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We provide details that are omitted from the Appendix of the paper due to space
limit.

Proof of Proposition 3.
Denote λ31 := b3/b1, λ42 := b4/b2, by dividing the FOCs of 1, 3 and 2, 4, we have

2− r2

4
= λ31

(
1

1 + λ42
r1

2 + r2

4
+

λ42
r1

1 + λ42
r1

2− r2

4

)
,

2− r2

4
= λ42

(
1

1 + λ31
r1

2 + r2

4
+

λ31
r1

1 + λ31
r1

2− r2

4

)
,

which is equivalent to

λ31 =
λr142 + 1

λr142 + 2+r2
2−r2

, λ42 =
λr131 + 1

λr131 + 2+r2
2−r2

.

By the property of the two sides of (1− λ)(1 + λr1) = 2r2
2−r2λ, λ31 < λ42 together with

the two equalities implies λ31 < λ < λ42, which leads to the contradiction.
For λ31 = λ42 = λ, the equilibrium bids can be obtained by multiplying both sides of

the FOCs of players by bj and bi =
bj
λ
:

bi =
r1λ

r1−1

(λr1 + 1)2

2− r2

4
v,

bj =
r1λ

r1

(λr1 + 1)2

2− r2

4
v.
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The expected payoffs are

Uj =
λr1(λr1 + 1− r1)

(λr1 + 1)2

2− r2

4
v,

UT =
1

(λr1 + 1)2
v +

2λr1

(λr1 + 1)2

2− r2

4
v − r1λ

r1−1

(λr1 + 1)2

2− r2

2
v

=
2 + (2− r2)λr1 − r1(2− r2)λr1−1

2(λr1 + 1)2
v.

The expected revenue of the sponsor is

ΠD = 2bFP + 2bFT +

(
1− 1

(1 + λr1)2

)
r2

2
v

=
r2

2
v +

2r1λ
r1−1(1 + λ)

(λr1 + 1)2

2− r2

4
v − 1

(1 + λr1)2

r2

2
v

=
r2

2
v +

r1(2− r2)λr1−1(1 + λ)− r2

2(λr1 + 1)2
v.

Next, we demonstrate some details in the steps of verifying optimality of the agents’
bids.

Step 1. The comparison is trivial as v = r2
2
v + 22−r2

4
v.

Step 2. We proof that b1 6= b2 satisfying the FOCs of the agents was a deviation as
local minimum. When r1 ≤ 1, the FOCs of bi are monotonically decreasing in bi, that
there’s a unique solution b1 = b2 thus no other candidates.

When r1 > 1, we define Bi(bi) by the FOCs of the agents as follows:

1

v
=

r1b
F
j
r1b1

r1−1

(b1
r1 + bj

r1)2

b2
r1

b2
r1 + bj

r1

2 + r2

4

+
r1bj

r1b1
r1−1

(b1
r1 + bj

r1)2

bj
r1

b2
r1 + bj

r1

2− r2

4
=: B1(b1),

and B2(·) is defined symmetrically.
Then we can rewrite the two FOCs together

B1(b1)

K(b1, b2)
=

b1
r1−1b2

r1

b1
r1 + bj

r1
(2 + r2) +

b1
r1−1bj

r1

b1
r1 + bj

r1
(2− r2)

=
b2
r1−1b1

r1

b2
r1 + bj

r1
(2 + r2) +

b2
r1−1bj

r1

b2
r1 + bj

r1
(2− r2) =

B2(b2)

K(b1, b2)
. (1)
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with
K(b1, b2) :=

r1bj
r1

(b1
r1 + bj

r1)(b2
r1 + bj

r1)

The different part from the r1 ≤ 1 case is that when r1 > 1, B1(b1)
K(b1,b2)

is not monotonic
in b1, while B2(b2)

K(b1,b2)
is still strictly increasing in b1. As

∂ b1
r1−1

b1
r1+bj

r1

∂b1

= (r1 − 1)
b1
r1−2

b1
r1 + bj

r1
− r1b1

2r1−2

(b1
r1 + bj

r1)2

=
b1
r1−2((r1 − 1)bj

r1 − b1
r1)

(b1
r1 + bj

r1)2
,

both terms in B1(b1)
K(b1,b2)

is strictly increasing in b1 on [0, ( 1
r1−1

)
1
r1 bj]. Note that b1 = b2 is still

a solution, but there could be another (b′1, b
′
2) satisfying (1), and which one is the optimal

for the team’s payoff uT (b1, b2) is not intuitive. We check ∂uT (b1,b∗2)

∂b1
= vB1(b1)− 1 directly

B′1(b1) =
r1bj

r1

b2
r1 + bj

r1

(
b2
r1

2 + r2

4
+ bj

r1
2− r2

4

) ∂ b1
r1−1

(b1
r1+bj

r1 )2

∂b1

,

∂ b1
r1−1

(b1
r1+bj

r1 )2

∂b1

=
(r1 − 1)b1

r1−2

(b1
r1 + bj

r1)2
− 2r1b1

2r1−2

(b1
r1 + bj

r1)3

=
b1
r1−2

(b1
r1 + bj

r1)3
((r1 − 1)bj

r1 − (r1 + 1)b1
r1)

