PARALLEL LINEAR STATIONARY ITERATIVE METHODS∗
L. RIDGWAY SCOTT† AND DEXUAN XIE‡

Abstract. A parallel linear stationary iterative method, defined by domain partitioning and referred to as the JSOR method, is analyzed in this paper. Basic JSOR convergence theorems, including one concerning the optimal relaxation parameter, are presented. JSOR is shown to have a much faster convergence rate than Jacobi and the same efficiency of interprocessor-data communication as Jacobi. Since JSOR contains the classic SOR and damped-Jacobi methods as its two extreme cases, the JSOR analysis can lead to a general linear stationary iteration theory, and imply both SOR and damped-Jacobi theories directly. Numerical results are presented to demonstrate the parallel performance of JSOR on a MIMD parallel computer. Finally, the development and application of JSOR are discussed.

Key words. SOR, damped-Jacobi, JSOR, parallel computing, parallel multigrid methods.

AMS(MOS) subject classifications. 65F10, 65Y05.

1. Introduction. The Jacobi and Gauss-Seidel methods (or damped-Jacobi and SOR for their relaxed variants) are two well known linear stationary iterations for solving linear systems of equations [10]. The Jacobi method is “completely” parallel, while the typically more efficient Gauss-Seidel method is the opposite. However, even though Jacobi can be implemented in parallel on n processors, where n is the number of unknowns of the linear system to be solved, the number p of processors actually employed is usually very small in comparison to n due to communication costs. In fact, on today’s distributed memory MIMD architectures [3], the time required to update an iterative value is much smaller than the time required to send a updated iterative value to another processor, which may cause interprocessor data-communication overhead [1,3]. To overcome this overhead, a domain partitioning (or an index set partitioning for a general linear system) technique is often used in the implementation of Jacobi.

That is, the unknowns of the linear system are divided into p groups corresponding to p subdomains of the domain partitioning, such that each group contains a sufficiently large and similar number of unknowns. Since each group is assigned to one processor, the iterative values within each group can be calculated sequentially. Hence, to improve the convergence rate of Jacobi, it is natural to substitute the Jacobi iterative process within each group by the sequential Gauss-Seidel iterative process, yielding a new par-

∗ This work was supported in part by NSF grant DMS-9105437.
† Department of Mathematics, University of Houston, Houston, TX 77204. Current address: Department of Mathematics, University of Chicago, Chicago, IL 60637 (ridg@uchicago.edu).
‡ Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012 (dexuan@cims.nyu.edu).
allel iterative method. We call this new scheme the JGS method because it is a mixture of Jacobi and Gauss-Seidel. Further, introducing a relaxation parameter to JGS, we obtain an accelerated variant of JGS, and call it the JSOR method. Obviously, JGS is JSOR with a unit relaxation parameter.

In this paper, we study the convergence properties and parallel performance of JSOR theoretically and numerically. We prove several basic convergence theorems for JSOR, including one concerning the optimal relaxation parameter. We also present a model problem analysis for JSOR to confirm our JSOR theory. In particular, we show that both damped-Jacobi and SOR are two extreme cases of JSOR (corresponding to $p = 1$ and $p = n$, respectively), and their convergence theorems directly follow from the corresponding JSOR convergence theorems. In this sense, the JSOR analysis can lead to a general linear stationary iteration theory.

JSOR has a faster convergence rate than Jacobi and the same efficiency of interprocessor data communication as Jacobi. We also observe that JGS can be regarded as a satisfactory parallel version of the sequential Gauss-Seidel method if p is not too large. However, in the case of optimal relaxation parameter, numerical results show that the convergence speed of JSOR can be reduced almost linearly with respect to p. Hence, JSOR cannot be taken as a parallel version of SOR; otherwise, no speedup can be obtained. Due to this, JSOR with $p > 1$ is not a suitable parallel solver of linear systems. This might explain why JSOR has not been studied so far even though the idea of JSOR has been known for a long time.

However, two motivations suggest a study of JSOR. First, we attempt to develop an efficient parallel SOR version by domain partitioning. Since JSOR is the simplest scheme by domain partitioning, a study of JSOR may help us to do so. It was based on our JSOR analysis that the PSOR method, an efficient parallel SOR method by domain partitioning, was obtained in [7]. As shown in [7], PSOR has the same convergence rate as the Red/Black SOR method (a widely-used parallel version of SOR) and the same advantages as JSOR in the parallel implementation. Hence, PSOR can be more efficiently and more easily implemented on a MIMD parallel computer than the Red/Black SOR method, especially for solving complicated scientific problems (for which it may be difficult to find a global Red/Black ordering).

The second motivation for us to analyze JSOR is to study the smoothing properties of JSOR. In fact, an important application of JSOR is as a parallel smoother of the parallel multigrid method [5]. Many numerical results have shown that JSOR can have the same smoothing effects as the SOR smoother when p is not too large [8,9]. However, before studying the smoothing properties of JSOR, we need to study JSOR mathematically. It was based on our JSOR analysis that we obtained a JSOR smoothing analysis in [9].

The remainder of this paper is organized as follows. In Section 2, we describe the JGS and JSOR methods. In Section 3, we analyze the conver-
gence of JSOR. In Section 4, we estimate the optimal relaxation parameter of JSOR. In Section 5, we give JSOR a model problem analysis. In Section 6, we demonstrate the parallel performance of JSOR. Conclusions are summarized in Section 7.

2. The JGS and JSOR methods. We consider the solution of the linear system

\begin{equation}
Au = f,
\end{equation}

where \(A = (a_{ij})_{n \times n} \) is a \(n \times n \) nonsingular matrix, \(u = (u_1, u_2, \ldots, u_n)^T \) is an unknown real vector, and \(f = (f_1, f_2, \ldots, f_n)^T \) is a given real vector. The superscript \(T \) denotes a vector or matrix transpose.

