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We provide several results that are omitted in the paper due to space limit but might

help the reader to have a better understanding of the paper.

The supplementary material contains three parts. The �rst part presents two auxiliary

results demonstrating that it su¢ ces for us to focus on integral payo¤ vectors. The second

part contains an example illustrating non-monotonicity of market values of a labor market

along a path of bilateral trades. And the third part shows the major di¤erence between

our algorithm and the well-known algorithms in Crawford and Knoer (1981) and Demange,

Gale and Sotomayor (1986).

Part I. One Theorem and One Lemma

A state or outcome of the market (F;W; V ) consists of a matching � and a payo¤ vector

u 2 IRF[W such that u (x) = V (x) for any x 2 I(�) and u (x) + u (�(x)) = V (x; �(x)) for
x =2 I(�), where I(�) = fh 2 F [W j �(h) = hg is the set of self-matched agents at �.
A market state (�; u) is stable or equivalently a competitive equilibrium if u (f)+u (w) �

V (f; w) and u (x) � V (x) for all f 2 F , w 2 W , x 2 F [W .
Observe that in the de�nition of market state (�; u), the payo¤ u 2 IRF[W speci�es

a payo¤ for every agent x 2 F [W . In fact, this is not necessary, because knowing the
payo¤ vector for either all workers or all �rms will automatically specify the payo¤ for

all members on the other side of the market. We can therefore fully characterize each

market state by specifying only the payo¤ vector for workers. For instance, a market state

(�; u) with u 2 IRW speci�es a payo¤ vector u 2 IRF for �rms as follows: for each �rm
f 2 F , u(f) = V (f) if �(f) = f , and u(f) = V (f; u(f)) � u(u(f)) if u(f) = w 2 W . Let
CE(W ) be the set of all competitive equilibrium payo¤ vectors u 2 IRW for all workers

in the market (F;W; V ). It is known from Koopmans and Beckmann (1957) and Shapley

and Shubik (1971) that the market (F;W; V ) has at least one competitive equilibrium and

thus CE(W ) is not empty. Furthermore, it is well-known from Shapley and Shubik (1971)

that the set of competitive equilibrium price vectors is a lattice, i.e., CE(W ) is a lattice.

The following result shows that the labor market has at least one integral competitive

equilibrium payo¤ vector if all values V (f; w), V (f) and V (w) are integral. This result is

not new and is implied by more general results obtained by Ausubel (2006, Corollary to
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Proposition 1, p. 625) and Sun and Yang (2009, Theorem 3 (ii), p.939). Below we give a

simpler and more direct proof of this special but basic result.

Theorem 1 : The labor market (F;W; V ) has at least one integral competitive equilibrium
payo¤ vector if V (f; w), V (f) and V (w) are integral for all f 2 F and w 2 W .

Proof. Clearly, it is su¢ cient to show that CE(W ) contains an integral payo¤vector

in ZW . Since CE(W ) is a nonempty lattice, it contains a unique minimum payo¤ vector

u� 2 IRW , i.e., u� 2 CE(W ) and u� � u for all u 2 CE(W ). We will show that u� itself is
an integral vector. Let (��; u�) be the competitive equilibrium associated with u� 2 IRW .
For every �rm f 2 F , we have u�(f) = V (f) if ��(f) = f , and u�(f) = V (f; w)� u�(w) if
��(f) = w 2 W .
De�ne W1 = fw 2 W j u�(w) 2 Zg�the set of workers whose payo¤s are integers, and

W2 = fw 2 W j u�(w) =2 Zg�the set of workers whose payo¤s are not integers. Clearly,
W1 [W2 = W and W1 \W2 = ;. We have to prove that W2 is empty.