Thus B1(b1) is strictly increasing on
(

0,
(
r1−1
r1+1

) 1
r1 bj

)
, and strictly decreasing on((

r1−1
r1+1

) 1
r1 bj,∞

)
. As the equilibrium bid bi > bj >

(
r1−1
r1+1

) 1
r1 bj, B1

((
r1−1
r1+1

) 1
r1 bj

)
> 1

v

that if the equation B1(b1) = 1
v
has another solution b1

1, then b1
1 <

(
r1−1
r1+1

) 1
r1 bj is a local

minimum.
Step 3. With b1 = b2, the agents’ FOC is

1

v
=
r1bj

r1bFT
2r1−1

(bFT
r1 + bj

r1)3

2 + r2

4
+
r1bj

2r1bFT
r1−1

(bFT
r1 + bj

r1)3

2− r2

4
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Then the SOC of the agents is

r1bj
r1br1−2

(br1 + bj
r1)4
{(2 + r2)[(2r1 − 1)bj

r1br1 − (1 + r1)b2r1 ]

+ (2− r2)[(r1 − 1)bj
2r1br1 − (1 + 2r1)br1bj

r1 ]}

=
r1bj

r1br1−2

(br1 + bj
r1)4
{(2 + r2)[(2r1 − 1)yx− (1 + r1)x2]

+ (2− r2)[(r1 − 1)y2x− (1 + 2r1)xy]}

∝ (2 + r2)(2r1 − 1)yx︸ ︷︷ ︸
1○

− (2 + r2)(1 + r1)x2︸ ︷︷ ︸
2○

+ (2− r2)(r1 − 1)y2x︸ ︷︷ ︸
3○

− (2− r2)(1 + 2r1)xy︸ ︷︷ ︸
4○

=: f(x, y),

where x := br1 , y := bj
r1 and the can be simplified to the quadratic function of x as

q(x) := (2 + r2)

(
−(r1 + 1)x2 +

4(r1r2 − 1)

2 + r2

yx− (2− r2)(1− r1)

2 + r2

y2

)
,

the peak of which is at 2(r1r2−1)
(1+r1)(2+r2)

y. Observe that 2(r1r2−1)
(1+r1)(2+r2)

y < y
2
as 3r1r2−r2−2r1−6 < 0

by r2 < 2.
However, the expression before simplification is more useful for most conditions as we

can derive some sufficient conditions which are intuitively holds.
Notice that f(x, y) = 1○ − 2○ + 3○ − 4○, where 2○, 4○ are positive, and the signs of

1○, 3○ depends on 2r1 − 1, r1 − 1, respectively. Hence, we can derive several sufficient
conditions under which even positive 1○, 3○ will not be large enough to let f(x, y) ≥ 0.

Case 1. When r1 ≤ 0.5, 2r1 − 1 ≤ 0, r1 − 1 < 0, so f(x, y) < 0 for non-negative x, y.
Thus the utility of the agents is concave in b and the bid satisfying the FOC is optimal.

Case 2. When r1 ≥ 1, we refer to the simplified quadratic function q(x). Now
q(0) = −(2−r2)(1−r1)y2 > 0, that the FOC is always first increasing and then decreasing
on (0, 1). Hence, the utility of the team has the similar shape as in the benchmark. We
show that the solution characterized in the Proposition is actually not the first solution,
i.e. local minimum by verifying the sign of FOC:

q(x) < q(y) = −(2 + r2)(r1 + 1)y2 + 4(r1r2 − 1)y2 − (2− r2)(1− r1)y2

= 2(r1r2 − 4)y2 < 0,

where the first inequality was by x > y from λ < 1, and the property of the quadratic
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function with q(0) = −(2 − r2)(1 − r1)y2 > 0. Hence the FOC is positive below bi and
negative above bi in the neighborhood, that bi is a local maximum. Its also the global
maximum as the utility has a single peak.

Case 3. Now the only case left is r1 ∈ (0.5, 1). As q(0) = −(2 − r2)(1 − r1)y2 < 0,
when r1r2 ≤ 1, q(x) peak at 2(r1r2−1)

(1+r1)(2+r2)
y ≤ 0 that q(x) < q(0) < 0 for all x > 0. Hence

when r1r2 ≤ 1, the utility of the team is also concave in b.
When r1r2 > 1, there may be 0 or 2 solutions of SOC = 0 on (0,y), due to q(0) <

0, 2(r1r2−1)
(1+r1)(2+r2)

y ≤ 0 and 2(r1r2−1)
(1+r1)(2+r2)

y < 0.5y < y. If SOC = 0 has 0 solution, the utility
is still concave. If it has 2 solutions bx, by, the shape of the FOC is complicated: first
decreasing until bx, increasing on (bx, by) and decreasing on (by, 1). We claim that FOC >

0 for all b ∈ (0, by), which suffices to show that its positive at the local minimum bx.1

The intuition is that bx is close to zero that br1−1
x is large and leads to FOC > 0,

while the rigorous proof is technical. Denote the corresponding x at bx as x0. A sufficient
condition for FOC > 0 at bx is to show that the second term in the FOC along is already
greater than 1

y2x0(2− r2)

(x0 + y)3

r1(2− r2)

4
>
x

1
r1
0

v
⇔ y2x0(2− r2)

(x+ y)3

r1(2− r2)

4
> x

1
r1
0 , (2)

where we abuse the notation to denote the corresponding x0, y with v = 1 to get rid of v.

This is valid as both y2x
(x+y)3 and x

1
r1
0

v
= bx

v
is invariant of v.

