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ABSTRACT

The circle map is a general non-linear iterated function that maps
the circle onto itself. In its standard form it can be interpreted as
a simple sinusoidal oscillator which is perturbed by a non-linear
term. By varying the strength of the non-linear contribution a rich
array of non-linear responses can be achieved, including wave-
shaping, pitch-bending, period-doubling and highly irregular pat-
terns. We describe a number of such examples and discuss their
subjective auditory perception.

1. INTRODUCTION

Circle maps are a particularly simple yet rather general example
of a mapping that exhibits many important aspects of complex dy-
namical behavior. A circle map is capable of demonstrating such
behaviors as mode and phase-locking, period doubling and subhar-
monics, quasi-periodicity as well as routes to chaos via repeated
period doubling or via disruption to quasi-periodicity [18].

Circle maps are also attractive because they have served as
an important “simplest case” example of iterated dynamics in the
study of these dynamics among mathematicians and physicists.
They also are related to already proposed sound synthesis methods
that worry about introducing functional iterations or non-linearities.

The circle map is particularly suitable for the study and gener-
ation of sustained undamped sounds as the map confines the space
of possible iterations exactly to functions of this nature by con-
struction.

This paper is the second in a series of papers describing the
circle map for sound synthesis purposes. The aim is to describe
the properties in a systematic fashion to allow easy use. Addition-
ally it is an example of classifying synthesis methods with respect
to perturbation of parameters. The purpose of this paper is to dis-
cuss computational results of the circle map. Specifically we are
interested in properties which are relevant for the use of the circle
map for sound synthesis. The basic properties of the circle map
were already described in [1] and we will only give a brief review
of the method here and refer the reader to this reference for more
detailed introductory discussions.

2. BACKGROUND

Non-linearities have played an ongoing important role since very
early. Risset introduced [2], and Arfib and Le Brun and refined
wave-shaping, a method where a pre-existing signal would be fed
through a non-linear function, hence modifying the sound [3, 4].
The method is able to create complex though generally only per-
fectly non-chaotic, periodic signals and the control is well under-
stood.
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Figure 1: The mapping yn+1 = φ(yn) for the standard circle map
at values k = 0.5 (left), k = 1.0 (center) and k = 1.5. The
horizontal line at yn+1 marks the boundary between invertible and
non-invertible maps. At k = 1 the map becomes tangent to this
limit line. For k = 1.5 the line is crossed more than once and the
map is non-invertible.

Chaos itself became a focus of attention in the late 80s and
early 90s. The use of iterated functions that can lead to rich non-
linear and chaotic behavior falls into to broad categories: (1) The
use of periodic pattern in the generation of music structure and
(2) for direct sound synthesis purposes. Within the first category
Pressing studied logistic maps [5]. Gogins [6] investigated ran-
domly switched sets of functions in his iterations. Bidlack intro-
duced physically motivated maps of either dissipative or conserva-
tive character using Lorenz-type and Henon-Heiles type iterations[7].
The second category was developed by Truax [8] and Di Scipio
[9, 10] motivated directly by iterated maps. DiScipio considers
what he calls the sine map, an iterated sinusoid without coupling
to a linear function. Rodet considered Chua’s network and its time-
delayed extension for sound synthesis who also draws connections
to nonlinearities in a physical context [11, and references therein].
Dobson and Fitch considered iterated complex quadratic maps [12]
experimentally. Manzolli et al consider a set of two-variable itera-
tions which are variations of the so-called standard map which in
turn is related to the circle map [13]. Recently Valsamakis and Mi-
randa consider a family of two variable coupled oscillator with sine
waves in the feedback loop [14] The most widely cited reference of
chaos theory is the computer music literature is [15]. It does con-
tain a description of the circle map but gives little interpretation
or motivation of the map. Maybe for the lack of emphasis of the
specific properties of the circle map, it has not been widely con-
sidered as a desirable model for iterative synthesis and sequence
construction in the above mentioned literature.

