Cytotoxicity of intracellular A β 42 amyloid oligomers involves Ca²⁺ release from the ER by stimulated production of inositol trisphosphate

Angelo Demuro¹ and Ian Parker^{1,2}

Key words: Alzheimer's disease - calciumopathy

Oligomeric forms of $A\beta$ peptides associated with Alzheimer's disease (AD) disrupt cellular Ca²⁺ regulation by liberating Ca²⁺ into the cytosol from both extracellular and intracellular sources. We elucidated the actions of intracellular Aβ42 by imaging Ca²⁺ responses to injections of Aβ oligomers into *Xenopus* oocytes. Two types of signal were observed: (i) local, 'channel-like' transients dependent on extracellular Ca²⁺ influx, which resembled signals from amlyoid pores formed by extracellular application of oligomers; (ii) local transients and global Ca²⁺ waves, resembling Ca²⁺ puffs and waves mediated by inositol trisphosphate (IP₃). The latter responses were suppressed by antagonists of the IP₃ receptor (caffeine and heparin), by pretreatment with the Gi/o-protein inhibitor pertussis toxin, and by pre-treatment with lithium to deplete membrane inositol lipids. We show that G-protein-mediated stimulation of IP₃ production and consequent liberation of Ca²⁺ from the endoplasmic reticulum by intracellular Aβ oligomers is cytotoxic, potentially representing a novel pathological mechanism in AD which may be further exacerbated by AD-linked mutations in presenilins to promote opening of IP₃ receptor/channels.