solution to this
problem, it has been observed that such programs are often ineffective among older children (Schroeder
et al., 1995; Victora et al., 2008). Our analysis provides an explanation for this finding; once the set
point has been fixed, nutrition interventions will only be successful if they are intense enough to move
individuals out of their set point and then remain permanently in place. Such interventions among older
children will also need to account for their potentially negative consequences for (future) chronic disease.
A more promising approach, which has received experimental support (Ford et al., 2018), would be to
invest in early childhood interventions. By shifting the set point, these interventions will have a larger
effect on adult nutritional status, while simultaneously reducing the future risk of metabolic disease.

By heavily investing in early childhood nutrition programs, developing countries may be able to reduce
the future burden of metabolic disease in younger cohorts. However, the prospects for older cohorts, who
are locked into the pre-modern set point, are less promising. An increasing fraction of these cohorts
will escape the nutrition trap in the coming decades, with an accompanying increase in the prevalence
of metabolic disease. It is imperative that governments in developing countries take adequate steps to
improve the prevention and treatment of these conditions. Screening will be an important component of these public health programs, and successful screening requires the at-risk population to be accurately identified. It has been recommended that the lower bound for the overweight range in Asian populations be reduced from 25 to 23, to account for the fact that these populations are at elevated risk of metabolic disease at lower BMI (Deurenberg-Yap et al., 2002; Pan et al., 2004). However, this recommendation is not based on rigorous statistical analysis. In our model, BMI is increasing with income at all levels, more steeply above a threshold, whereas the risk of metabolic disease is only increasing in income above the threshold. If income heterogeneity is the source of forcing variation, then this implies that there will be no relationship between metabolic disease and BMI up to a threshold (which corresponds to an underlying income threshold) and a positive relationship thereafter. Figure 18 verifies this prediction with IHDS all-India and IHDS South India data, after partialling out the standard set of covariates. The vertical line marks the spot where the (precisely estimated) thresholds are located, which is at an extremely low BMI of 21.8 for all-India and 20.6 for South India. To put these findings in perspective, 9.3% of adult Indians have a BMI in the 22-23 range and 24.9% of South Indians have a BMI in the 20.5-23 range. Our analysis indicates that the public health challenge faced by countries like India, which will need to successfully navigate the nutrition-disease tradeoff over the next couple of generations, may be even greater than what is currently envisaged.

References

46

Table A1: Piecewise Linear Equation Estimates (period-specific income)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>adult BMI (3)</th>
<th>metabolic disease (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope</td>
<td>-0.032</td>
<td>-0.009</td>
<td>0.183**</td>
<td>0.0021</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.039)</td>
<td>(0.034)</td>
<td>(0.0014)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.334**</td>
<td>0.179**</td>
<td>0.856**</td>
<td>0.036**</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.038)</td>
<td>(0.052)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.30 [1.00, 1.85]</td>
<td>1.40 [1.20, 1.70]</td>
<td>1.80 [1.65, 1.85]</td>
<td>2.20 [2.05, 2.35]</td>
</tr>
<tr>
<td>Threshold test $p-$value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.991</td>
<td>-1.652</td>
<td>21.996</td>
<td>0.074</td>
</tr>
<tr>
<td>N</td>
<td>21,533</td>
<td>46,538</td>
<td>76,189</td>
<td>147,480</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)

Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease.

Logarithm of household income, measured in each survey year, is the independent variable.

The standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies are included in the estimating equation.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.

Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.

significant at 5%, based on cluster bootstrapped confidence intervals.
Table A2: Piecewise Linear Equation Estimates (outcomes restricted to IHDS 2011-2012)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>adult BMI (3)</th>
<th>metabolic disease (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.071 (0.117)</td>
<td>0.045 (0.049)</td>
<td>0.294** (0.068)</td>
<td>-0.001 (0.003)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.345** (0.115)</td>
<td>0.188** (0.048)</td>
<td>0.862** (0.078)</td>
<td>0.036** (0.005)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.30 [0.70, 1.95]</td>
<td>1.55 [1.20, 2.10]</td>
<td>1.60 [1.50, 1.80]</td>
<td>1.90 [1.65, 2.05]</td>
</tr>
<tr>
<td>Threshold test $p-$value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.900</td>
<td>-1.578</td>
<td>22.189</td>
<td>0.098</td>
</tr>
<tr>
<td>N</td>
<td>10,362</td>
<td>35,764</td>
<td>53,006</td>
<td>74,166</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)

Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease. Logarithm of household income is the independent variable.

The standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies are included in the estimating equation.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses. Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.

** significant at 5%, based on cluster bootstrapped confidence intervals.
Table A3: Piecewise Linear Equation Estimates (adult education and household composition included as additional covariates)

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>HFA 0-59 (1)</th>
<th>HFA 5-19 (2)</th>
<th>adult BMI (3)</th>
<th>metabolic disease (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.022 (0.079)</td>
<td>0.039 (0.073)</td>
<td>0.281** (0.052)</td>
<td>0.003 (0.002)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.264** (0.080)</td>
<td>0.130** (0.071)</td>
<td>0.516** (0.069)</td>
<td>0.014** (0.003)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>[1.40, 2.25]</td>
<td>[1.50, 2.10]</td>
<td>[1.80, 1.95]</td>
<td>[1.95, 2.30]</td>
</tr>
<tr>
<td>Threshold test $p-$value</td>
<td>0.002</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.991</td>
<td>-1.649</td>
<td>22.002</td>
<td>0.074</td>
</tr>
<tr>
<td>N</td>
<td>21,634</td>
<td>48,845</td>
<td>76,949</td>
<td>148,928</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)
Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease. Logarithm of household income is the independent variable.
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies are included in the estimating equation.
Additional covariates include dummies for the number of adults, teens, and children in the household, dummies for the number of individuals engaged in manual labor, and dummies for the highest education of adult females and males.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.
** significant at 5%, based on cluster bootstrapped confidence intervals.
Table A4: Piecewise Linear Equation Estimates (nutritional status and metabolic disease, separately for men and women)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>adult BMI</th>
<th>metabolic disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>men</td>
<td>women</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Baseline slope (β_1)</td>
<td>0.342**</td>
<td>0.225**</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.877**</td>
<td>0.980**</td>
</tr>
<tr>
<td></td>
<td>(0.112)</td>
<td>(0.079)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.50</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>[1.25, 1.65]</td>
<td>[1.60, 1.85]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>21.854</td>
<td>22.060</td>
</tr>
<tr>
<td>N</td>
<td>20,596</td>
<td>56,044</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)

Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease.

Logarithm of household income is the independent variable.

The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group, rural-urban dummy, and district dummies are included in the estimating equation.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.

Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.

** significant at 5%, based on cluster bootstrapped confidence intervals.
Table A5: Piecewise Linear Equation Estimates (alternative nutritional status measures)

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>WFA 0-59 (1)</th>
<th>WFA 5-19 (2)</th>
<th>adult Height (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>-0.053</td>
<td>-0.004</td>
<td>0.191</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.033)</td>
<td>(0.135)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.287**</td>
<td>0.331**</td>
<td>0.836**</td>
</tr>
<tr>
<td></td>
<td>(0.059)</td>
<td>(0.041)</td>
<td>(0.144)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.30</td>
<td>1.75</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>[1.05, 2.15]</td>
<td>[1.50, 2.00]</td>
<td>[1.30, 1.70]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>-1.512</td>
<td>-1.634</td>
<td>154.483</td>
</tr>
<tr>
<td>N</td>
<td>24,843</td>
<td>23,030</td>
<td>77000</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)

Logarithm of household income is the independent variable.
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), birth order (for the children), caste group, rural-urban dummy, and district dummies are included in the estimating equation.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.
** significant at 5%, based on cluster bootstrapped confidence intervals.
Figure A1: Metabolic diseases (separately) with respect to income

(a) Hypertension/Diabetes

(b) Cardiovascular disease

Source: India Human Development Survey (IHDS)
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group, rural-urban dummy, and district
dummies are partialled out prior to nonparametric estimation.
The vertical lines mark the estimated threshold locations and the shaded regions demarcate the corresponding cluster
bootstrapped 95% confidence intervals.