Observe that on the LHS of (2), x
(x+y)3 is increasing and concave on (0, y

2
) and on the

RHS, x
1
r1 < x by x < 1 and r1 < 1.2 On (0, y

2
), as x

(x+y)3 in concave and x is linear, for
(2) we only need to show that (2) holds at x = y

2

8

27

1

2

r1(2− r2)

4
>

r1λ
r1

(λr1 + 1)2

2− r2

4

1

2
1
r1

⇔ 4 · 2
1
r1

27
>

λr1

(λr1 + 1)2
.

As r1 < 1, 2
1
r1 > 2. As s

(1+s)2 is increasing in s on (0, 1), λr1

(λr1+1)2 <
1

(1+1)2 <
8
27
< 4·2

1
r1

27
,

that (2) holds. Hence, FOC > 0 at bx, that even when the SOC has 2 solutions, the
utility of the team is still increasing and has a single peak at bi.

In conclusion, the bids we specified are indeed optimal for all admissible r1, r2 2

1Note that the FOC tends to +∞ as x→ 0+ by r1 < 1.
2Note that x0 < y

2 since SOC = 0 at x0 and 2(r1r2−1)
(1+r1)(2+r2)

y < y
2 .
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Proof of Proposition 4. We demonstrate the details of establishing the condition

2r1(3− 2r1) < (2− r2)(r1 + 1)λr1 + (2 + r2), (3)

which is sufficient for df(r1,r2)
dr2

< 0 when r1 < 1.
For r1 ∈ (0, 0.5], 2r1(3 − 2r1) ≤ 2 < 2 + r2 thus df(r1,r2)

dr2
< 0 . As 2r1(3 − 2r1) <

1.5(3− 1.5) = 2.25, df(r1,r2)
dr2

< 0 for r2 ∈ [0.25, 2)

Observe that for {(r1, r2)|r1 ∈ (0.5, 1), r2 ∈ (0, 0.25)},

2r1(3− 2r1) < (2− r2)(r1 + 1)λr1 ⇔ 2r1(3− 2r1)

r1 + 1
< (2− r2)λr1 .

By r1 ∈ (0.5, 1), r2 ∈ (0, 0.25) and λr1 is decreasing in r1, r2, (2−r2)λr1 > 7
4
λ(1,0.25) ≈ 1.52.

Meanwhile, as the derivative of 2r1(3−2r1)
r1+1

is 10
(r1+1)2−4, 2r1(3−2r1)

r1+1
is increasing on (0.5,

√
10−2
2

)

and decreasing on (
√

10−2
2

, 1), that at r1 =
√

10−2
2

it takes the maximum 14−4
√

10 ≈ 1.35 <

1.52. Thus
2r1(3− 2r1)

r1 + 1
< 1.36 < 1.51 <

7

4
λ(1,0.25) < (2− r2)λr1 ,

that df(r1,r2)
dr2

< 0 also holds on r1 ∈ (0.5, 1), r2 ∈ (0, 0.25).

Now we proof the claim λr1−1 < 2
2−r2 . For λ0 = (2−r2

2
)

1
1−r1 , recall that λ is the solution

of (1− λ)(1 + λr1) = 2r2
2−r2λ. Equivalently,

λ > λ0 ⇔ (1− λ0)(1 + λr10 ) >
2r2

2− r2

λ0 = r2λ
r1
0

⇔ 1− λ0 > r2
λr10

1 + λr10

⇔ 1− r2 − λ0 + r2
1

1 + λr10

> 0,

where the first equivalence was obtained by the property of (1 − λ)(1 + λr1) = 2r2
2−r2λ as

shown in the paper.
Consider µ as the solution of 1− x = r2

xr1

1+xr1
. As 1− x is strictly decreasing in x and

r2
xr1

1+xr1
is increasing in x, 1 − λ0 > r2

λ
r1
0

1+λ
r1
0
⇔ λ0 < µ. By 1 − 0 > 0 and 1 − 1 < r2

2
,

µ ∈ (0, 1). Then we have λ0 < µ as

µ = 1− r2 + r2
1

1 + µr1
> 1− r2 + r2

1

1 + 1
=

2− r2

2
> (

2− r2

2
)

1
1−r1 = λ0,

where the first inequality was by µ < 1, r1 > 0 and the last inequality is by 1
1−r1 > 1.
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Thus λ > λ0 that the claim is valid. 2

Proof of Proposition 5. Here we verify the sufficient condition for ΠD < ΠN on
r1 ∈ (0.5, 1], r2 → 0, 0.25 by brute force

λr1(2r1
2λr1 − (r1 + 1)) +

2r1(3− 2r1)− 2

2− 0.25
≤ 0. (4)

As r2 → 0, λ→ 1 that (4) is now

1r1(2r1
21r1 − (r1 + 1)) +

2r1(3− 2r1)− 2

2− 0.25
≤ 0

⇔ −2r1
2 + 17r1 − 15 ≤ 0

⇔ −(2r1 − 15)(r1 − 1) ≤ 0.

which holds as r1 ≤ 1.
At r2 = 0.25, the proof is more complicated. As λr1(2r1

2λr1 − (r1 + 1)) < 0 and λr1 is
decreasing in r1,

λr1(2r1
2λr1 − (r1 + 1)) < λ(1,0.25)

1(2r1
2λ(0.5,0.25)

0.5 − (r1 + 1))

<
6

7
(2r1

2 − (r1 + 1)),

as λ(1,0.25) ≈ 0.867 > 6
7
and λ(0.5,0.25)

0.5 < 1. The subscripts (1, 0.25) denotes that this λ
is the value at r1 = 1, r2 = 0.25.