Let \(W = \{1, 2, \ldots, n\} \) be an index set. For a given positive integer \(p \), we define a simple partition: \(^1\)

\begin{equation}
W = R_1 \cup R_2 \cup \cdots \cup R_p
\end{equation}

with \(R_i = \{n_{i-1} + 1, n_{i-1} + 2, \ldots, n_i\} \) and \(n_i \) (for \(i = 1, 2, \ldots, p \)) satisfying

\[0 = n_0 < n_1 < n_2 < \cdots < n_p = n. \]

With this index set partition, we write \(A, u \) and \(f \) in the block forms

\[
A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1p} \\
A_{21} & A_{22} & \cdots & A_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
A_{p1} & A_{p2} & \cdots & A_{pp}
\end{bmatrix}, \quad u = \begin{bmatrix}
\mathcal{U}_1 \\
\mathcal{U}_2 \\
\vdots \\
\mathcal{U}_p
\end{bmatrix}, \quad \text{and} \quad f = \begin{bmatrix}
F_1 \\
F_2 \\
\vdots \\
F_p
\end{bmatrix}
\]

such that (2.1) is written into a system of block equations

\begin{equation}
A_i \mathcal{U}_i + \sum_{j=1, j\neq i}^p A_{ij} \mathcal{U}_j = F_i \quad \text{for} \ i = 1, 2, \ldots, p,
\end{equation}

where the submatrix \(A_{ij} \) for \(i, j = 1, 2, \ldots, p \) is defined from \(A \) by deleting all rows except those corresponding to indices in \(R_i \) and all columns except those corresponding to indices in \(R_j \), and \(\mathcal{U}_i \) and \(F_i \) are formed from \(u \) and \(f \) by deleting all elements of \(u \) and \(f \) except those corresponding to indices in \(R_i \) respectively.

We first define the JGS iterates \(u^k = (\mathcal{U}_1^{(k)}, \mathcal{U}_2^{(k)}, \ldots, \mathcal{U}_p^{(k)})^T \) by induction on \(k \), where \(k = 0, 1, 2, \ldots \). Let \(u^0 \) be a given initial guess. Assuming that \(u^k \) is known, with (2.3), we construct \(p \) independent block equations:

\(^1\) If the linear system (2.1) arises from an approximation of an elliptic boundary problem on a grid mesh \(\Omega_h \), we partition \(\Omega_h \) into \(p \) disjoint sub-meshes \(\Omega_{h,i} \), and set \(R_i = \{ j \mid \text{mesh point } j \in \Omega_{h,i} \} \) for \(i = 1, 2, \ldots, p \), so that JSOR is defined on the domain partitioning. With the appropriate numbering of grid points, these partitions coincide.
(2.4) \[A_{ii} U_i = F_i - \sum_{j=1, j \neq i}^{p} A_{ij} U_j^{(k)}, \quad i = 1, 2, \ldots, p. \]

We then define the update \(U^{(k+1)}_i \) as the result of one step of Gauss-Seidel iteration for solving (2.4) with \(U^{(k)}_i \) as the starting point for each \(i = 1, 2, \ldots, p \), yielding the \(k+1 \)-th JGS iterate

\[u^{k+1} = (U^{(k+1)}_1, U^{(k+1)}_2, \ldots, U^{(k+1)}_p)^T. \]

Clearly, each \(U^{(k+1)}_i \) can be calculated independently. Hence, by assigning the calculation of \(U^{(k+1)}_i \) to processor \(i \) for \(i = 1, 2, \ldots, p \), JGS can be implemented on \(p \) processors in parallel. After all \(U^{(k+1)}_i \) are calculated, the update \(u^{(k+1)}_i \) is sent from processor \(i \) to other processors as needed. Hence, each JGS iteration needs only one interprocessor data communication.

To get an iterative expression of JGS, we write \(A \) and submatrix \(A_{ii} \) \((i = 1, 2, \ldots, p) \) into the matrix sums

(2.5) \[D^{-1} A = I - L - U, \quad \text{and} \quad (D_i)^{-1} A_{ii} = I_i - L_i - U_i, \]

where, respectively, \(D \) and \(D_i \) are the diagonal matrices of \(A \) and \(A_{ii} \), \(I \) and \(I_i \) are two identity matrices, and \(L \) and \(U \), as well as \(L_i \) and \(U_i \), are strictly lower and strictly upper triangular matrices. We then write \(L \) and \(U \) in the following matrix sums:

(2.6) \[L = B + N, \quad \text{and} \quad U = C + M, \]

where \(B = \text{diag}(L_1, L_2, \ldots, L_p) \), \(C = \text{diag}(U_1, U_2, \ldots, U_p) \),

\[
N = -D^{-1} \begin{bmatrix}
0 & 0 & 0 & \cdots & 0 \\
A_{21} & 0 & 0 & \cdots & 0 \\
A_{31} & A_{32} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{p1} & A_{p2} & \cdots & A_{p,p-1} & 0
\end{bmatrix},
\]

and

\[
M = -D^{-1} \begin{bmatrix}
0 & A_{12} & A_{13} & \cdots & A_{1p} \\
0 & 0 & A_{23} & \cdots & A_{2p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & A_{p-1,p} \\
0 & 0 & \cdots & 0 & 0
\end{bmatrix}.
\]

(The summation form of \(U, U = C + M \), will be used only for the convergence analysis.)
By using this notation, the JGS iterates \(\{u^k\} \) can be expressed by

\[
\tag{2.7}
 u^{k+1} = M_p u^k + (I - B)^{-1} D^{-1} f, \quad k = 0, 1, 2, \ldots,
\]

where the JGS iteration matrix \(M_p \) is below:

\[
\tag{2.8}
 M_p = (I - B)^{-1}(U + N),
\]

and the subscript \(p \) indicates that the iteration matrix depends on \(p \).