Table A6: Piecewise Linear Equation Estimates (hypertension and diabetes)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Hypertension (1)</th>
<th>Diabetes (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline slope (β_1)</td>
<td>0.001 (0.002)</td>
<td>0.001 (0.001)</td>
</tr>
<tr>
<td>Slope change (β_2)</td>
<td>0.018** (0.003)</td>
<td>0.017** (0.002)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.95 [1.75, 2.15]</td>
<td>1.95 [1.85, 2.15]</td>
</tr>
<tr>
<td>Threshold test p–value</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Mean of dependent variable</td>
<td>0.049</td>
<td>0.027</td>
</tr>
<tr>
<td>N</td>
<td>147,858</td>
<td>147,684</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)
Logarithm of household income is the independent variable.
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group, rural-urban dummy, and
district dummies are included in the estimating equation and for the threshold test.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
Cluster bootstrapped 95% confidence bands for the threshold location are in brackets.
** significant at 5%, based on cluster bootstrapped confidence intervals.
Figure A2: Nutritional Status and Metabolic Disease with respect to Income (Indonesia and Ghana)

(a) Threshold tests (Indonesia)

(b) Threshold test (Ghana)

Source: Indonesia Family Life Survey (IFLS), Ghana Socioeconomic Panel Survey (GSPS)
The following covariates: gender, age (linear, quadratic, and cubic terms), ethnicity (Indonesia) or tribe (Ghana),
rural-urban dummy, and district dummies are included in the estimating equation at each assumed threshold for the
threshold test.
Indonesia: bootstrapped 5% critical values, clustered at the sub-regency level. Ghana: bootstrapped 5% critical values,
clustered by enumeration area.

Table A7: Piecewise Linear Equation Estimates (Indonesia and Ghana)

<table>
<thead>
<tr>
<th>Sample country:</th>
<th>Indonesia</th>
<th>Ghana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
<td>adult BMI</td>
<td>metabolic disease</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Slope below ((\beta_L))</td>
<td>0.067</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Slope above ((\beta_H))</td>
<td>0.398**</td>
<td>0.022**</td>
</tr>
<tr>
<td></td>
<td>(0.069)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Threshold location</td>
<td>6.10</td>
<td>6.00</td>
</tr>
<tr>
<td></td>
<td>[5.80, 6.65]</td>
<td>[4.55, 6.50]</td>
</tr>
<tr>
<td>Threshold test (p - value)</td>
<td>0.000</td>
<td>0.004</td>
</tr>
<tr>
<td>Dep. var. mean</td>
<td>23.532</td>
<td>0.181</td>
</tr>
<tr>
<td>N</td>
<td>30,812</td>
<td>24,788</td>
</tr>
</tbody>
</table>

Source: Indonesia Family Life Survey (IFLS), Ghana Socioeconomic Panel Survey (GSPS)
Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension,
or cardiovascular disease.
Logarithm of household income is the independent variable.
The following covariates: gender, age (linear, quadratic, and cubic terms), ethnicity (Indonesia) or
tribe (Ghana), rural-urban dummy, and district dummies are included in the estimating equation.
Bootstrapped standard errors, clustered at the sub-regency level for Indonesia and by enumeration
area for Ghana, are in parentheses.
Cluster Bootstrapped 95% confidence bands for the threshold location are in brackets.
** significant at 5%, *** at 1%, based on cluster bootstrapped confidence intervals.
Figure A3: Relationship between Predicted Income and Current Income

Table A8: Nutritional Status - Income Relationship (robustness tests)