Using W1 and W2 we de�ne a partition (F1; F2; F3) of F : F1 = ff 2 F j ��(f) 2 W1g,
F2 = ff 2 F j ��(f) 2 W2g, and F3 = ff 2 F j ��(f) = fg. Clearly, Fi \ Fj = ; for
any i 6= j and [3h=1Fh = F . u�(f) is integral for every f 2 F1, u�(f) is integral for every
f 2 F3, but u�(f) is not integral for any f 2 F2.
Recall that because (��; u�) is a competitive equilibrium, we have

u�(f) + u�(w) � V (f; w); 8f 2 F; 8w 2 W (1)

u�(x) � V (x); 8x 2 F [W (2)

Clearly, u�(w) � V (w) for all w 2 W1, u�(f) � V (f) for all f 2 F1, u�(w) > V (w) for all
w 2 W2, u�(f) > V (f) for all f 2 F2, and u�(f) � V (f) for all f 2 F3, because V (x) is
integral for all x 2 F [W .
It follows from (1) that for any f 2 F1 we have

u�(f) + u�(w) > V (f; w); 8w 2 W2 (3)

and for any f 2 F2 we have

u�(f) + u�(w) > V (f; w); 8w 2 W1 (4)

and for any f 2 F3 we have

u�(f) + u�(w) > V (f; w); 8w 2 W2 (5)
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We can then choose a su¢ ciently small � > 0 for the payo¤vector �u = u���
P

j2W2
e(j) 2

IRW so that �u(w) > V (w) for all w 2 W2 and the above inequalities (3), and (5) still hold

when u� is replaced by �u. Here e(j) is the jth unit vector in IRW for each j 2 W .
Observe that �u(w) = u�(w)� � for every w 2 W2, and �u(w) = u�(w) for every w 2 W1.

For any �rm f 2 F1, �u(f) = u�(f) is integral, and for any �rm f 2 F3, �u(f) = u�(f) = V (f)
is integral, and for any �rm f 2 F2, �u(f) = u�(f)+ � is not integral. We have �u(x) � V (x)
for all x 2 F [W . Note that (4) trivially holds when u� is replaced by �u.
We will show that (��; �u) is also a competitive equilibrium. Observe that for any f 2 F1

we have

�u(f) + �u(w) > V (f; w); 8w 2 W2

�u(f) + �u(w) > V (f; w); 8w 2 W1

and for any f 2 F2 we have

�u(f) + �u(w) > V (f; w); 8w 2 W1

�u(f) + �u(w) > V (f; w); 8w 2 W2

and for any f 2 F3 we have

�u(f) + �u(w) > V (f; w); 8w 2 W2

�u(f) + �u(w) � V (f; w); 8w 2 W1

In summary, we have

�u(f) + �u(w) � V (f; w); 8f 2 F; 8w 2 W

�u(x) � V (x); 8x 2 F [W

By de�nition, (��; �u) is a competitive equilibrium, which contradicts the fact that u� is the

smallest competitive payo¤ vector in CE(W ), since �u < u�. Consequently, W2 must be

empty and u� must be an integral payo¤ vector. 2

A blocking pair of a state (�; u) is a pair (f; w) of �rm f and worker w that are not

matched under � but both can improve their well-being by abandoning their partners at �

and matching with each other, i.e., there are rf ; rw 2 R with rf + rw = V (f; w) such that
rw � u (w) and rf � u (f) with at least one strict inequality. A state (�; u) can also be

blocked by a single agent x 2 F [W if x is not self-matched at �, x 6= �(x), but prefers to
be single, i.e., rx = V (x) > u (x).

The following lemma is new and plays an important role in our analysis and is now also

included in the paper.
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Lemma 1 Let V (f; w), V (f) and V (w) be integral for all f 2 F and w 2 W . If a state
(�; u) with u 2 ZF[W is not blocked by any pair (f; w) with (rf ; rw) 2 Z�Z, then it cannot
be blocked by any pair (f 0; w0) with (rf 0 ; rw0) 2 IR � IR. Consequently, (�; u) must be a
competitive equilibrium.

Proof. Suppose to the contrary that the statement is not true. Then there would

exist a state (�; u) with u 2 ZF[W which is not blocked by any pair (f; w) with (rf ; rw) 2
Z � Z, but is blocked by a pair (f 0; w0) with (r0f ; r0w) 2 IR � IR. Because (f 0; w0) blocks
(�; u), rf 0 + rw0 = V (f 0; w0), rf 0 � u(f 0) and rw0 � u(w0) with at least one strict inequality.
Since V (f 0; w0) and u 2 ZF[W are integral, we must have that either both rf 0 and rw0 are

integral or neither rf 0 nor rw0 is integral. The former case cannot happen by hypothesis. In

the latter case, we must have rf 0 > u(f 0) and rw0 > u(w0). Now let f = f 0 and w = w0. We

can round up rf to its next higher integer sf and round down rw to its next lower integer

sw. Because u and V (f; w) are integral, clearly we have sf + sw = V (f; w), sf > u(f) and

sw � u(w). By de�nition, (�; u) is blocked by (f; w) with (sf ; sw) 2 Z � Z, contradicting
the hypothesis. 2

The above two results imply that it is su¢ cient to focus on integral payo¤ vectors in

ZF[W .