We next define JSOR as an accelerated variant of JGS. That is, using the JGS iterate \(\tilde{u} = B u^{k+1} + (U + N) u^k + D^{-1} f \) and a given relaxation parameter \(\omega \), we define the JSOR iterates \(\{u^k\} \) by

\[
\tag{2.9}
 u^{k+1} = (1 - \omega) u^k + \omega \tilde{u}, \quad k = 0, 1, 2, \ldots.
\]

From (2.9) follows the iterative expression of JSOR

\[
\tag{2.10}
 u^{k+1} = M_p(\omega) u^k + \omega (I - \omega B)^{-1} D^{-1} f, \quad k = 0, 1, 2, \ldots.
\]

where the JSOR iteration matrix \(M_p(\omega) \) has the expression

\[
\tag{2.11}
 M_p(\omega) = (I - \omega B)^{-1} [(1 - \omega) I + \omega (U + N)].
\]

Clearly, setting \(\omega = 1 \) in (2.11) gives the JGS iteration matrix \(M_p \). Hence, JGS is a special case of JSOR.

JSOR has different iterative expressions with different values of \(p \). In particular, JSOR with \(p = 1 \) and \(p = n \) reduce to the well-known SOR and damped-Jacobi methods, respectively. In fact, for \(p = 1 \), we have \(N = 0 \) and \(B = L \), so that \(M_p(\omega) = (I - \omega L)^{-1} [(1 - \omega) I + \omega U] \), which is the SOR iteration matrix [10]. Similarly, for \(p = n \), \(M_p(\omega) = (1 - \omega) I + \omega (U + L) \), which is the damped-Jacobi iteration matrix. Fig. 1 depicts the two dimensional space of algorithms represented by JSOR and these various limits.

3. The convergence analysis. It is well known that a linear stationary iteration is convergent if and only if the spectral radius of the iterative matrix is less than one [10]. Hence, we will consider the spectral radius of the JSOR iteration matrix to study the convergence of JSOR. We denote the spectral radius as \(\rho(\cdot) \).

Theorem 3.1 (Comparison of the convergence rates of JGS, Gauss-Seidel, and Jacobi). Let the matrix \(A = (a_{ij})_{n \times n} \) satisfy \(a_{ij} \leq 0 \) for all \(i \neq j \) and \(a_{ii} > 0 \) for all \(i \).

(a) If \(\rho(M_J) < 1 \), then \(\rho(M_p) \leq \rho(M_J) \) for \(1 \leq p \leq n \).

(b) If \(\rho(M_J) \geq 1 \), then \(\rho(M_p) \geq \rho(M_J) \) for \(1 \leq p \leq n \).

(c) If \(\rho(M_J) < 1 \) and \(p > 1 \), then \(\rho(M_{GS}) < \rho(M_p) < 1 \).

Here \(M_J, M_{GS}, \) and \(M_p \) are the iteration matrices of Jacobi, Gauss-Seidel, and JGS, respectively.
Proof. Define the weighted maximum norm $||x||_{\xi,\infty}$ by

$$||x||_{\xi,\infty} = \max_{i} \frac{|x_i|}{\xi_i},$$

where ξ is a given vector with all components $\xi_i > 0$, and x_i is the i-th component of vector x. The matrix norm induced by $||x||_{\xi,\infty}$ is defined by

$$||A||_{\xi,\infty} = \max_{||x||_{\xi,\infty}=1} ||Ax||_{\xi,\infty},$$

which can be written in an equivalent form

$$||A||_{\xi,\infty} = \max_{i} \frac{\sum_{j=1}^{n} |a_{ij}| \xi_j}{\xi_i}. \tag{3.2}$$

(a) The Jacobi iteration matrix $M_J = (m_{ij})_{n \times n}$ has $m_{ij} = -a_{ij}/a_{ii}$ for $i \neq j$ and $m_{ii} = 0$ for all i. The assumption on A implies that M_J is a nonnegative matrix. Since $\rho(M_J) < 1$, for any $\epsilon > 0$ sufficiently small, $\lambda = \rho(M_J) + \epsilon < 1$. The Perron-Frobenius Theorem\(^2\) [3] then implies that there exists some vector $\xi > 0$ such that $||M_J||_{\xi,\infty} \leq \lambda$, by (3.2), which can be written

$$\sum_{j=1}^{n} m_{ij}\xi_j \leq \lambda \xi_i, \quad i = 1, 2, \ldots, n. \tag{3.3}$$