3. ITERATED MAPS FROM THE CIRCLE TO ITSELF

The most general form of the circle map is

yn+1 = φ(yn) (1)

where the defining property is that φ is a mapping from the a
bound interval to a bound interval of the same size, or alternatively
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Figure 2: Top: Beating pattern at Ω = 0.475, k = 0.6, Bottom:
Jitter pattern at Ω = 0.4, k = 1.1. Left shows the waveforms,
right shows the mapping function and the iteration trace. The di-
agonal line are the fixed point locus.

of a periodically repeating interval. A periodically repeating inter-
val is topologically equivalent to a circle, hence the name of the
map.

If we want to model a perfectly sinusoidal oscillator that is
perturbed by some coupled non-linear function, this turns into:

yn+1 =

�
yn + Ω− k

2π
f(yn)

�
mod 1 (2)

where Ω is a constant that is the fixed angular progression of
the sinusoidal oscillator, and k is the coupling strength of the non-
linear perturbation f(·). y0 is the starting phase. In principle,
the choice of f(·) is very flexible and examples of discontinuous
functions can be found in the literature as well as smooth cases.
We will consider a number of examples later. The canonical theo-
retical example is the standard circle map:

yn+1 =

�
yn + Ω− k

2π
sin(2πyn)

�
mod 1 (3)

In order to study the long-term behavior of the iterated map
φ(·) we can look at the winding number

W = lim
n→∞

yn − y0

n
(4)

which measures the average angle added in the long term. If
this added angle notated over the interval [0, 1) is a rational num-
ber p/q with p, q ∈ N then after q iterations we will have a recur-
rence and hence the map is periodic. Irrational winding numbers
are called quasi-periodic.

Throughout this paper we will call a response singular if any
perturbation to the parameters results in a qualitative change of the
response, otherwise it is stable. We will call a response generic
if most, but not necessarily all responses under variation of one or
more parameter stays qualitatively the same.

We will call a closed path an orbit. For orbits where the num-
ber of iterations until repetition is known we say the path is an
n-orbit where n is a positive integer. We call a path regular if it is
periodic or quasi-periodic. Highly irregular patterns will loosely
be called chaotic.

Ω is a phase progression, but of course is essentially the fre-
quency of the unperturbed oscillator which is calculated as fΩ =
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Figure 3: Top: First one two bistable simple orbits at Ω =
0.33, k = 1.42, Bottom: Second of two bistable simple orbits
at Ω = 0.33, k = 1.42. Left shows the waveforms, right shows
the mapping function and the iteration trace. The diagonal line are
the fixed point locus.

Ω · S where S is the sampling rate, or time interval between two
time steps for Ω ∈ [0, 0.5]. Therefore we will call Ω a frequency
throughout this paper. If Ω > 0.5 we get aliasing and the effective
frequency decreases again, which opposite phase sign.

4. OBSERVED WAVEFORMS IN THE PARAMETER
PLANE (Ω, K)

The parameter k defines the strength of the influence of the non-
linear term is on the overall iteration. If k is small or vanishes, we
get behavior close to or equivalent to a pure sinusoidal oscillator.
With increasing values of k the non-linear term starts to dominate.
The specific change in behavior of k also depends on the choice
of the linear oscillator frequency Ω as we shall see below. In this
section all rendered examples are for the standard circle map of
equation 3.

Waveforms were generated by the result of a given iteration n
into a sine function:

Yn = sin(2πyn) (5)

4.1. Quantitative Change with Varied Coupling k

In the case of the standard circle map the behavior with respect to
k can be be roughly classified into three regions. If |k| < 1 then
the transfer function is invertible, that is a unique yn maps to a
unique yn+1. At |k| = 1 a self-tangency forms and at |k| > 1 the
mapping isn’t invertible anymore as multiple values of yn map to
the same yn+1. This can be seen in Figure 1 where the left case of
k = 0.5 no self-overlap parallel to the yn-axis, where as the right
case clearly does. We will call the case |k| < 1 example of small
k whereas the case of |k| > 1 constitutes examples of large k. The
case |k| = 1 is singular and not of practical interest.

For the same reason, for values of |k| < 1 the sign simply
means an inversion of the waveform about the line yn = 0 while
for |k| > 1 one gets qualitatively different behavior for positive
and negative coupling constants.