<table>
<thead>
<tr>
<th></th>
<th>adult BMI</th>
<th>CSI based on 18 crops</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>state-specific quadratic function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>below threshold</td>
<td>above threshold</td>
</tr>
<tr>
<td>Sample:</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Ancestral income</td>
<td>0.497***</td>
<td>0.203</td>
</tr>
<tr>
<td></td>
<td>(0.139)</td>
<td>(0.158)</td>
</tr>
<tr>
<td>Current income</td>
<td>0.175***</td>
<td>0.860***</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Prediction F–statistic</td>
<td>52.374</td>
<td>52.374</td>
</tr>
<tr>
<td></td>
<td>[0.000]</td>
<td>[0.000]</td>
</tr>
<tr>
<td>Threshold location</td>
<td>1.65</td>
<td>1.65</td>
</tr>
<tr>
<td>Dep. var. mean</td>
<td>20.479</td>
<td>21.844</td>
</tr>
<tr>
<td>N</td>
<td>26,871</td>
<td>19,693</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS)
The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group, rural-urban dummy, and district dummies are included in the estimating equation.
Prediction F–statistic measures the joint significance of the CSI terms in the estimating equation (10) that is used to construct ancestral income.
Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.
* significant at 10%, ** at 5%, *** at 1%, based on cluster bootstrapped confidence intervals.
Table A9: Metabolic Disease - Income Relationship (robustness tests)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>metabolic disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(CSI) specification:</td>
<td>state-specific quadratic function</td>
</tr>
<tr>
<td>Independent variable:</td>
<td>income mismatch</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Slope below</td>
<td>-0.001</td>
</tr>
<tr>
<td>(0.002)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Slope above</td>
<td>0.018***</td>
</tr>
<tr>
<td>(0.004)</td>
<td>(0.009)</td>
</tr>
</tbody>
</table>

\(F\)-statistic

\(H_0 \): slope below = slope above

\[22.672\] \[0.000\] \[24.549\] \[0.000\]

\[0.052\] \[0.820\] \[0.072\] \[0.788\]

Prediction \(F\)-statistic

\[52.37\] \[0.000\] \[3.32\] \[0.000\]

\[52.37\] \[0.000\] \[3.32\] \[0.000\]

Threshold location

| Dependent variable mean | 1.90 | 1.90 | 1.90 | 1.90 |
| N | 89,126 | 89,126 | 89,126 | 89,126 |

Source: India Human Development Survey (IHDS)

Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease. The standard set of covariates: gender, age (linear, quadratic, and cubic terms), caste group, rural-urban dummy, and district dummies are included in the estimating equation.

Prediction \(F\)-statistic measures the joint significance of the CSI terms in the estimating equation (10) that is used to construct ancestral income.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.

* significant at 10%, ** at 5%, *** at 1%, based on cluster bootstrapped confidence intervals.
Figure A4: Threshold Tests - Nutritional Status and Metabolic Disease (IHDS and SICHS)

Source: India Human Development Survey (IHDS), South India Community Health Study (SICHS)

The following covariates: gender, age (linear, quadratic, and cubic terms), caste group and (for IHDS) rural-urban dummy and district dummies are included in the estimating equation at each assumed threshold for the threshold test. Cluster bootstrapped 5% critical values are used to bound the threshold location.

Table A10: Piecewise Linear Equation Estimates – Nutrition Status and Metabolic Disease (South India)

<table>
<thead>
<tr>
<th>Source:</th>
<th>IHDS</th>
<th>SICHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variable:</td>
<td>adult BMI</td>
<td>metabolic disease</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Slope below (β_L)</td>
<td>0.200**</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.112)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Slope above (β_H)</td>
<td>0.803**</td>
<td>0.029**</td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
<td>(0.008)</td>
</tr>
<tr>
<td>Threshold location (γ)</td>
<td>1.70</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>[1.50, 1.95]</td>
<td>[1.75, 2.25]</td>
</tr>
<tr>
<td>Threshold test p-value</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Dep. var. mean</td>
<td>22.186</td>
<td>0.074</td>
</tr>
<tr>
<td>N</td>
<td>22,316</td>
<td>41,198</td>
</tr>
</tbody>
</table>

Source: India Human Development Survey (IHDS), South India Community Health Study (SICHS)

Metabolic disease indicates whether the individual has been diagnosed with diabetes, hypertension, or cardiovascular disease. The following covariates: gender, age (linear, quadratic, and cubic terms), caste group and (for IHDS) rural-urban dummy and district dummies are included in the estimating equation.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.