\(^2\)Some conclusions [3] from the Perron-Frobenius Theorem are as follows: Let M be an $n \times n$ nonnegative matrix. Then there exists some nonzero vector $\xi \geq 0$ such that $M\xi = \rho(M)\xi$. Further, for every $\epsilon > 0$, there exists some $\xi > 0$ such that $\rho(M) \leq ||M||_{\xi,\infty} \leq \rho(M) + \epsilon.$
For the given ξ, we consider some x such that $\|x\|_\infty = 1$. This implies
\begin{equation}
|x_i| \leq \xi_i \quad \text{for } i = 1, 2, \ldots, n.
\end{equation}
Let $y = M_p x$. By (2.8), we have $y = By + Nx + Ux$ with the following component form
\begin{equation}
y_i = \sum_{j<i, j \in R_k} m_{ij} y_j + \sum_{j<i, j \notin R_k} m_{ij} x_j + \sum_{j>i} m_{ij} x_j, \quad i \in R_k,
\end{equation}
where $k = 1, 2, \ldots, p$. Since $R_k = \{n_{k-1} + 1, \ldots, n_k\}$, it is sufficient to prove that $|y_i| \leq \lambda \xi_i$ for all $i = 1, 2, \ldots, n$ by showing that $|y_i| \leq \lambda \xi_i$ for all $i \in R_k$, where $k = 1, 2, \ldots, p$. We will do it by induction on i in each R_k. First, with (3.3) and (3.4),
\begin{align*}
|y_{n_{k-1}+1}| &= \left| \sum_{j=1}^{n} m_{(n_{k-1}+1)j} x_j \right| \\
&\leq \sum_{j=1}^{n} m_{(n_{k-1}+1)j} |x_j| \leq \sum_{j=1}^{n} m_{(n_{k-1}+1)j} \xi_j \leq \lambda \xi_{n_{k-1}+1}.
\end{align*}
Assume that $|y_j| \leq \lambda \xi_j$ for $j < i$, where $i, j \in R_k$. Then by (3.3), (3.4) and (3.5),
\begin{align*}
|y_i| &\leq \sum_{j<i, j \in R_k} m_{ij} |y_j| + \sum_{j<i, j \notin R_k} m_{ij} |x_j| + \sum_{j>i} m_{ij} |x_j| \\
&\leq \sum_{j<i, j \in R_k} m_{ij} \lambda \xi_j + \sum_{j<i, j \notin R_k} m_{ij} \xi_j + \sum_{j>i} m_{ij} \xi_j \\
&\leq \sum_{j<i} m_{ij} \xi_j + \sum_{j>i} m_{ij} \xi_j \\
&= \sum_{j=1}^{n} m_{ij} \xi_j \leq \lambda \xi_i,
\end{align*}
where $\lambda < 1$ has been used. Hence, by induction, we have proved that $|y_i| \leq \lambda \xi_i$ for all $i \in R_k$ ($k = 1, 2, \ldots, p$). Therefore,
\begin{equation}
\|M_p x\|_\infty = \|y\|_\infty = \max_{1 \leq i \leq n} \left\{ \frac{|y_i|}{\xi_i} \right\} = \max_{1 \leq k \leq p} \max_{i \in R_k} \frac{|y_i|}{\xi_i} \leq \lambda
\end{equation}
for all x satisfying $\|x\|_\infty = 1$. This implies that
\begin{equation}
\rho(M_p) \leq \|M_p\|_\infty \leq \rho(M_J) + \epsilon.
\end{equation}
Letting $\epsilon \to 0$, we complete the proof of (a).

(b) Since M_J is non-negative, by the Perron-Frobenius Theorem [3], there exists a nonzero vector $\xi \geq 0$ such that $M_J \xi = \rho(M_J) \xi$. Let $y = M_p \xi$.
Then \(y \geq 0 \). Noting that \(\rho(M_J) \geq 1 \), we can proceed as in the proof of part (a), with the inequalities reversed, to prove that \(y_i \geq \rho(M_J)\xi_i \) for all \(i \in R_k \), where \(k = 1, 2, \ldots, p \). Therefore, we conclude that \(M_p\xi = y \geq \rho(M_J)\xi \).

For all integers \(m > 0 \), we then have \((M_p)^m\xi \geq \xi(\rho(M_J))^m\). Since \(\xi \neq 0 \), the matrix \((M_p/\rho(M_J))^m\) does not converge to zero as \(m \) tends to infinity. Therefore, \(\rho(M_p/\rho(M_J)) \geq 1 \), which gives \(\rho(M_p) \geq \rho(M_J) \).

(c) Clearly, \(M_{GS} = (I - L)^{-1}U \) is a nonnegative matrix. By the Perron-Frobenius Theorem [3], there exists a nonzero vector \(\xi \geq 0 \) such that \(M_{GS}\xi = \rho(M_{GS})\xi \). This expression can be written as \(\rho(M_{GS})\xi = U\xi + \rho(M_{GS})L\xi \) with the following component form

\[
\rho(M_{GS})\xi_i = \sum_{j>i} m_{ij}\xi_j + \rho(M_{GS}) \sum_{j<i} m_{ij}\xi_j, \quad i = 1, 2, \ldots, n.
\]

Further, according to part (a), \(\rho(M_J) < 1 \) follows \(\rho(M_{GS}) < 1 \).

Let \(y = M_p\xi \). We will prove, by induction on \(i \), that \(y_i \geq \rho(M_{GS})\xi_i \) for all \(i \in R_k \). Indeed, by (3.6) and \(1 > \rho(M_{GS}) \),

\[
y(n_{k-1}+1) = \sum_{j=1}^{n} m(n_{k-1}+1) j\xi_j
\geq \sum_{j>n_{k-1}+1} m(n_{k-1}+1) j\xi_j + \rho(M_{GS}) \sum_{j<n_{k-1}+1} m(n_{k-1}+1) j\xi_j
= \rho(M_{GS})\xi(n_{k-1}+1).
\]

Assuming that \(y_j \geq \rho(M_{GS})\xi_j \) for \(j < i \), where \(i, j \in R_k \), we obtain

\[
y_i = \sum_{j<i, j \in R_k} m_{ij}y_j + \sum_{j<i, j \notin R_k} m_{ij}\xi_j + \sum_{j>i} m_{ij}\xi_j
\geq \sum_{j<i, j \in R_k} m_{ij}\rho(M_{GS})\xi_j + \rho(M_{GS}) \sum_{j<i, j \notin R_k} m_{ij}\xi_j + \sum_{j>i} m_{ij}\xi_j
= \rho(M_{GS}) \sum_{j<i} m_{ij}\xi_j + \sum_{j>i} m_{ij}\xi_j
= \rho(M_{GS})\xi_i.
\]

This shows that

\[M_p\xi = y \geq \rho(M_{GS})\xi, \]

and from which we can prove that \(\rho(M_p) \geq \rho(M_{GS}) \) using the same arguments as in (b).

