Revisiting & Integrating
Compositional Ceramic Datasets
on the Northern Great Plains

Matthew T. Boulanger,
Kacy L. Hollenback, and
Fern Swenson
Brief history of studies
Archaeological Pottery

- Dunn and Kay
 - Extended Middle Missouri
 - Riggs Ware
 - n = 29

- Speakman
 - Terminal Middle Missouri & Coalescent
 - Knife River & LeBeau Wares
 - n = 230

- Nepstad-Thornberry
 - Late Plains Woodland & Initial Middle Missouri
 - Scalp, Ellis, Great Oasis, Sanford, Stuart, Riggs, and Foreman Wares
 - n = 106

- Hollenback et al. (ongoing)
 - Middle–Late Plains Woodland, Northeast Plains Village
 - n = 45

- Roper, Cobry, and Hoard
 - Central Plains materials

Geological Clays

- **Dunn and Kay**¹
 - Clay-rich sediments from alluvial contexts between KRIV and Clay County, SD (n = 9)

- **Speakman**²,³
 - Clay and clay-rich sediments from alluvial (valley) and residual (upland) contexts between Corner Butte and KRIV (n = 30)

- **Mitchell**⁴
 - Clay-rich sediments from alluvial contexts from near Double Ditch and Shermer (n = 10)

- **Hollenback et al. (ongoing)**
 - Clay-rich sediments from alluvial and lacustrine contexts from locations around Devils Lake and near KRIV (n = 11)

Archaeological Clays

- **Mitchell**
 - Middle Missouri
 - South Cannonball (n = 2)
 - Paul Brave (n = 1)
 - Shermer (n = 3)
 - Huff (n = 2)
 - Coalescent
 - On-a-Slant (n = 1)
 - Upper Sanger (n = 1)
 - Double Ditch (n = 9)

Summary of findings
• Helb
 • A single compositional group
 • Affinities with alluvial clayey sediment from Burleigh County, proximate to Huff
 • But—similarities with clayey sediment from nearby Helb
- Central North Dakota
- Two broad compositional groups
- Distinguished primarily by differences in transition-metal ratios
- Each appears to be broadly associated with clays of distinct geological origins
 - Alluvial (M/H-1)
 - Residual (M/H-2)
- Little correlation with wares, villages, etc.
• South Dakota
 • Crow Creek & Scalp Creek
 • Big Sioux River
 • Some pieces similar to Central Plains
 • All distinct from central North Dakota materials
• Archaeological clays
 • Two groups defined on the basis of Hf and U
 • No comparison to archaeological pottery
 • Archaeological clays grouped together
 • Geological clays grouped together

Modeling Ceramic Compositions

\[S_i = (P \times T_i) + ([1 - P] \times C_i) \]

Wherein

- \(i \) is the abundance of a particular element
- \(S \) is the modeled ceramic
- \(P \) is the proportion of temper (by mass)
- \(T \) is the temper
- \(C \) is the clay

Modeling Ceramic Compositions

\[(0.25 \times 500) + (0.75 \times 1000) = 875\]

- Temper:clay ratio of 1:3 (25% temper)
- Temper: 500 ppm; Clay: 1000 ppm
 - Results in 875 ppm pottery
- Point estimates between end-members
 - Assumes uniformity in temper:clay ratio
 - Does not consider variation in both components
 - Does not consider analytical uncertainty
Modeling Ceramic Compositions

\[S_i = (P \times T_i) + ([1 - P] \times C_i) \]

- \(P \) is sampled from a truncated normal distribution defined by
 - \(\mu \) (average amount of temper added)
 - \(\sigma \) (variation in temper:clay consistency)
Modeling Ceramic Compositions

\[S_i = (P \times T_i) + ([1 - P] \times C_i) \]

- Means and covariation matrices are determined from analyses of multiple clay and temper specimens
- Multivariate-normal distributions are produced for each component
Modeling Ceramic Compositions

\[S_i = (P \times T_i) + ([1 - P] \times C_i) \]

- Simulated tempers and clays within these distributions are generated producing possible compositions for each
Modeling Ceramic Compositions

\[S_i = (P \times T_i) + ([1 - P] \times C_i) \]

- \(P, T, C \) are sampled from the respective distributions to produce \(n \) possible ceramic compositions
Recommendations

• Pottery from Middle Missouri Tradition sites to complement extant Coalescent ceramic data

• Clay sampling
 • Archaeological clays
 • Consider and record geological context
 • Workability and textural studies: is it usable?

• Temper sampling
Acknowledgments

• All prior data were generated with support through a laboratory-support grant from the NSF
• Whitney Goodwin and Abigail Fisher
• Marvin Kay, Mark Mitchell, Curtis Nepstad-Thornberry, Jeff Speakman
• State Historical Society of North Dakota