** significant at 5%, based on cluster bootstrapped confidence intervals
Table A11: Nutritional Status - Income Relationship (SICHS)

| Dependent variable: | adult BMI | | | |
|---------------------|-----------|-----------|-----------|
| Independent variable: | current income | ancestral income | ancestral income |
| | | (quadratic \(g(R)\) function) | (cubic \(g(R)\) function) |
| Slope below | 0.072 | 0.374*** | 0.346** |
| | (0.161) | (0.129) | (0.124) |
| Slope above | 0.773*** | 0.014 | -0.029 |
| | (0.101) | (0.126) | (0.125) |
| Prediction \(F\)–statistic | – | 6.92 | 10.05 |
| Threshold location | 1.69 | 1.69 | 1.69 |
| Dependent var. mean | 23.449 | 23.524 | 23.524 |
| N | 7,634 | 5,654 | 5,654 |

Source: South India Community Health Study (SICHS)

The following covariates: gender, age (linear, quadratic, and cubic terms), and caste group are included in the estimating equation.

Prediction \(F\)–statistic measures the joint significance of the CSI terms in the estimating equation (10) that is used to construct ancestral income.

Bootstrapped standard errors, clustered at the level of the primary sampling unit, are in parentheses.

* significant at 10%, ** at 5%, *** at 1%, based on cluster bootstrapped confidence intervals.
B Mathematical Appendix

Proof of Proposition 1: We first derive closed-form expressions for $e^L(y_t)$, $e^H(y_t)$. Focusing on the numerator of the $e^L(y_t)$ expression in (5), we can write

$$
\int_{-\infty}^{y_t} U_t \phi(U_t; \mu_t, \sigma_t^2) \, dU_t = \int_{-\infty}^{y_t} U_t \frac{1}{\sqrt{2\pi}\sigma_t} \exp \left[-\frac{1}{2} \left(\frac{U_t - \mu_t}{\sigma_t} \right)^2 \right] \, dU_t
$$

$$
= \int_{-\infty}^{y_t} \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(\mu_t - \sigma_t x_t + \mu_t \right)^2 \right] \, dx_t
$$

where the second equality comes from the substitution $x_t = \frac{U_t - \mu_t}{\sigma_t}$. The last equality can be written as

$$
\mu_t \Phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right) - \sigma_t \phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right)
$$

given that $\frac{d\phi(x_t;0,1)}{dx_t} = -x_t \phi(x_t;0,1)$. A similar transformation of $\Phi(y_t;\mu_t,\sigma_t^2)$ in the denominator of the $e^L(y_t)$ expression in (5) gives us the closed-form expression for $e^L(y_t)$ in equation (7). The corresponding expression for $e^H(y_t)$ in equation (8) is derived by replacing y_t with α in the upper limit for integration.

To establish that the slope of the BMI-income relationship is positive but less than b below the threshold, substitute the expression for $e^L(y_t)$ from equation (7) in equation (5) and differentiate with respect to y_t. Given the properties of the inverse Mill’s ratio,

$$
\frac{dE(z_t|y_t,y_t \leq \alpha)}{dy_t} = b \left[1 + \Lambda' \left(\frac{y_t - \mu_t}{\sigma_t} \right) \right] \in (0,b)
$$

Further, to demonstrate that the slope of the BMI-income relationship above the threshold is greater than b, observe from the expression for $e^H(y_t)$ in equation (8), that the numerator is independent of y_t and the denominator is increasing in y_t. Hence, $\frac{dE^H(y_t)}{dy_t} < 0$, which implies $\frac{dE(z_t|y_t,y_t > \alpha)}{dy_t} > b$.

Note, from equations (7) and (8), that $e^L(y_t) = e^H(y_t)$ at $y_t = \alpha$, and thus, from equations (5) and (6), there is no level discontinuity at the threshold. To prove that there is, nevertheless, a slope discontinuity at the threshold, $y_t = \alpha$, we need to show that

$$
\lim_{y_t \downarrow \alpha} \frac{dE(z_t|y_t,y_t \leq \alpha)}{dy_t} \neq \lim_{y_t \downarrow \alpha} \frac{dE(z_t|y_t,y_t > \alpha)}{dy_t}
$$