4.1.1. Behavior for Small k

For small k one can already see non-linear behavior. Most promi-
nent are waveform deformations, reminiscent of wave-shaping or
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Figure 4: Sensitivity to iteration start position yo at Ω = 0.11, k =
6.4. Two orbits (top, bottom) are stable, one (center) is chaotic. All
orbits are non-singular.

phase distortion synthesis [16]. Also beating can occur. An ex-
ample of both these phenomena can be seen in the top example of
Figure 2.

Another phenomenon of practical interest is the relation of the
mapping function to the line of fixed points. In all figures, the
center diagonal line depicts the fixed points of the map, that is
points where

φ(yn) = yn+1 = yn = yf . (6)

Clearly once a mapping hits a fixed point it will stick to this
point. With respect to fixed points a number of basic properties can
again be observed: If the relative angle of the intersection at the
fixed point yf is mild , that is if f ′(yf ) < 1 then starting points of
the iteration in the neighborhood of that fixed point will converge
to the fixed point yf [17, p. 482 for a related discussion for the
logistic map]. This has practical implication for the qualitative be-
havior of the standard circle map. As k is increased, the amplitude
of the sinusoidal non-linearity is increased and hence the slope of
the intersection that is possible. For small k the slope can gener-
ally be expected to be small and hence, generically, f ′(yf ) < 1
when there is an intersection with the fixed point line. Conver-
gence to fixed points translate into rapid decay to silence and hence
these cases are not of practical interest. These silent regions are
likely for small values of k and occur whenever the iterated func-
tion φ(x) intersects the fixed point line. If an intersection happens
is a function of both Ω and of k. Ω defines a constant offset from
the fixed point line, hence larger values of Ω translate into larger
possible values of k before intersections happen.

For intuition one may say, that oscillatory waveforms for small
k are limited by the frequency Ω. For low frequency oscillation
one has less room for adding non-linear contributions than for
higher frequencies.

Qualitatively the same is true if other functions than sinusoids
are used as the iteration nonlinearity f(·). The defining property
is the angle of the function at an intersection with the fixed point
line.
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Figure 5: Left to right, top to bottom: Mapping function and iter-
ation trace of period doubling and first complex pattern formation
for Ω = 0.365, k = 1.26, 1.28, 1.48, 1.5, 1.52, 1.56. The diago-
nal line are the fixed point locus.

4.1.2. Behavior for Large k

As said earlier, for large k, the map is non-invertible. Also from
the previous discussion, the map function φ(·) is much more likely
to intersect the fixed point line. Every actual intersection point the
map with the fixed point line:

φ(xn) = xn+1 = xn (7)

forms a sparse set of point for which the iteration results in a
constant wave form. Due to the sparsity this does not have many
practical implications, though it is important to know that by acci-
dent a poorly chosen starting point can result in silence.

For small k silence is a rather frequent response. However,
with increasing k, the slope of, for example, the standard circle
map at intersection points successively increases. Eventually it
exceeds the slope necessary for convergence and non-attracting or-
bits away from the intersection fixed point become possible again.
In fact silence becomes rare with very large k.

This is especially interesting for low frequencies Ω, where the
potentially interesting responses of the standard circle map are
rather confined. This confinement is lifted for sufficiently large
k and the non-linear response also observed for larger Ω can be
found equally for low frequencies.

4.2. Some Observed Phenomena

This section discussion some observed phenomena using the cir-
cle map, with an eye towards phenomena that are relevant for syn-
thesis. For large k the behavior can change drastically for small
perturbations of the parameters and hence at least naive control of
the map is very difficult. The ultimate goal is to define ways match
parameters with specific phenomenological responses. This task is
however, future work and here this paper confines itself to giving
examples of parameters that illustrate certain properties are seem
interesting for sound synthesis.

Examples of phenomena can be found:
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Figure 6: Simple orbits for large k. Top: A stable simple orbit at
Ω = 0.195, k = 5.8. Center: A singular orbit at Ω = 0.11, k =
−6.4. Bottom: Chaotic regime for all other initial values of yn at
Ω = 0.11, k = −6.4.

• Mode locking: Mode locking is a feature for small k and
becomes more prominent with increasing k [1, for some
more details]. Mode locking means that around frequen-
cies with rational frequencies, the oscillator tends to lock to
those frequencies.