Part II. Nonmonotonicity of Market Values Along a Path of Bi-
lateral Trades

The following example shows that an arbitrary sequence of successive pair improvements

may yield trading cycles. In particular, the example demonstrates the complexity of �nding

a deterministic path of pair improvements toward stability in that the choices of both

surplus division rules and blocking pairs are important. This example also shows clearly

that in the process of pair improvements the overall welfare need not be monotone, some

agents may be better o¤ this time but may be worse o¤ another time, and other may have

opposing change of welfare.

Example 1: Consider a labor market (F;W; V ) with F = fa; bg ; W = fx; yg, and
V (i; i) = 0; 8i 2 F [W , V (a; i) = 4 and V (b; i) = 6; 8i 2 W:
Start with an initial state (�0; u0) with �0 = f(a; x) ; (b; b) ; (y; y)g, i.e., b and y are

self-matched, and u0 (a) = u0 (x) = 2 and u0 (i) = 0 otherwise.

Choose the �rst blocking pair to be (b; x), resulting in (we list the agents� integral

payo¤s below the matching)

�
�1; u1

�
=

��
a
0
; a
0

�
;
�
b
3
; x
3

�
;

�
y
0
; y
0

��
:
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Now b and y can form the next blocking pair, leading to

�
�2; u2

�
=

��
a
0
; a
0

�
;

�
b
4
; y
2

�
;
�
x
0
; x
0

��
:

We then choose (a; y) as the next blocking pair, leading to

�
�3; u3

�
=

��
a
1
; y
5

�
;
�
b
0
; b
0

�
;
�
x
0
; x
0

��
:

Finally, we choose blocking pair (a; x), which when satis�ed, gives

�
�4; u4

�
=

��
a
2
; x
2

�
;
�
b
0
; b
0

�
;

�
y
0
; y
0

��
;

completing the cycle. Notice in particular that the market value is not monotonic along

the path of pair improvements in the example, namely, the sequence of market values is

(4; 6; 6; 4; 6; 6; 4; : : :).

Part III. The Di¤erence between Our Algorithm and Two Previ-
ous Algorithms

The following example illustrates the major di¤erence between our algorithm and the salary

adjustment process in Crawford and Knoer (1981) (CK81 in short), and Demange, Gale

and Sotomayor (1986) (DGS86).

Example 2: Consider a labor market where F = fa; bg and W = fx; y; zg. Let V (a; x) =
V (a; y) = V (b; x) = V (b; y) = 3, V (a; z) = V (b; z) = 2, and V (i; i) = 0 for all i 2 F [W ,
i.e., all agents have an outside option of 0. We start with an initial market state (�0; u0)

as: �
�0; u0

�
=

��
a
1
; x
2

�
;
�
b
1
; z
1

�
;

�
y
0
; y
0

��
:

Here the agents�payo¤s are listed below each agent and (y; y) indicates that y is matched

with itself.

Our Algorithm

We apply our algorithm in Section 4 of our paper to �nd a path of bilateral trades for

(�0; u0) toward a stable outcome. Given (�0; u0), the sets of best �rms are Fx = Fy = Fz =

fa; bg and we choose the lists as Lx = ab; Ly = ba; Lz = ba.
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First, an execution of steps S1 and S2 using lists Lx; Ly and Lz leads to the following
successive outcomes:

y applies to b :
�
�1; u1

�
=

��
a
1
; x
2

�
;

�
b
1
; y
2

�
;
�
z
0
; z
0

��
:

z applies to a :
�
�2; u2

�
=

��
a
1
; z
1

�
;

�
b
1
; y
2

�
;
�
x
0
; x
0

��
:

x applies to b :
�
�3; u3

�
=

��
a
1
; z
1

�
;
�
b
1
; x
2

�
;