Theorem 3.1 shows that JGS and Jacobi are either both convergent or both divergent. Asymptotically, all JGS iteration methods with \(1 < p < n \) converge faster than Jacobi but slower than Gauss-Seidel. Since Gauss-Seidel is a particular case of JGS, the corresponding theorem about Gauss-Seidel (see Theorem 3.3 in [6]) follows from Theorem 3.1 immediately by setting \(p = 1 \).
Theorem 3.2 (Basic JSOR convergence theorem). Let A be a symmetric positive definite matrix, and define

$$
\tilde{\eta} = \min_{x \in \Lambda} \frac{x^* D (M + N)x}{x^* Dx},
$$

where Λ contains all nonzero eigenvectors of the JSOR iteration matrix $M_p(\omega)$, and the superscript * indicates the conjugate transpose. If $\tilde{\eta} < 1$, then JSOR is convergent if and only if $0 < \omega < \frac{2}{1 - \tilde{\eta}}$.

Proof. Let x be a nonzero eigenvector of the JSOR iteration matrix $M_p(\omega)$, and λ be its corresponding eigenvalue such that $M_p(\omega)x = \lambda x$. Then, by (2.11), we have

$$
[(1 - \omega)I + \omega(U + N)]x = \lambda(I - \omega B)x.
$$

Multiplying by $x^* D$ on the both sides of (3.8), we get

$$
\lambda = \frac{(1 - \omega)x^* Dx + \omega(x^* DUx + x^* DNx)}{x^* Dx - \omega x^* DBx}.
$$

Set $x^* DLx = \alpha + i\beta$, $x^* DNx = r_1 + ir_2$, and $x^* Dx = q$, where α, β, r_1, and r_2 are real, and $i = \sqrt{-1}$. From (2.5) we see that DU and DL are respectively strictly lower and strictly upper triangular matrices, whose entries are the negatives of the entries of A. Thus, the symmetry of A gives $DU = (DL)^T$ and $DM = (DN)^T$, so that $x^* DUx = \alpha - i\beta$, and $x^* DMx = r_1 - ir_2$. With $B = L - N$, we have

$$
x^* DBx = x^* DLx - x^* DNx = (\alpha - r_1) + i(\beta - r_2).
$$

Hence, (3.9) can be written as

$$
\lambda = \frac{(1 - \omega)q + \omega[(\alpha + r_1) - i(\beta - r_2)]}{q - \omega[(\alpha - r_1) + i(\beta - r_2)]}.
$$

Since

$$
|\lambda|^2 = \frac{[(1 - \omega)q + \omega(\alpha + r_1)]^2 + \omega^2(\beta - r_2)^2}{|q - \omega(\alpha - r_1)|^2 + \omega^2(\beta - r_2)^2},
$$

we get that $|\lambda| < 1$ if and only if

$$
\omega(q - 2\alpha)q < 2 - \omega + \frac{2r_1}{q} > 0.
$$

Here (3.10) is obtained from $[(1 - \omega)q + \omega(\alpha + r_1)]^2 < |q - \omega(\alpha - r_1)|^2$. Further, the positive definiteness of A follows that

$$
\omega(q - 2\alpha)q > 0 \quad and \quad q - 2\alpha = x^* Ax > 0.
$$
Hence, (3.10) is equivalent to $2 - \omega + \frac{2r_1}{q} > 0$. Therefore, we have proved that

$$|\lambda| < 1 \quad \text{if and only if} \quad 2 - \omega + \frac{2r_1}{q} > 0. \quad (3.12)$$

Suppose $0 < \omega < \frac{2}{1 - \eta}$. This gives $2 - \omega(1 - \hat{\eta}) > 0$ since $\hat{\eta} < 1$. By (3.7), we have

$$\hat{\eta} \leq \frac{x^* D(M + N)x}{x^* Dx} = \frac{2r_1}{q}.$$

Thus,

$$2 - \omega + \frac{2r_1}{q} \geq 2 - \omega + \omega \hat{\eta} = 2 - \omega(1 - \hat{\eta}) > 0. \quad (3.13)$$

Therefore, according to (3.12), we conclude $\rho(M_p(\omega)) < 1$.

Conversely, suppose $\rho(M_p(\omega)) < 1$. Then from (3.12) it follows

$$2 - \omega + \omega \frac{x^* D(M + N)x}{x^* Dx} > 0 \quad \text{for all } x.$$

Hence, by (3.7), we get $2 - \omega + \omega \hat{\eta} > 0$, which implies $\omega < \frac{2}{1 - \eta}$. \hfill \Box

Theorem 3.3 (Sufficient Convergence Condition for JSOR). Let η be the smallest eigenvalue of the matrix $M + N$. Then JSOR is convergent for $0 < \omega < \frac{2}{1 - \eta}$. Here $\eta < 0$ for $p > 1$, and $\eta = 0$ for $p = 1$.

Proof. We first show that η can be expressed by

$$\eta = \min_{x \neq 0} \frac{x^* D(M + N)x}{x^* Dx}. \quad (3.14)$$

$M + N$ has the same eigenvalues as the matrix $D^{\frac{1}{2}}(M + N)D^{-\frac{1}{2}}$ because of their similarity. Since

$$D^{\frac{1}{2}}(M + N)D^{-\frac{1}{2}} = D^{-\frac{1}{2}}D(M + N)D^{-\frac{1}{2}} = D^{-\frac{1}{2}}(DM + DN)D^{-\frac{1}{2}},$$

and the symmetry of A gives $DM = (DN)^t$, we conclude that $D^{\frac{1}{2}}(M + N)D^{-\frac{1}{2}}$ is symmetric. Hence,

$$\eta = \min_{y \neq 0} \frac{y^* D^{\frac{1}{2}}(M + N)D^{-\frac{1}{2}}y}{y^* y} = \min_{x \neq 0} \frac{x^* D(M + N)x}{x^* Dx},$$

where we have set $y = D^{\frac{1}{2}}x$. This completes the proof of (3.14).
Since the trace of matrix $M + N$ is zero, the smallest eigenvalue η must be a negative real except the case of $p = 1$. In fact, for $p = 1$, we have $M = N = 0$, following $\eta = 0$. Further, from (3.14) it follows that $\eta \leq \bar{\eta}$.

