Redesigning an Interdisciplinary Food Course from a Systems Thinking Perspective

Erin Betley1, Eleanor Sterling2, Sharon Akabas1, Jood Ani1, Sarah Bergren1, Vanessa Pizer1, Neha Savant1, Steven Gray3, Alison Singer4, Max Rose Zimberg5

1Center for Biodiversity and Conservation, American Museum of Natural History, New York, USA; 2Ecology, Evolution, and Environmental Biology, Columbia University, New York, USA; 3Columbia University Institute of Human Nutrition, New York, USA; 4Episcopal Relief & Development, New York, USA; 5Michigan State University, College of Agriculture and Natural Resources, East Lansing, USA

Introduction | Food, Ecology, and Globalization

- Taught from 2011-2015 as a broad survey course for science and non-science majors with a focus on the factors that influence food choice and the implications of those choices at many scales.
- Redesigned in 2017 & 2018 to integrate an interdisciplinary perspective on food with a systems thinking lens and turn the following recurrent challenges in the course into opportunities:
 - Students’ varied academic backgrounds
 - Limited process skills such as critical thinking, in many students
 - Students’ difficulty making connections between course content elements, e.g., links between climate change and agriculture

The four main areas of focus for the redesigned course:

Aim 1
Build skills in critical thinking (CT), evaluating claims & assessing evidence

- Students showed improvement in CT skills as demonstrated in the sequence of claims assessment assignments; in the biotechnology course unit; and in their final projects.
- Journal entry quotes:
 - “The course taught me not just topics to think about, but how to think critically and assess claims, in a pedagogical and practical manner”
 - “The journaling process for these claims assessment assignments was one of the better formative learning experiences I have had”

Aim 2
Build skills in systems thinking (ST)

- Analysis of conceptual change over 3-part assignment: Stylized Model. Arrows indicate significant differences (green/increase, red/decrease, p <0.10) from paired sample t test comparing a sub-sample of students models (Part I vs Part II and Part II vs Part III) in terms of structural metrics of the models.
- Journal entry quotes:
 - “I really enjoy the multi-disciplinary approach of ST. It is really cool to be able to learn about so many different facets of one complex system.”
 - “I would like to continue exploring the concept of ST and apply the skills I learned to my professional and academic work.”

Aim 3
Shift to a pedagogical approach where students review preparatory material prior to class and work in small groups in class to deepen their understanding

- 100% of students showed improvement in their pre and post assessments: “It was really helpful to assess my baseline knowledge before watching the information-packed biotechnology video; and satisfying to correct my answers in the post assessment.”
- “This is a great class for practicing working in groups.”
- “I appreciated your providing choices in the assignments for those of us with less training in the sciences.”
- “This is by far my favorite class that I’ve taken at Columbia…. I liked the mix of lectures, group work, readings, and mental mapping.”

Aim 4
Accommodate and embrace different levels of content knowledge

- 45 students
- 20% Students Majors/MA programs
 - Biology
 - Biochemistry
 - Conservation Biology
 - Environmental Biology
 - Evolutionary Biology
 - Sustainable Development
- 80% Student Majors/MA programs
 - Sustainability Management
 - Urban Studies
 - Anthropology
 - Science Journalism
 - Political Science
 - Business Management
 - English Literature

Next Steps

The results from this redesign will inform several initiatives to rethink food systems pedagogy, including:

- A Community of Practice on integrating ST into food systems teaching
- A NSF-funded initiative to research ST learning progressions and assessment dimensions
- Open-access teaching resources developed through the Network of Conservation Educators and Practitioners

Further information

- Network of Conservation Educators and Practitioners (Center for Biodiversity and Conservation at the American Museum of Natural History) https://ncep.amnh.org/
- Mental Modeler software: http://www.mentalmodeler.org/

Acknowledgements

"We’d like to thank Amanda Jungblut for her time and expertise in advising us on this redesign. The material is based upon work supported by the National Science Foundation (NSF) under Grant No. 1749441. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We also received generous support from the Columbia University Office of the Provost, Columbia University Center for Teaching and Learning, Columbia University Institute of Human Nutrition and the Chapman Fellow Foundation."