From equations (5) and (6), a necessary and sufficient condition for the preceding inequality to be satisfied is that $\frac{dE^L(y_t)}{dy_t} \neq \frac{dE^H(y_t)}{dy_t}$ at $y_t = \alpha$. Using equations (7) and (8), it can be established that this is indeed the case. For this result, first denote $v_t = \frac{y_t - \mu_t}{\sigma_t}$. From equation (7), $e^L(y_t) = \frac{\mathcal{L}(v_t)}{\phi(v_t;0,1)}$, where $\mathcal{L}(v_t) = \mu_t \Phi(v_t;0,1) - \sigma_t \phi(v_t;0,1)$. From equation (8), $e^H(y_t) = \frac{\mathcal{L}(\tau)}{\Phi(v_t;0,1)}$, where $\tau = \frac{\alpha - \mu_t}{\sigma_t}$. Given that the denominator and the numerator (evaluated at $y_t = \alpha$) of the $e^L(y_t), e^H(y_t)$ expressions are the same, a necessary condition for $\frac{dE^L(y_t)}{dy_t} \neq \frac{dE^H(y_t)}{dy_t}$ is that $\frac{d\mathcal{L}(v_t)}{dy_t} \neq \frac{d\mathcal{L}(\tau)}{dy_t}$ at $y_t = \alpha$. $\frac{d\mathcal{L}(v_t)}{dy_t} = 0$. From the property of the standard normal distribution, $\phi'(v_t;0,1) = -v_t \phi(v_t;0,1)$, and, hence, $\frac{d\mathcal{L}(v_t)}{dy_t} \bigg|_{y_t=\alpha} = \frac{\alpha - \mu_t}{\sigma_t} \phi(\tau;0,1) > 0$.

61
Proof of Proposition 2: From equation (4),

\[P(D_t | y_t, y_t \leq \alpha) = \int_{-\infty}^{y_t} \gamma_1 \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t = \gamma_1 \] (13)

\[P(D_t | y_t, y_t > \alpha) = \int_{-\infty}^{\alpha} \gamma_1 \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t + \int_{\alpha}^{y_t} \left(\gamma_1 + \gamma_2 U_t \right) \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t \]

\[= \gamma_1 + \gamma_2 \int_{\alpha}^{y_t} U_t \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2)} \, dU_t \]

Following the same steps that we used to derive the expression for \(e^L(y_t) \) in (7), we can write

\[P(D_t | y_t, y_t > \alpha) = \gamma_1 + \gamma_2 \left[\mu_t - \sigma_t \lambda \left(\frac{y_t - \mu_t}{\sigma_t} \right) - \frac{\mu_t \Phi \left(\frac{y_t - \mu_t}{\sigma_t} ; 0, 1 \right) - \sigma_t \Phi \left(\frac{y_t - \mu_t}{\sigma_t} ; 0, 1 \right)}{\Phi \left(\frac{y_t - \mu_t}{\sigma_t} ; 0, 1 \right)} \right] \] (14)

From equation (13), \(\frac{dP(D_t | y_t, y_t \leq \alpha)}{dy_t} = 0 \) and from equation (14), \(\frac{dP(D_t | y_t, y_t > \alpha)}{dy_t} > 0 \) because \(\Lambda'() < 0 \) and \(\Phi \left(\frac{y_t - \mu_t}{\sigma_t} ; 0, 1 \right) \) is increasing in \(y_t \). This also establishes that there is a slope discontinuity at \(y_t = \alpha \).

Further, substituting \(y_t = \alpha \) in equation (14) eliminates the term inside square brackets, implying that there is no level discontinuity at \(y_t = \alpha \).

Proposition 1 with an upper bound on \(y_0 \): Assume that the period 0 income has both lower and upper bounds i.e. \(y_0 \in [0, \overline{y}_0] \). Hence the range of \(U_t \) for any given value of \(y_t \) is \([y_t - \overline{y}_0, \overline{y}_0]\). The mean BMI at any \(y_t \), for \(y_t \leq \alpha \), is given by

\[\mathbb{E}(z_t | y_t, y_t \leq \alpha) = \int_{y_t - \overline{y}_0}^{y_t} [a + b(y_t - U_t)] \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2) - \Phi(y_t - \overline{y}_0; \mu_t, \sigma_t^2)} \, dU_t \]