Hence, when $0 < \omega < \frac{2}{1-\eta}$, with (3.13), we have

$$2 - \omega + \frac{2r_1}{q} \geq 2 - \omega(1 - \eta) > 0.$$

Consequently, from (3.12) it follows that $\rho(M_p(\omega)) < 1$, i.e., JSOR is convergent.

4. On the optimal relaxation parameter of JSOR. We say that ω_b is the optimal relaxation parameter of JSOR provided that it satisfies

$$\rho(M_p(\omega_b)) = \min_{\omega} \rho(M_p(\omega)).$$

Following the SOR optimal relaxation parameter theory [10], we will estimate the optimal relaxation parameter of JSOR in this section.

We first cite the definition of a consistently ordered matrix from [10].

Definition 4.1. The matrix $A = (a_{ij})_{n \times n}$ is consistently ordered if for some m there exist disjoint subsets S_1, S_2, \ldots, S_m of $W = \{1, 2, \ldots, n\}$ such that $\bigcup_{i=1}^{m} S_i = W$ and such that if $a_{ij} \neq 0$ or $a_{ji} \neq 0$, and $i \in S_k$, then $j \in S_{k+1}$ if $j > i$ and $j \in S_{k-1}$ if $j < i$.

Theorem 4.1 (Extension of Theorem 3.3 of Chapter 5 in [10]). If A is a consistently ordered matrix, then for all reals β and κ, the determinant

$$\Delta = \det(\alpha B + \alpha^{-1} C + \beta(N + M) - \kappa I)$$

is independent of α for all $\alpha \neq 0$. Here B, N, C and M are defined in (2.6).

Proof. Let $\sigma = (\sigma(1), \sigma(2), \ldots, \sigma(n))$ be a permutation defined on the integers $1, 2, \ldots, n$. Based on the index set partition (2.2), we set

$$T_B = \{(i, j) \in R_k \times R_k | j < i, 1 \leq k \leq p\},$$

$$T_C = \{(i, j) \in R_k \times R_k | j > i, 1 \leq k \leq p\},$$

and $T_{N+M} = W \times W - T_B - T_C$. Since

$$\Delta = \frac{\det(D)\Delta}{\det(D)} = \frac{1}{\det(D)} \det(\alpha DB + \alpha^{-1} DC + \beta D(M + N) - \kappa D),$$

the general term of Δ is

$$t(\sigma) = \pm \frac{1}{\det(D)} \prod_{i=1}^{n} a_{i, \sigma(i)} \alpha^{i-\mu} \beta^{\nu} \kappa^{n-(t+\mu+\nu)},$$

where $t(\sigma)$ is the term corresponding to the permutation σ. The proof is completed.

Corollary 4.2. If $\Delta > 0$, then the matrix A is consistently ordered.
where \(l, \mu \) and \(\nu \) are, respectively, the number of values of \(i \) such that
\((i, \sigma(i)) \in T_B\), such that \((i, \sigma(i)) \in T_C\), and such that \((i, \sigma(i)) \in T_{N+M}\).
Since \(t(\sigma) = 0 \) if and only if there exists one \(a_{i \sigma(i)} = 0 \), we only need to consider the terms with \(a_{i \sigma(i)} \neq 0 \) for \(1 \leq i \leq n \).

Let \(l_k \) and \(\mu_k \) be respectively the number of values of \(i \) such that
\(i > \sigma(i) \) and such that \(i < \sigma(i) \) as well as such that \(a_{i \sigma(i)} \) is an entry of \(A_{kk} \). Clearly, \(A_{kk} \) is also consistently ordered. Hence, by the similar arguments in the proof of Theorem 3.3 in [10] we claim that \(l_k = \mu_k \) for all \(k = 1, 2, \ldots, p \). Noting that \(D - DB - DC = \text{diag}(A_{11}, \ldots, A_{pp}) \), we have

\[
l = \sum_{k=1}^{p} l_k \quad \text{and} \quad \mu = \sum_{k=1}^{p} \mu_k.\]

Hence, \(l - \mu = \sum_{k=1}^{p} (l_k - \mu_k) = 0 \). This proves that \(t(\sigma) \) is independent of \(\alpha \).

Lemma 4.1. Let \(A \) be a consistently ordered matrix with all its diagonal elements \(a_{ii} \neq 0 \). If \(\lambda \) is a non-zero eigenvalue of \(M_p(\omega) \), then there exists non-zero real vector \(x \) such that

\[
\alpha + \lambda^{-\frac{1}{p}} \beta - \frac{\lambda + \omega - 1}{\omega \lambda^{\frac{1}{p}}} = 0,
\]

where \(\alpha \) and \(\beta \) are two real numbers defined by

\[
\alpha = \frac{x^T D(C + B)x}{x^T Dx} \quad \text{and} \quad \beta = \frac{x^T D(M + N)x}{x^T Dx}.
\]