• Wave distortion: Wave fronts can be distorted from a sinu-
soidal form. Qualitatively this is similar to wave-shaping
or phase distortion synthesis. This can be seen in the top
example of Figure 2.

• Beating: A wave form is overlaid with a lower frequency
envelope. The top part of Figure 2 shows a beating pattern
for fairly mild coupling.

• Jitter: Wave fronts have disrupted phases or jittery phases.
The bottom part of Figure 2 shows a jitter pattern.

• Pseudo-Noise: Wave fronts become strongly disrupted be-
coming perceptually noisy. All of Figure 4 shows this, as
well as the bottom example of Figure 6.

Additionally, for large k the map becomes possibly but not
necessarily sensitive to initial values of the iteration. Figure 3
shows such a case. A single point at Ω = 0.33 and k = 1.42
in the parameter plane, which is bistable. This means that for dif-
ferent initial points of the iterations y0 two different stable orbits
are possible. Those are however stable. The first has a 3-orbit and
the second is a 4-orbit. Such a bistable configuration is rare. A
more typical example of the sensitivity to initial values of the map
is shown in Figure 4. All three states in this case are for the same
point in the parameter plane but with different starting positions yn

all three orbits are stable, hence can easily be achieved with a wide
variety of starting points. But only two of the points are regular.

An important path to chaotic behavior is the successive bi-
furcation of resonant frequencies with increasing non-linearity k.
The map goes through successive steps where the period doubles,
which indicated by a doubling of the length of an orbit. An exam-
ple of such a bifurcation is illustrated in Figure 5. We see that a
single orbit separates into two similar but connected orbit, hence
doubling the period.
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Figure 7: Refocusing: The map only occupies a restricted angular
segment of the circle and repeatedly refocuses on this area for Ω =
0.11, k = 4.6. The fine structure of the area is sensitive to initial
conditions. Right: Values of the iteration yn are mapped onto a
circle to show the confinement of the map more clearly. Top left:
Wave form of the response. Bottom left: The mapping function
and the iteration trace.

Simple patterns can be observed even for large k. Figure 6
shows such simple orbits. One is stable for all initial values. The
other is singular, embedded in an otherwise chaotic regime.

Figure 7 shows refocusing behavior. A beam of iterations only
occupy a narrow area of two segments on the circle and repeatedly
refocus on this area. Interestingly, the fine structure of this beam
is not stable with initial values of the iteration.

5. VARIATION IN THE NON-LINEAR FUNCTION

The function f(·) of equation (2) significant influence on the ac-
tual wave form. This is often not emphasized in the mathemati-
cal literature, because one can show that despite variation of this
transfer function only certain specific properties of the function
have an influence how period-doubling and eventually chaos oc-
curs. Specifically the degree of the turning points of the map is
such a determining factor, but the shape of the function away from
turning points is not [18].

However this change in function still has drastic influence to
the sound and also change the qualitative behavior if turning points
change. For this reason we describe a few experiments with varia-
tion of these transfer function.

We consider three functions in addition to the sine for f(·) in
equation (2):

f(yn) =

8><>:4 · yn if 0 ≤ yn < 1/4

(1/4− yn) · 4 + 1 if 1/4 ≤ yn < 3/4

(yn − 3/4) · 4− 1 otherwise.
(8)

f(yn) =

8>>><>>>:
yn+T

1+2·ε·T if 0 ≤ yn < B
yn+(1−2·ep)·T

1−2·ε·T if b ≤ yn < 1− T
yn+T−1
1+2·ε·T if 1− T ≤ yn ≤ B + 1
yn+(1−2·ε)·T−1

1−2∗ε·T otherwise.

(9)

f(yn) =
1

A

4X
m=1

am sin(2πmyn) (10)

With T = 0.5, ε = 0.25 and B = 0.5 + (ε− 1) · T in (9) and
with am = {1, 1

22 , 1
32 , 1

42 } and A = a1 + a2 + a3 + a4 in (10).
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Figure 8: Four non-linearities functions explored: Top, left: Sine,
Top; right: Triangle; Bottom, left: Piecewise linear cardiorespira-
tory coupling model [19]; Bottom, right: truncated Fourier-series.
All depicted at k = 1, Ω = 0.