Then a sufficient condition for (4) holding at r2 = 0.25 is

6

7
(2r1

2 − (r1 + 1)) +
2r1(3− 2r1)− 2

2− 0.25
≤ 0

⇔ −4r2
1 + 16r1 − 15 ≤ 0,

which holds as r1 ≤ 1 and −4 + 16− 15 = −3 < 0.
In conclusion, for r1 ∈ (0.5, 1], (4) holds at the two ends r2 → 0, 0.25. As the LHS of

(4) is a quadratic function of λr1 with 2r1
2 > 0, it holds for all r2 ∈ (0, 0.25]. 2

Proof of Proposition 4 when r1 = r2 = r. The proof follows four steps: (i) dλ
dr
< 0, (ii)

ΠD < ΠS on (1, 2], (iii) ΠD > ΠS on (0, 0.8] and (iv) ΠD,ΠS has single crossing on (0.8, 1).
Steps (ii)–(iv) are based on an equivalent function f(r) with ΠD > ΠS ⇔ f(r) > 0.
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Step 1. As we restrict r1 = r2 = r, for r < 2,

λr+1 − λr +
2 + r

2− r
λ− 1 = 0 ⇔ (1− λ)(1 + λr) =

2r

2− r
λ.

The derivative itself was too complicated for analysis:

λr+1 lnλdr − λr lnλdr +
4

(2− r)2
λdr + (r + 1)λrdλ− rλr−1dλ+

2 + r

2− r
dλ = 0

⇒ dλ

dr
=

(1− λ)λr lnλ− 4λ
(2−r)2

((r + 1)λ− r)λr−1 + 2+r
2−r

.

We claim that given any r ∈ (0, 2), there exists a unique solution λ ∈ (0, 1), around
which the expression (1−λ)(1+λr) is decreasing in λ and 2r

2−rλ is increasing in λ. Following
this claim, dλ

dr
< 0 is trivial: Since (1−λ)(1 +λr) is decreasing in r by λ ∈ (0, 1) and 2r

2−rλ

is increasing in r, any r′ = r+ε > r with ε→ 0 implies (1−λ)(1+λr
′
) < (1−λ)(1+λr) =

2r
2−rλ <

2r′

2−r′λ, that the new solution λ′ < λ.
Now we prove the claim by monotonicity. As r ∈ [0, 2), 2r

2−r > 0 that 2r
2−rλ is increasing

in λ. For (1− λ)(1 + λr),

d(1− λ)(1 + λr)

dλ
= rλr−1 − 1− (r + 1)λr

= λr−1(r − (r + 1)λ)− 1,

d2(1− λ)(1 + λr)

dλ2 = r(r − 1)λr−2 − r(r + 1)λr−1

= rλr−2(r − 1− (r + 1)λ).

1○ For r > 1, d(1−λ)(1+λr)
dλ

is increasing on (0, r−1
r+1

) and decreasing on ( r−1
r+1

, 1). As
d(1−λ)(1+λr)

dλ
|λ=0 = −1 and d(1−λ)(1+λr)

dλ
|λ=1 = −2, d(1−λ)(1+λr)

dλ
< 0 on (0, 1) that (1− λ)(1 +

λr) is strictly decreasing in λ .
Now we only need to prove that ∃!λ ∈ (0, 1). Observe that there’s no solution on

[1,+∞) since (1 − λ)(1 + λr) ≤ 0 < 2r
2−rλ. As (1 − λ)(1 + λr) is strictly decreasing

in λ and 2r
2−rλ is strictly increasing in λ, the existence and uniqueness is trivial since

(1− 0)(1 + 0r) = 1 > 0 = 2r
2−r · 0 and (1− 1)(1 + 1r) = 0 < 2r

2−r · 1.
Note that when r = 1, (1− λ)(1 + λr) = 1− λ2 is decreasing on (0, 1), thus there also

exists a unique λ.
2○ For r < 1, r − 1 < 0 that d2(1−λ)(1+λr)

dλ2 < 0 on λ ∈ (0, 1). Then d(1−λ)(1+λr)
dλ

is
decreasing in λ on (0, 1). Since d(1−λ)(1+λr)

dλ
|λ→0+ = +∞ and d(1−λ)(1+λr)

dλ
|λ=1 = −2 < 0,

(1 − λ)(1 + λr) is concave, and increasing on (0, λ̄), decreasing on (λ̄, 1) for some λ̄ as
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the solution of λr−1(r − (r + 1)λ) = 1, which is equivalent to (r − (r + 1)λ) = λ1−r. As
11−r = 1 > −1 = (r− (r+ 1) · 1), 01−r = 0 < r = (r− (r+ 1) · 0), and λ1−r > λ on (0, 1),
λ̄ < r

r+2
, which is the solution of (r − (r + 1)λ) = λ.

Observe that at r
r+2

, (1− λ)(1 + λr) > 2r
2−rλ since

(1− λ)(1 + λr) =
2

r + 2

(
1 +

(
r

r + 2

)r)
>

2r

2− r
r

r + 2

⇔ 1 +

(
r

r + 2

)r
>

r2

2− r
,

which holds as 1 +
(

r
r+2

)r
> 1 > r2

1
by r ∈ (0, 1). Then as (1 − λ)(1 + λr) is increasing

on (0, λ̄) and decreasing on (λ̄, 1), (1−λ)(1 +λr) > 2r
2−rλ on (0, r

r+2
), that any solution of

(1− λ)(1 + λr) = 2r
2−rλ lies in ( r

r+2
, 1), on which (1− λ)(1 + λr) is strictly decreasing.