�
y
0
; y
0

��
:

y applies to a :
�
�4; u4

�
=

��
a
1
; y
2

�
;
�
b
1
; x
2

�
;
�
z
0
; z
0

��
:

z applies to b :
�
�5; u5

�
=

��
a
1
; y
2

�
;
�
b
1
; z
1

�
;
�
x
0
; x
0

��
:

x applies to a :
�
�6; u6

�
=

��
a
1
; x
2

�
;
�
b
1
; z
1

�
;

�
y
0
; y
0

��
:

Since (�6; u6) = (�0; u0), we have found a cycle. Collect the �rms involved in the cycle in

FQ = fa; bg � these are �over-demanded��rms in the two steps.

Next, we carry out the Augment procedure to increase the payo¤s of �rms a and b
by one, using only pair improvements. As described before, we de�ne a bookkeeping set

F �, initially an empty set, i.e., F � := ?. The Augment procedure ends when F � = FQ.
Rename �6 to be � and notice that w� = y.

1. Let the �rst alternating path be (f1; w�) = (b; y). We match this pair and increase

b�s payo¤ (from that in (�6; u6)) by one to obtain:

(�; u) =

��
a
1
; x
2

�
;

�
b
2
; y
1

�
;
�
z
0
; z
0

��
:

2. Update F � so that F � = fbg. The new single �rm is w� = z. Choose the second

alternating path from z to a to be (b; z); (b; y) ;(a; y), where pairs with underscores

are currently not matched (notice that the last �rm in this alternating path is a 2
FQnF �). We proceed from the back so that a is matched with y and a�s payo¤

increases to 2, which is a pair improvement. After y breaks up with b, b becomes

single and we matched b with z so that b�s payo¤ is back to be 2, which is again a

pair improvement. In the end, we have:

(�0; u0) =

��
a
2
; y
1

�
;
�
b
2
; z
0

�
;
�
x
0
; x
0

��
:

Since now F � = FQ = fa; bg after the above two steps, the Augment procedure
terminates and we are now at step S4.

6



Notice that (�0; u0) is not stable ((b; x) is a blocking pair), we rename (�0; u0) to be

(�0; u0) and let w0 = x. Notice that we still have Fx = Fy = Fz = fa; bg. Choose Lx = ba
(Ly and Lz can be arbitrary). We now carry out step S1 again. Exactly one execution
leads to

x applies to b:
�
�1; u1

�
=

��
a
2
; y
1

�
;
�
b
2
; x
1

�
;
�
z
0
; z
0

��
:

It is easily veri�ed that this last market state (�1; u1) is indeed a stable outcome�a com-

petitive equilibrium, ending the execution of the algorithm.

Notice that in our algorithm, because of pair improvements there is no monotonicity.

It is easy to see that for worker y, the path of his payo¤s is (2; 2; 0; 2; 0; 1), and for worker

z, the path of his payo¤s is (0; 1; 1; 0; 1; 1; 0).

In the following, we will use the same example to illustrate CK81�s process and DGS86�s.

DGS86�s process is an important improvement of CK81�s in the sense that when valuations

are integer, DGS86�s process can �nd a stable outcome in �nite time, while CK81�s process

can (1) only �nd a discrete core allocation, which is strictly weaker than the concept of

competitive equilibrium or stable outcome, and (2) approach an equilibrium only through

a limiting argument by letting the sequence of positive increments (e.g., 1; 1=2; 1=4; :::)

converge to zero.

The DGS86�s Process

Step 1. The DGS86 process starts with the reservation price of agents on one side of

the market, say, u(a) = u(b) = 0. The auctioneer announces the price vector p0 =

(u(a); u(b)) = (0; 0).

Step 2. Each worker w 2 W reports its demand Dw(p0) of �rms at p0. We have Dx(p0) =

fa; bg, Dy(p0) = fa; bg, and Dz(p0) = fa; bg. The auctioneer checks if there is any over-
demanded set of �rms. The set fa; bg is over-demanded. The auctioneer increases the price
of �rms a and b each by 1 and announces the current price p1 = (u(a); u(b)) = (1; 1).