Equation (8) is a triangle function. Equation (9) is a piecewise
linear function from the biomedical literature [19] and equation
(10) is a Fourier-series composition with four terms. The functions
are shown in Figure 8.

For small k the main effect of variation in the two-fold. One
is the precise occurrence of intersection with the fixed-point line.
The second is the wave-shaping character of the function.

For large k all four example exhibit chaotic properties, though
for the same parameter values, the behavior can naturally be very
different. Figure 9 shows the same parameter point Ω = 0.2, k =
16 for all four functions. Note that the standard circle map exhibits
a stable periodic orbit, which has however a large orbit period. The
triangle map shows a chaotic pattern. The cardiorespiratory model
shows a stable orbit, including a dense attractor with some jitter,
and the Fourier series also displays a chaotic regime.

6. SONIC RESPONSES

This section gives a subjective description of the sounds heard for
most figures presented so far. To make the results accessible to the
audible range, an iteration frequency of 22050 was used and the
result of function (5) was downsampled by a factor of ten. The
purpose of this section is to give a rough idea of the sonic charac-
ter of the responses that certainly are not well captured in visual
depiction. Some figures while looking very similar have rather
different sounding responses.

• The example of bifurcation depicted in Figure 5 corresponds
to a sine wave that successively gains new partials, eventu-
ally a high frequency noise develops, the noise becomes
more broadband and eventually dominates the spectrum.

• The jitter pattern from Figure 2 is perceived as a sine wave
with some underlaying noise.

• The bistable sounds of Figure 3 are two sine waves which
are at a perfectly tuned fourth interval.

• The bottom two examples of the singular orbit within the
noise regime sounds like a pure oscillator with some par-
tials in the singular case, and sounds like noise with irregu-
lar rhythmic subpatterns in the chaotic case.

• The different initial conditions of the case depicted in Fig-
ure 4 is a sine wave with a low frequency pitch bending
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Figure 9: The result of the general circle map for (top to bottom)
sine, triangle, piecewise linear and Fourier series functions at Ω =
0.2, k = 16

modulation for the first regular case, while the other non-
chaotic orbit has a rich spectrum. The chaotic case sound
like a low frequency band with a rhythmic subpattern.

• The example of variation of the nonlinear functions of Fig-
ure 9 sound like a simple sound with a light pitch bend for
the sine function, rhythmic noise for the triangle function, a
single sound with complex spectrum for the piecewise lin-
ear function and broadband noise with a mild periodic pitch
bend for the Fourier series.

• Other interesting examples (without visual depiction) can
be found at Ω = 0.4, k = 1.1 for high pitched narrow-band
noise. Narrowband low-frequency noise with and without
rhythmic subpatterns can be found at Ω = 0.36, k = 16.0
and k = 15.8.

Overall it is important to note, that pure noise responses are
rather rare, even “noisy”-sounding responses often have additional
features, for example underlaying rhythmic patterns, they may be
band-limited and be subject to pitch-bending phenomena. The
noisy aspect of the sound my be mixed with pitched or narrowband
sounds. Hence chaotic patterns and perceptual noise are typically
not the same.

7. CONCLUSIONS

We have demonstrated a number of properties of the circle map
for sound synthesis by experimentation with both the parameters
of the map and by varying the non-linearity. Some of the sonic
results of non-linear iterative maps have already been discussed in
the context of granular synthesis [8, 9]. The advantage of consid-
ering the circle map is the transition of linear and familiar behavior
into rather complex regions which exhibits varied responses, like
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chaotic, noisy-sounding responses, to pure and mixed sine wave,
amplitude modulation, and pitch bending. One intriguing feature
of these maps is their evident computational efficiency, requiring
one function lookup, one multiplication, 2 additions and one addi-
tional memory lookup per time step. By the rich diversity of pos-
sible responses, and guaranteed stability this makes iterated maps
attractive. The main disadvantage of the method is the difficulty
of control. The purpose of this work is to prepare for eventual rec-
ommendations control of perceptually relevant responses through
these parameters, which is planned.

The circle map is also attractive because by its one parame-
ter perturbation between linear and non-linear behavior allows for
classification of the method with respect to the two end of this be-
havioral spectrum.
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