Similarly, the existence and uniqueness directly follows from (1 − λ)(1 + λr) > 2r
2−rλ

at r
r+2

, and (1− 1)(1 + 1r) = 0 < 2r
2−r · 1.

In conclusion, 1○ and 2○ prove the claim, which implies (i).
Step 2. Recall that the expected revenue of the sponsor under different seedings are

ΠB =
(4− r)r

4
v, ΠS =

(6− r)r
8

v,

ΠD =
r

2
v +

r(2− r)λr−1(1 + λ)− r
2(λr + 1)2

v.

Observe that for r ∈ (0, 2) satisfying Assumption 2,

ΠD > ΠS ⇔
r

2
v +

r(2− r)λr−1(1 + λ)− r
2(λr + 1)2

v >
(6− r)r

8
v

⇔ f(r) = 4λr−1 − (1− λr)2 − 4

2− r
> 0.

At r = 1, the solution of λ2 − λ + 2+1
2−1

λ − 1 = λ2 + 2λ − 1 = 0 is λ =
√

2 − 1, and
ΠD =

√
2+1
4
v < 5

8
= ΠS, then for ΠD < ΠS to hold on (1, 2), we only need to show that

f ′(r) < 0 on (1, 2).

f ′(r) = −2λ2r lnλ+ 2λr lnλ+ 4λr−1 lnλ

+
(
−2rλ2r−1 + 2rλr−1 + 4(r − 1)λr−2

) dλ
dr
− 4

(2− r)2
.

For r ∈ (1, 2), as λ ∈ (0, 1) and dλ
dr

< 0, −2λ2r lnλ + 2λr lnλ < 0, 4λr−1 lnλ <

9



0,− 4
(2−r)2 < 0,

(
−2rλ2r−1 + 2rλr−1

)
dλ
dr
< 0 and 4(r − 1)λr−2 dλ

dr
< 0, thus f ′(r) < 0, i.e.

ΠD < ΠS holds on (1, 2).
Step 3.

f(r) = 4λr−1 − (1− λr)2 − 4

2− r
= 0

⇔ 4λr−1 = (1− λr)2 +
4

2− r
. (5)

As λr is decreasing in r, (1 − λr)2 is increasing in r. As 4
2−r is also strictly increasing

in r, the RHS (1 − λr)2 + 4
2−r is strictly increasing in r. Notice that 4λr−1 ≥ 4. By

(1 − λr)2 + 4
2−r ≈ 3.48 < 4 at r = 0.8, ∀r ∈ (0, 0.8], 4λr−1 ≥ 4 > (1 − λr)2 + 4

2−r , i.e.
f(r) > 0 that there’s no zero point in (0, 0.8].

Step 4. We show that there exists a unique zero point by showing the monotonicity
of each side of equation (5). We already know the RHS is strictly increasing in r as stated
in Step 3. As 4λr−1 > (1− λr)2 + 4

2−r at r = 0.8 and 4 < (1− (
√

2− 1)1)2 + 4
2−1

at r = 1,
we only need to show that λr−1 is strictly decreasing on (0.8, 1). The first derivative is

dλr−1

dr
= λr−1 lnλ+ (r − 1)λr−2dλ

dr
= λr−2

(
λ lnλ− (1− r)dλ

dr

)
,

For general r ∈ (0.8, 1), plug in dλ
dr
:

dλr−1

dr
< 0 ⇔ λ lnλ− (1− r)dλ

dr
< 0

⇔ λ lnλ

(1− r)
<
dλ

dr
=

(1− λ)λr lnλ− 4λ
(2−r)2

((r + 1)λ− r)λr−1 + 2+r
2−r

⇔ − 4λ

(2− r)2 lnλ
<

λ

1− r
((r + 1)λ− r)λr−1 +

λ

1− r
2 + r

2− r
− (1− λ)λr

⇔ − 4λ

(2− r)2 lnλ
<

2

1− r
λr+1 − 1

1− r
λr +

λ

1− r
2 + r

2− r

⇔ 1− r
(2− r)2

4λ

− lnλ
< λr+1 + 1,

where the last equivalence was by λr+1 − λr + 2+r
2−rλ− 1 = 0.

The RHS λr+1 +1 is decreasing in r as r+1 > 0 and λ ∈ (0, 1), that λr+1 +1 is greater
than the value at r = 1, i.e. (

√
2− 1)2 + 1 = 4− 2

√
2 ≈ 1.17. We can also show that both

10



1−r
(2−r)2 and 4λ

− lnλ
are strictly decreasing in r,3 that 1−r

(2−r)2
4λ
− lnλ

is strictly decreasing. Then for
r ∈ (0.8, 1) 1−r

(2−r)2
4λ
− lnλ

is lower than the value at r = 0.8, which is 5
36

4λ
− lnλ

≈ 0.51, which is
much smaller than 4−2

√
2. Hence, for r ∈ (0.8, 1), 1−r

(2−r)2
4λ
− lnλ

< 0.51 < 4−2
√

2 < λr+1+1,
that dλr−1

dr
< 0.

