Adopting the neuroscience of education framework, we intended to bring the neuroscience laboratory inside the neuroscience classroom by studying the brains of students studying the brain.

GOALS

1. **EXAMINE SUBJECTIVE ASSESSMENT OF LEARNING**
2. **EXAMINE RESPONSE ACCURACY TO IN-CLASS POLLS**
3. **EXAMINE GROUP LEVEL NEURAL MARKERS DETECTED IN-CLASS USING EEG**
4. **EXAMINE AUDIO/VISUAL RECORDINGS OF IN-CLASS ACTIVITIES & INSTRUCTION STYLE**
5. **IDENTIFY ASSOCIATIONS BETWEEN MEASURES (1 - 4) BY MEANS OF CORRELATION ANALYSES**

WHAT WE DID & WHAT WE ARE DOING

Post-Class Subjective Assessment of Learning
Associate subjective ratings of learning and engagement with accuracy of group responses

In-Class EEG Data Recording
Associated EEG Markers with subjective ratings of learning and accuracy of responses

In-Class Accuracy of Responses to Polls
Associate objective measures of learning with neural markers of engagement.

In-Class A/V Recordings
Characterize effects of student motion on EEG data and examine engagement.

We show the feasibility of bringing the neuroscience laboratory into the classroom to measure subjective and objective markers of learning and engagement and examine their relationships.

- **Preliminary evidence:** combining subjective and objective measures of student engagement and attention can be leveraged to improve pedagogy.
- **Neuro-DBER:** This project is the first step in the development of Discipline-Based Evidence Research inflected in Neuroscience that holds the potential to provide new insights into the quality of instruction and students engagement.

Funding: 2020 DSI Collaboratory Grant; 2021 Provost's SOLER Seed Grant.

Research Team: Adam Brown (SOLER), Conor Shatto & Isabella Rosario (SPS), Junsheng Shi (DSI), John Thorp (Psychology), Ksenia Rybkina (CMBS), Hui Xiang (Stats), Zhuowei Gu (NYU).

ACKNOWLEDGMENTS