Proof. Clearly, \(\det(I - \omega B) = 1 \), and \((I - \omega B)M_p(\omega) = (1 - \omega)I + \omega(U + N) \). From Theorem 4.1 it follows that

\[
\det(M_p(\omega) - \lambda I) = \det(I - \omega B) \det(M_p(\omega) - \lambda I)
\]

\[
= \det(\omega(U + N) + \lambda \omega B - (\lambda + \omega - 1)I)
\]

\[
= \left(\omega \lambda^{\frac{1}{p}} \right)^n \det \left(\lambda^{-\frac{1}{p}}(U + N) + \lambda^{\frac{1}{p}} B - \frac{\lambda + \omega - 1}{\omega \lambda^{\frac{1}{p}}} I \right)
\]

\[
= \left(\omega \lambda^{\frac{1}{p}} \right)^n \det \left(\lambda^{-\frac{1}{p}}C + \lambda^{\frac{1}{p}} B + \lambda^{-\frac{1}{p}}(M + N) - \frac{\lambda + \omega - 1}{\omega \lambda^{\frac{1}{p}}} I \right)
\]

\[
= \left(\omega \lambda^{\frac{1}{p}} \right)^n \det \left(C + B + \lambda^{-\frac{1}{p}}(M + N) - \frac{\lambda + \omega - 1}{\omega \lambda^{\frac{1}{p}}} I \right).\]

If \(\lambda \) is a non-zero eigenvalue of \(M_p(\omega) \), (4.4) gives

\[
\det \left(C + B + \lambda^{-\frac{1}{p}}(M + N) - \frac{\lambda + \omega - 1}{\omega \lambda^{\frac{1}{p}}} I \right) = 0.
\]
It then follows that there exists a nonzero real vector x such that
\begin{equation}
(C + B + \lambda^{-\frac{\beta}{2}}(M + N) - \frac{\lambda + \omega - 1}{\omega \lambda^{\frac{\beta}{2}}} I) x = 0.
\end{equation}

By setting α and β in the form of (4.3), (4.2) follows from (4.5).

As an application of an algebra lemma\(^8\) on the roots of a quadratic equation in [10], we can get the following lemma.

Lemma 4.2. Let λ be a root of the quadratic equation
\begin{equation}
\lambda^2 + \lambda[2(\omega - \omega \beta - 1) - (\omega \alpha)^2] + [\omega(1 - \beta) - 1]^2 = 0.
\end{equation}

If $\beta < 1$, then $|\lambda| < 1$ if and only if
\begin{equation}
0 < \omega < \frac{2}{1 - \beta} \quad \text{and} \quad |\alpha| < 1 - \beta,
\end{equation}

where α and β are defined in (4.3), and (4.6) is a simplified form of Equation (4.2).

Lemma 4.3. The two roots λ_1 and λ_2 of Equation (4.6) satisfy $|\lambda_1| \geq |\lambda_2|$ for all α, β, and $\omega > 0$. In particular,

\begin{equation}
|\lambda_1| = \begin{cases}
\frac{1}{4} \left[\omega |\alpha| + \sqrt{\omega^2 \alpha^2 - 4(\omega - \omega \beta - 1)} \right]^2 & \text{if } E \geq 0, \\
\omega - \omega \beta - 1 & \text{if } E < 0,
\end{cases}
\end{equation}

where $E = \omega^2 \alpha^2 - 4(\omega - \omega \beta - 1)$.

Proof. It is easy to find the two roots of (4.6) as follows:

\begin{align}
\lambda_1 &= \frac{1}{4} \left[\omega |\alpha| + \sqrt{\omega^2 \alpha^2 - 4(\omega - \omega \beta - 1)} \right]^2, \\
\lambda_2 &= \frac{1}{4} \left[\omega |\alpha| - \sqrt{\omega^2 \alpha^2 - 4(\omega - \omega \beta - 1)} \right]^2.
\end{align}

Obviously, $|\lambda_1| = |\lambda_2|$ if $E = 0$. If $E > 0$, then λ_1 and λ_2 are two positive real numbers, and $\lambda_1 - \lambda_2 = \omega |\alpha| \sqrt{E} > 0$. If $E < 0$, λ_1 and λ_2 are two conjugate complex numbers, we have $|\lambda_1| = |\lambda_2|$. Hence, for all α, β and $\omega > 0$, we have $|\lambda_1| \geq |\lambda_2|$.

We next show that $|\lambda_1|$ can be expressed by (4.8). If $E \geq 0$, then λ_1 is positive, so that $|\lambda_1| = \lambda_1 = \frac{1}{4} \left[\omega |\alpha| + \sqrt{\omega^2 \alpha^2 - 4(\omega - \omega \beta - 1)} \right]^2$.

If $E < 0$, then λ_1 is a complex number with modulus $|\lambda_1| = \omega - \omega \beta - 1$. This completes the proof of (4.8). \(\square\)

\(^8\) The algebra lemma on the roots of a quadratic equation is as follows: Let x_1 and x_2 be the two roots of a quadratic equation $x^2 - bx + c = 0$. Then $|x_1| < 1$ and $|x_2| < 1$ if and only if $b < 1$ and $|b| < 1 + c$.

Due to Lemma 4.3, the estimation of $\rho(M_p(\omega))$ can be done by only considering λ_1.

Since it is complicated to express $\rho(M_p(\omega))$ and ω_h explicitly, we estimate $\rho(M_p(\omega))$ by an upper bound in Theorem 4.2, along with an approximation of ω_h in Theorem 4.3. The upper bound is sharp because it can be achieved by two particular JSOR algorithms using $p = 1$ and n (i.e., damped-Jacobi and SOR) as shown in Corollaries 4.2 and 4.3.

Theorem 4.2. Let β and $\hat{\beta}$ be the smallest and largest eigenvalues of $M + N$, respectively. If \hat{A} is a consistently ordered symmetric matrix with all its diagonal elements $a_{ii} \neq 0$, $\rho(M_f) < 1$, and

\begin{equation}
0 < \omega < \frac{2}{1 - \hat{\beta}}, \tag{4.11}
\end{equation}

then $\rho(M_p(\omega)) < 1$ (i.e., JSOR is convergent), and for $E \geq 0$,

\begin{equation}
\rho(M_p(\omega)) \leq \frac{1}{4} \left[\omega(\rho(M_f) - \hat{\beta}) + \sqrt{\omega^2(\rho(M_f) - \hat{\beta})^2 - 4(\omega - \omega\hat{\beta} - 1)} \right]^2, \tag{4.12}
\end{equation}

while for $E < 0$,

\begin{equation}
\rho(M_p(\omega)) \leq \omega(1 - \hat{\beta}) - 1, \tag{4.13}
\end{equation}

where $E = \omega^2 \alpha^2 - 4(\omega - \omega\hat{\beta} - 1)$.