Now we have the monotonicity of both 4λr−1 and (1 − λr)2 + 4
2−r on (0.8, 1). Then

by f(0.8) > 0 and f(1) < 0, f(r) = 0 has a unique solution r̄ in (0.8, 1) with f(r) > 0

on (0.8, r̄) and f(r) < 0 on (r̄, 1). As f(r) > 0 in (0, 0.8) and ΠD > ΠS ⇔ f(r) > 0,
Proposition 4 also holds when we exert the restriction r1 = r2 = r, with the cutoff
r̄ ∈ (0.8, 1). 2

Proof of λ1 ≥ k and λ ≥ k. As

λ1 =
k(1 + kr1)2

2+r1
4
k(1 + kr1)2 + 1 + (1− r1)kr1

,

λ1 ≥ k ⇔ k(1 + kr1)2

2+r1
4
k(1 + kr1)2 + 1 + (1− r1)kr1

≥ k

⇔ h(k) := (1 + r1)kr1−1 + k2r1−1 − 2 + r1

4

(
1 + 2kr1 + k2r1

)
≥ 0.

The simplest case is r1 = 1, where

h(k) = 2 + k − 3

4

(
1 + 2k + k2

)
≥ 0 ⇔

(
k +

1

3

)2

≤
(

4

3

)2

,

which always holds for k + 1
3
∈ [1

3
, 4

3
] by k ∈ [0, 1].

For r1 6= 1, h(1) = 0,

h′(k) = (r1
2 − 1)kr1−2 + (2r1 − 1)k2r1−2 − 2 + r1

4

(
2r1k

r1−1 + 2r1k
2r1−1

)
= kr1−2

(
r1

2 − 1 + (2r1 − 1)kr1 − 2 + r1

2
r1

(
k + kr1+1

))
∝ r1

2 − 1 + (2r1 − 1)kr1 − 2 + r1

2
r1

(
k + kr1+1

)
=: h1(k).

If r1 ≤ 1
2
, r1

2 < 1, 2r1 − 1 ≤ 0, that h′(k) < 0, h(k) ≥ h(1) = 0 on [0, 1], that λ1 ≥ k

always holds.

3The first derivatives are
d 1−r

(2−r)2

dr = r
(r−2)3 < 0 and

d 4λ
− lnλ

dr = 4
(− lnλ)2

dλ
dr (1− lnλ) < 0.
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If 1
2
< r1 ≤ 1,

h(k) = (1 + r1)kr1−1 + k2r1−1 − 2 + r1

4

(
1 + 2kr1 + k2r1

)
≥ 1 + r1 + k2r1 − 2 + r1

4
− 2 + r1

4

(
2kr1 + k2r1

)
=

2 + 3r1

4
− (2 + r1)2

4(2− r1)
+

2− r1

4

(
kr1 − 2 + r1

2− r1

)2

≥ 1 + r1 + 1− 2 + r1

4
− 3

2 + r1

4
= 0,

where the first inequality is by r1 ∈ (1
2
, 1] and k ∈ [0, 1], and the last inequality is by

kr1 ∈ [0, 1] and 2+r1
2−r1 ≥ 1. So λ1 ≥ k also holds.

For λ, for all r2 ∈ (0, 2), it always holds:

λ > k ⇔ (1− k)(1 + kr1) >
2r2

2− r2

k ⇔ 1 + kr1 > 1. 2

Proof of Proposition 8. We discuss why there are three candidates for the equilibrium
when r > 1 and show that candidates (2) and (3) are suboptimal. Recall that the FOC
of any player i given bids (bj, bk) from opponents j, k is

rbr−1
i

bj
r + bk

r

(bi
r + bj

r + bk
r)2
v = 1,

and the corresponding SOC is

−rbr−2
i

(bj
r + bk

r)((r + 1)bri − (r − 1)(bj
r + bk

r))

(bi
r + bj

r + bk
r)3

v.

From the FOCs, we obtain

λr−1
42 =

λr32 + λr42

1 + λr32

⇒ λr42 = (1 + λr32)λr−1
42 − λr32, (6)

λr−1
32 =

λr32 + λr42

1 + λr42

⇒ λr42 =
λr−1

32 (1− λ32)

(1− λr−1
32 )

or λ32 = 1. (7)

Compared with the r ≤ 1 case, the discussion of r > 1 is more complicated as the
equation λ2− 2λ+ 1 have two solutions: 1 and η > 1. If λ32 = λ42, we get the candidates
(1) and (2). If λ32 = 1 < λ42, by (6) λ42 = ε which is the solution of λr = 2λr−1 − 1. If

12



r ∈ (1, 2), the solution is smaller than 1, which violates λ32 = 1 < λ42, while we have the
candidate (3) by similarly considering λ32 < 1 = λ42. Note that when λ32 = ε, by (7) λ42

can only be 1. If r = 2, λ32 = λ42 = 1 is the unique candidate, which lead to negative
payoffs which is suboptimal. If r > 2, we have a candidate λ32 = 1 < λ42 = ε, but the
payoff of player 3 would be 1+2(1−r)εr−1

(2+εr)2 < 0 which is still suboptimal. Note that then the

candidate (1) results in uj = 3−2r
9

< 0, while (2) results in uT = 2(2−r)λr−1−1
(1+2λr)2 < 0, both of

which are suboptimal. Actually, there’s no pure strategy equilibrium when r ≥ 2 using
the discussion which we will go through in detail for r ∈ (1, 2) utilizing λr32 < λr42 and (7):

λ32 < 1 ⇒ λr32 − 2λ32 + 1 > 0, U3 =
λr32(1 + λr32 − r)− (r − 1)λr32λ

r
42

(1 + λr32 + λr42)2
< 0,

λ32 > 1 ⇒ λ32 ∈ (1, η), UT =
1 + λr32 + λr42 − rλr32 − rλr42

(1 + λr32 + λr42)2
< 0.