\[= a + b y_t - b \int_{y_t - \overline{y}_0}^{y_t} U_t \frac{\phi(U_t; \mu_t, \sigma_t^2)}{\Phi(y_t; \mu_t, \sigma_t^2) - \Phi(y_t - \overline{y}_0; \mu_t, \sigma_t^2)} \, dU_t \]

\[= a + b(y_t - \overline{e}^L(y_t)) \]

where \(\overline{e}^L(y_t) \) corresponds to \(e^L(y_t) \) in the model without an upper bound on \(y_0 \). Following the same steps as in the proof of Proposition 1 above:

\[\overline{e}^L(y_t) = \mu_t - \sigma_t \left[\frac{\phi \left(\frac{y_t - \mu_t}{\sigma_t} ; 0, 1 \right) - \phi \left(\frac{y_t - \overline{y}_0 - \mu_t}{\sigma_t} ; 0, 1 \right)}{\Phi \left(\frac{y_t - \mu_t}{\sigma_t} ; 0, 1 \right) - \Phi \left(\frac{y_t - \overline{y}_0 - \mu_t}{\sigma_t} ; 0, 1 \right)} \right] \] (15)

For \(y_t > \alpha \) there are two cases: (i) \(y_t \in [\alpha, \overline{y}_0 + \alpha] \) and (ii) \(y_t > \overline{y}_0 + \alpha \). In the first case, at each level of \(y_t \), there are two types of individuals: those who remain at their set point and those who have crossed the
threshold. The mean BMI at any y_t, for $y_t \in [\alpha, \bar{y}_0 + \alpha]$, is thus described by the following expression:

$$
E(z_t|y_t \in [\alpha, \bar{y}_0 + \alpha]) = \int_{y_t - \bar{y}_0}^{\alpha} [a + b(y_t - U_t)] \frac{\phi(U_t; \mu_t, \sigma^2_t)}{\Phi(y_t - \bar{y}_0; \mu_t, \sigma^2_t)} dU_t
+ \int_{y_t - \bar{y}_0}^{y_t} [a + b(y_t)] \frac{\phi(U_t; \mu_t, \sigma^2_t)}{\Phi(y_t - \bar{y}_0; \mu_t, \sigma^2_t)} dU_t
= a + b(y_t - \bar{y}_0)
$$

where $\pi^H(y_t)$ corresponds to $e^H(y_t)$ in the model without an upper bound. As above, this expression can be simplified as

$$
\pi^H(y_t) = \frac{\mu_t \left[\Phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right) - \Phi \left(\frac{\bar{y}_0 - \mu_t}{\sigma_t}; 0, 1 \right) \right] - \sigma_t \left[\phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right) - \phi \left(\frac{\bar{y}_0 - \mu_t}{\sigma_t}; 0, 1 \right) \right]}{\Phi \left(\frac{\bar{y}_0 - \mu_t}{\sigma_t}; 0, 1 \right) - \Phi \left(\frac{\bar{y}_0 - \mu_t}{\sigma_t}; 0, 1 \right)}
$$

(16)

For $y_t > \bar{y}_0 + \alpha$, everyone has escaped the set point. Hence, the mean BMI at any y_t is

$$
E(z_t|y_t > \bar{y}_0 + \alpha) = \int_{\alpha}^{\infty} (a + b(y_t)) \frac{\phi(U_t; \mu_t, \sigma^2_t)}{1 - \Phi(\alpha; \mu_t, \sigma^2_t)} dU_t
= a + b(y_t)
$$

Proposition 2 with an upper bound on y_0: For $y_t \leq \alpha$,

$$
P(D_t|y_t, y_t \leq \alpha) = \int_{y_t - \bar{y}_0}^{y_t} \gamma_1 \frac{\phi(U_t; \mu_t, \sigma^2_t)}{\Phi(y_t - \bar{y}_0; \mu_t, \sigma^2_t)} dU_t
= \gamma_1
$$