Step 3. Each worker w 2 W reports its demand Dw(p1) of �rms at p1. We have Dx(p1) =

fa; bg, Dy(p1) = fa; bg, and Dz(p1) = fa; bg. The auctioneer checks if there is any over-
demanded set of �rms. The set fa; bg is over-demanded. The auctioneer increases the price
of �rms a and b each by 1 and announces the current price p2 = (u(a); u(b)) = (2; 2).

Step 4. Each worker w 2 W reports its demand Dw(p2) of �rms at p2. We have Dx(p2) =

fa; bg, Dy(p2) = fa; bg, and Dz(p2) = fz; a; bg. The auctioneer checks if there is any over-
demanded set of �rms. There is no over-demanded set of �rms and the auction stops at
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one of the two competitive equilibria:

�
�1; u1

�
=

��
a
2
; y
1

�
;
�
b
2
; x
1

�
;
�
z
0
; z
0

��
:

�
�2; u2

�
=

��
a
2
; x
1

�
;

�
b
2
; y
1

�
;
�
z
0
; z
0

��
:

Unlike our algorithm, the DGS86�s process uses retention and the path of payo¤s of

every agent on each side of the market is monotone (increasing or decreasing). For instance,

for �rm a, the path of his payo¤s is (0; 1; 2).

Our algorithm can start from any initial market state, while DGS86�s needs to start

with the reservation prices of agents on one side of the market. Although DGS86�s process

can �nd a competitive equilibrium, it cannot be used to prove our Proposition 1, because

DGS86 uses retention, which obviously violates the property of pair improvements. The

same thing can be said about CK81�s process.

The CK81�s Process

The salary adjustment process in CK81 starts with the scenario where every agent is self-

matched, and is illustrated with the same example.

Step 1. Both �rms start with a salary of zero to each worker. Based on the current salaries,

each �rm makes an initial o¤er to their respective favorite worker, y (this corresponds

to our de�nition of �best worker�in De�nitions 1). Both �rms will make the o¤er to

y.

Step 2. Worker y temporarily accepts �rm a�s o¤er and rejects b�s o¤er (since the o¤ers are

identical, worker y breaks ties arbitrarily).

Step 3. Firm b increases its salary o¤er to y by 1. At this point, the o¤er from �rm a remains

in force.

Step 4. Worker y accepts b�s o¤er and rejects a�s o¤er. Then �rm a increases its salary o¤er

to y by 1 but makes an o¤er to z. z accepts a0s o¤er. Now there is no rejection and

the process stops with a weak core allocation:

(��; u�) =

��
a
2
; z
0

�
;

�
b
2
; y
1

�
;
�
x
0
; x
0

��
:
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Notice that (��; u�) is a weak core allocation since there is no blocking pair of a �rm

and a worker that makes both parties strictly better o¤. The outcome (��; u�) is
however not a stable outcome in the sense of our paper, which corresponds to a strict core

allocation or a competitive equilibrium. The reason is that there is a blocking pair (a; x)

with payo¤s u (a) = 3 and u (x) = 0 that makes a strictly better o¤ while x not worse o¤.

Another blocking pair is (b; x).

Unlike our algorithm, the CK81�s process uses retention and the path of payo¤s of every

agent on each side of the market is monotone (increasing or decreasing). For instance, for

worker x, the path of his payo¤s is (0; 1).

Our algorithm can start from any initial market state, while CK81�s needs to start with

the reservation prices of agents on one side of the market.

Both our algorithm and DGS86�s can �nd a competitive equilibrium in �nite time, while

CK81�s can only �nd a weak core allocation in �nite time.

In summary, CK81 has to start with a speci�c initial market state and can only �nd a

discrete core allocation which is weaker than our notion of stable outcome in �nite time. It

uses retention and as a result the path of payo¤s of every agent on one side of the market is

monotone. The use of retention violates the property of pair improvement and thus CK81

cannot be used to prove our Proposition 1.

DGS86 also has to start with a speci�c initial market state but can �nd a stable outcome

in �nite time. However, it uses retention and as a result the path of payo¤s of every agent

on one side of the market is monotone. The use of retention violates the property of pair

improvement and thus DGS86 cannot be used to prove our Proposition 1, either.

Our algorithm employs only bilateral trades or pair improvements and can start from

any initial market state and �nd a stable outcome in �nite time. Our algorithm hence

enables us to establish Proposition 1.
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