For r ∈ (1, 2), we show that there’s no candidate with λ32 < λ42 satisfying λ32, λ42 6∈
{1, η}. As r > 0, λ32 < λ42 ⇒ λr32 < λr42, then using (7),

λr42 =
λr−1

32 (1− λ32)

(1− λr−1
32 )

> λr32 ⇒
1− λ32

1− λr−1
32

> λ32, (8)

and symmetrically

λr32 =
λr−1

42 (1− λ42)

(1− λr−1
42 )

< λr42 ⇒
1− λ42

1− λr−1
42

< λ42. (9)

Note that the λr and 2λ− 1 cut the R++ into three regions: (0, 1) and (η,+∞) in which
λr > 2λ − 1, and (1, η) in which λr < 2λ − 1. We use this property to rule out cases of
λ32, λ42 violating (8) or (9).

If λ32 < 1, by r ∈ (1, 2), 1− λr−1
32 < 0 and λr32− 2λ32 + 1 > 0 holds in (8). For λ42, (9)

requires that either λ42 < 1 and λr32 − 2λ32 + 1 < 0 which is a contradiction, or λ42 > 1

and λr42 − 2λ42 + 1 > 0 which implies λ42 > η.
Similarly, if λ32 > 1, we obtain 1 < λ32 < η < λ42.
However, λ42 > η > 1 result in UT < 0 as 1 + λr42 − rλr42 < 0: given any λ32 > 0, in

(6), λr42 = (1 +λr32)λr−1
42 −λr32 has two solutions 1 and t, the relative size of which depends

13



on the first derivatives at 1:

λ42 > 1 ⇔ rλr−1
42

∣∣
λ42=1

< (r − 1)(1 + λr32)λr−2
42

∣∣
λ42=1

⇔ λ32 >

(
r

r − 1

) 1
r

.

As λ32 < λ42, λ42 >
(

r
r−1

) 1
r >

(
1
r−1

) 1
r , i.e. 1 + λr42 − rλr42 < 0.

Hence, (1)-(3) are the only candidates. For (2) where λ32 = λ42 = η, the expected
payoff of the team is negative as

UT =
1 + 2ηr − 2rηr

(1 + λr32 + λr42)2
< 0 ⇔ 1 + 2ηr − 2rηr < 0

⇔ η >

(
1

2r − 2

) 1
r

⇔ 1

2r − 2
< 2

(
1

2r − 2

) 1
r

− 1

⇔ r − 1

2
< (2r − 2)1− 1

r ,

which holds for all r ∈ (1, 1.5). For r ∈ (1.5, 2), we use ηr − 2η + 1 = 0 to get another
equivalent condition η > 2r−1

4(r−1)
which is trivial as η > 1 and 2r − 1 < 4(r − 1)⇔ 3 < 2r.

r − 1
2
< (2r − 2)1− 1

r for r ∈ (1, 1.5) is trickier to proof, but one can verify that this
inequality is binding at r = 1.5, and (2r − 2)1− 1

r is first decreasing on (1, rt) and then
increasing at a rate smaller than 1 on (rt, 1.5), where rt solves r+ln(2r−2) = 0. Thus this
inequality holds on (1, 1.5). In conclusion, for r ∈ (1, 2) candidate (2) results in UT < 0,
thus suboptimal.

For candidate (3), U3 < 0 ⇔ ε < ( r−1
2−r )

1
r is still trivial for r ∈ (1.5, 2) as r − 1 >

2− r ⇔ 2r > 3. For r ∈ (1, 1.5), one can verify that the SOC of player 3 is positive thus
the bid is suboptimal

−r ε
r

b2
3

2((r + 1)εr − 2(r − 1))

(εr + 2)3
v > 0 ⇔ εr <

2(r − 1)

r + 1

⇔ 2(r − 1)

r + 1
< 2

(
2(r − 1)

r + 1

) r−1
r

− 1,

which is more complicated, but still has a familiar shape: the RHS is first decreasing and
then increasing at a rate smaller than the LHS while RHS = 0.47 > 0.4 = LHS at r = 3

2
.
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Lastly, candidate (1) b2 = b3 = b4 = b = 2r
9
v is optimal, as the SOC is negative

−rbr−2 (br + br)br((r + 1)− 2(r − 1))

9b2r
v < 0,

by (r + 1) > 2(r − 1)⇔ r < 3. And non-negative payoff requires 3−2r
9
≥ 0⇔ r ∈ (0, 3

2
].

Now we demonstrate the details of result (ii) on r ∈ (0, 1) following three steps:
1. ΠC and ΠS has a single crossing r∗∗ s.t. ΠC < ΠS.
2. r∗∗ < 0.8 < r̄ that ΠC < ΠS < ΠD on (0, r∗∗) and seeding {(1, 2), (3, 4)} is not

optimal on (r∗∗, 1).
3. ΠD

rv
is decreasing and ΠC

rv
is increasing. Therefore ∃r∗ ∈ (r∗∗, r̄) such that for

r ∈ (r∗∗, r̄), ΠD

rv
> ΠC

rv
⇔ r ∈ (r∗∗, r∗).

Recall

ΠS =
(6− r)rv

8
, ΠD =

r

2
v +

r(2− r)λr−1(1 + λ)− r
2(λr + 1)2

v, ΠC =


rξr(1 + ξ)

(1 + ξr)2
v, if r < 1

2rv

3
, if r ≥ 1

.

For r ∈ (0, 1), from ξ solves λr = 2λ− 2 we obtain ξ ∈ (1.5, 2) and the derivatives as

dξ

dr
=

ξr ln ξ

2− rξr−1 > 0.