For $y_t \in [\alpha, \bar{y}_0 + \alpha]$,

$$
P(D_t|y_t, y_t \in [\alpha, \bar{y}_0 + \alpha]) = \int_{y_t - \bar{y}_0}^{\alpha} \gamma_1 \frac{\phi(U_t; \mu_t, \sigma^2_t)}{\Phi(y_t - \bar{y}_0; \mu_t, \sigma^2_t)} dU_t + \int_{\alpha}^{y_t} (\gamma_1 + \gamma_2 U_t) \frac{\phi(U_t; \mu_t, \sigma^2_t)}{\Phi(y_t - \bar{y}_0; \mu_t, \sigma^2_t)} dU_t
= \gamma_1 + \gamma_2 \int_{\alpha}^{\bar{y}_0} U_t \frac{\phi(U_t; \mu_t, \sigma^2_t)}{\Phi(y_t - \bar{y}_0; \mu_t, \sigma^2_t)} dU_t
$$

63
Solving the integral,

\[
P(D_t|y_t, y_t \in [\alpha, y_0 + \alpha]) = \gamma_1 + \gamma_2 \left[\frac{\mu_t}{1 - \Phi(\alpha; \mu_t, \sigma_t^2)} \right] - \sigma_t \left[\Phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right) - \Phi \left(\frac{y_0 - \mu_t}{\sigma_t}; 0, 1 \right) \right] - \sigma_t \left[\phi \left(\frac{y_t - \mu_t}{\sigma_t}; 0, 1 \right) - \phi \left(\frac{y_0 - \mu_t}{\sigma_t}; 0, 1 \right) \right]
\]

(17)

For \(y_t > y_0 + \alpha \), as everyone has escaped their set point, we can write,

\[
P(D_t|y_t, y_t > y_0 + \alpha) = \int_{\alpha}^{\infty} (\gamma_1 + \gamma_2 U_t) dU_t = \gamma_1 + \gamma_2 \left[\mu_t + \sigma_t \phi \left(\frac{\alpha - \mu_t}{\sigma_t}; 0, 1 \right) \right]
\]

(18)

which is independent of \(y_t \).

Although analytical results can no longer be derived as in Propositions 1 and 2, expressions (7), (8), (15), (16), (17) and (18) can be used to simulate the relationship between current income and both BMI and the probability of disease. We use the actual income from the IHDS and the estimates of \(\mu_t, \sigma_t \) from the structural estimation exercise reported below for the simulation. The left panel in Figure A5 plots the relationship between BMI and current income, with and without the upper bound on \(y_0 \). In both cases, we observe a slope discontinuity at \(y_t = \alpha \). However, when there is an upper bound on \(y_0 \), we observe another slope discontinuity at \(y_t = y_0 + \alpha \). To the right of this point, BMI varies linearly with current income with slope \(b \), and to the left the slope is greater than \(b \). The right panel in Figure A5 plots the relationship between the risk of metabolic disease and current income, with and without the upper bound on \(y_0 \). There is a slope discontinuity at \(y_t = \alpha \) in both cases. With an upper bound on \(y_0 \), there is, in addition, a level discontinuity at \(y_t = y_0 + \alpha \) and no relationship with \(y_t \) thereafter. In practice, we do not observe a second discontinuity, at a high income level, with either BMI or the risk of metabolic disease as outcomes.

Derivation of the aggregate BMI equation: Let \(y^j_t \) denote the income threshold above which households escape their set point.

\[
\pi = Pr[y^j_t \leq y^j_t] = \Phi(\mu^j_t; \sigma^2_t).
\]

By the property of the normal distribution,

\[
y^j_t = \Phi^{-1}(\pi; \mu^j_t, \sigma^2_t) = \mu^j_t + \sigma_t \Phi^{-1}(\pi; 0, 1).
\]

By the property of the normal distribution, once again, and substituting the expression for \(y^j_t \) derived
above, average income above the threshold can be expressed as:

$$
E[y^t_j | y^t_j < y^j_t < \infty] = \mu^t_j + \sigma_t \left[\frac{\phi \left(\frac{y^t_j - \mu^t_j}{\sigma_t}; 0, 1 \right)}{1 - \Phi \left(\frac{y^t_j - \mu^t_j}{\sigma_t}; 0, 1 \right)} \right] = \mu^t_j + \sigma_t \left[\frac{\phi \left(\Phi^{-1}(\pi; 0, 1); 0, 1 \right)}{1 - \pi} \right]
$$