Note that d2ξ
dr2 > 0 since the numerator of dξ

dr
is increasing in r and the denominator is

decreasing in r.
Step 1. For r ∈ (0, 1), with ξr = 2ξ − 2,

ΠC > ΠS ⇔
ξr(1 + ξ)

(1 + ξr)2
>

6− r
8

⇔ 2(ξ2 − 1)

(2ξ − 1)2
>

6− r
8

⇔ m(ξ) := −4(2− r)ξ2 + 4(6− r)ξ − 22 + r > 0.

We obtain the single crossing of ΠC and ΠS by verifying the monotonicity of m(ξ)

dm(ξ)

dr
= 4((6− r)− 2(2− r)ξ)dξ

dr
+ (2ξ − 1)2.
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As dξ
dr
> 0 and (2ξ − 1)2 > 0, a sufficient condition for dm(ξ)

dr
> 0 is

(6− r)− 2(2− r)ξ ≥ 0 ⇔ ξ ≤ 6− r
4− 2r

⇐ ξ ≤ 3 + r

2
<

6− r
4− 2r

.

In the last inequality, ξ ≤ 3+r
2

holds since ξ is increasing and convex, and ξ = 2 = 3+1
2

at r = 1. The other side also holds as 3+r
2
< 6−r

4−2r
⇔ 12 − 2r > 12 − 2r − 2r2. Hence,

dm(ξ)
dr

> 0 and the single crossing with cutoff r∗∗ < 0.8 is obtained by m(1.5) = −4(2 −
0)1.52 + 4(6− 0)1.5− 22 + 0 = −4 < 0 and m(ξ)|r=0.8 ≈ 0.69 > 0.

Step 2. As we showed 0.8 < r̄ in the Proof of Proposition 4 when r1 = r2 = r, we have
r∗∗ < 0.8 < r̄ that ΠC < ΠS < ΠD on (0, rC) and seeding {(1, 2), (3, 4)} is not optimal on
(rC , 1). By Steps 1 and 2, for result (ii) on r ∈ (0, 1) we only need to show that ΠC and
ΠD has a single crossing r∗ on (r∗∗, 1). Note that numerical simulation suggests r∗ < r̄,
which is not essential as ΠC > max{ΠS,ΠD} on (r∗, 1) by the single crossing proved in
Step 1.

Step 3. Dividing the revenue of the sponsor by rv yields

ΠD

rv
=

1

2
+

(2− r)λr−1(1 + λ)− 1

2(λr + 1)2
,

ΠC

rv
=

ξr(1 + ξ)

(1 + ξr)2
=

2(ξ2 − 1)

(2ξ − 1)2
.

It is easier to verify that ΠC

rv
is increasing in ξ thus also increasing in r on (0, 1):

dΠC

rv

dξ
=

4(2− ξ)
(2ξ − 1)3

> 0,

as ξ ∈ (1.5, 2).
On the other hand, the monotonicity of ΠD

rv
is complicated as we cannot do a similar

simplification to λr. The idea is that dΠD/rv
dr

= (2−r)λr−1

2(λr+1)2 (A(λ)dλ
dr

+B(λ)) < (2−r)λr−1

2(λr+1)2 (B(λ)−
A(λ)) as dλ

dr
> −1 which can be verified by checking the second derivative, where

A(λ) :=
r − 1

λ
+ r − 2r(1 + λ)

λr−1

1 + λr
+

1

1 + λr
2r

2− r
,

B(λ) := −1 + λ

2− r
+ (1 + λ− 2(1 + λ)

λr

1 + λr
+

1

1 + λr
2

2− r
λ) lnλ.
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Note that limr→0A(λ) = limr→0B(λ) = −1, and A(λ) > −1 as

A(λ) > −1 ⇔ −(r − 1)λr − (r + 1)λr−1 +
r − 1

λ
+ r + 1 +

2r

2− r
> 0

⇔ −2rλr−1 +
4r

2− r
,

which holds by the claim λr−1 < 2
2−r on r ∈ (0, 1). Note that the first equivalence was by

multiplying 1 + λr on both sides and the second was by λr+1 − λr + 2+r
2−rλ− 1 = 0.

Meanwhile, B(λ) < −1 as both

−1 + λ

2− r
< −1 ⇔ λ > 1− r

⇔ (1− 1 + r)(1 + (1− r)r) > 2r

2− r
(1− r)

⇔ 1 + (1− r)r > 2(1− r)
2− r

⇐ 1 + (1− r)r > 1 >
2(1− r)

2− r
,

which always holds, and 1 + λ− 2(1 + λ) λr

1+λr
+ 1

1+λr
2

2−rλ > 0 by

1 + λ− 2(1 + λ)
λr

1 + λr
= (1 + λ)(1− 2λr

1 + λr
) > 0,

as λr < 1.
In conclusion, by A(λ) > −1, B(λ) < −1, we obtain B(λ)− A(λ) < 0, i.e. d

ΠD
rv

dr
< 0.

For r ∈ (0, 1), as ΠD

rv
is decreasing and ΠC

rv
is increasing, there exists a cutoff r∗ ∈ (0.8, 1)

since ΠD

rv
≈ 0.55v < ΠC

rv
≈ 0.66v at r = 0.8 and ΠD

rv
≈ 0.60v < ΠC

rv
= 2

3
v at r = 1.

In conclusion, we have the revenue comparison result (ii). 2
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