Proof. Obviously, we have $\beta \leq \beta \leq \hat{\beta}$ with the β given in (4.3). When $E \geq 0$, according to Lemma 4.3, we can set an upper bound of $\rho(M_p(\omega))$ as the maximum value of the function

$$
\lambda(\alpha, \beta) = \frac{1}{4} \left[\omega|\alpha| + \sqrt{\omega^2 \alpha^2 - 4(\omega - \omega\beta - 1)} \right]^2
$$

on the domain: \{(α, β)|\(0 \leq \alpha \leq \hat{\alpha}, \beta \leq \beta \leq \hat{\beta}$, and $\beta \leq \alpha + \beta \leq \rho(M_f)$\}, where $\hat{\alpha} = \text{max}_{x \in \Omega} \|D(B + C)x/x^*Dx\|$. By calculus, we find that $\lambda(\alpha, \beta)$ has its maximum value at $\alpha = \rho(M_f) - \hat{\beta}$ and $\beta = \hat{\beta}$. Hence,

$$
\rho(M_p(\omega)) \leq \lambda(\rho(M_f) - \hat{\beta}, \hat{\beta}),
$$

which gives (4.12).

Further, since $0 < \rho(M_f) - \hat{\beta} < 1 - \hat{\beta}$ and $0 < \omega < \frac{2}{1 - \hat{\beta}} < \frac{2}{1 - \beta}$, from Lemma 4.2 it follows $\lambda(\rho(M_f) - \hat{\beta}, \hat{\beta}) < 1$. This shows that $\rho(M_p(\omega)) < 1$ when $E \geq 0$.

When $E < 0$, using Lemma 4.3 and $0 < \omega < \frac{2}{1 - \beta}$, we get

$$
\rho(M_p(\omega)) = \omega(1 - \beta) - 1 \leq \omega(1 - \hat{\beta}) - 1 < 1.
$$
This completes the proof of Theorem 4.2.

Corollary 4.1 (Estimation of \(\rho(M_p) \)). Let \(M_p \) be the JGS iteration matrix given in (2.8). Then

\[
(4.14) \quad \rho(M_p) \leq \frac{1}{4} \left(\rho(M_J) - \hat{\beta} + \sqrt{\rho(M_J) - \hat{\beta}^2 + 4\hat{\beta}} \right)^2.
\]

Proof. (4.14) follows from (4.12) immediately by setting \(\omega = 1 \).

Theorem 4.3 (Approximation of \(\omega_b \)). Let \(\varrho(\omega) \) denote the upper bound of \(\rho(M_p(\omega)) \) given in Theorem 4.2. Then the optimal relaxation parameter \(\omega_b \) of JSOR can be approximately chosen as the minimum point \(\omega_a \) of \(\varrho(\omega) \) in the interval \(I = (0, 2/(1-\hat{\beta})) \), where \(\omega_a \) is a real root of the equation

\[
(4.15) \quad \omega^2 \left(\rho(M_J) - \hat{\beta} \right)^2 (1 - \hat{\beta}) - \omega^2 \left[(2 - \hat{\beta} - \hat{\beta})^2 + \left(\rho(M_J) - \hat{\beta} \right)^2 \right] \\
+ 4\omega^2 (2 - \hat{\beta} - \hat{\beta}) - 4 = 0,
\]

and is the closest to the endpoint \(2/(1-\hat{\beta}) \). Further, \(\varrho(\omega) \) can be written

\[
(4.16) \quad \varrho(\omega) = \begin{cases} \\
\frac{1}{4} \left[\omega(\rho(M_J) - \hat{\beta}) + \Phi \right]^2 & \text{for } 0 < \omega \leq \omega_a, \\
\omega(1 - \hat{\beta}) - 1 & \text{for } \omega_a \leq \omega < \frac{2}{1 - \hat{\beta}},
\end{cases}
\]

where \(\Phi = \sqrt{\omega^2(\rho(M_J) - \hat{\beta})^2 - 4(\omega - \omega\hat{\beta} - 1)} \).

Proof. Since \(\rho(M_{SOR}(\omega)) \leq \varrho(\omega) \), and \(\omega_a \) satisfies \(\varrho(\omega_a) = \min_{\omega \in I} \varrho(\omega) \), we can define \(\omega_a \) as an approximation of \(\omega_b \).

From expressions (4.12) and (4.13) it is easy to see that \(\varrho(\omega) \) is decreasing for \(E \geq 0 \) while increasing for \(E < 0 \). Hence, the minimum point \(\omega_a \) of \(\varrho(\omega) \) must be a root of the the following equation for \(\omega \):

\[
\frac{1}{4} \left[\omega(\rho(M_J) - \hat{\beta}) + \Phi \right]^2 = \omega(1 - \hat{\beta}) - 1.
\]

By elementary calculations, the above equation can be simplified to (4.15). Clearly, if \(\omega_a \) is a root of (4.15) in the interval \(I \), and is the closest to the end point \(2/(1-\hat{\beta}) \), then \(\varrho(\omega) \) has the minimum value at \(\omega = \omega_a \), and can be written as (4.16).

Corollary 4.2 (The SOR optimal relaxation parameter theorem). Let \(M_{SOR}(\omega) \) be the SOR iteration matrix. If the assumptions in Theorem 4.2 hold, then

\[
(4.17) \quad \rho(M_{SOR}(\omega)) = \begin{cases} \\
\frac{1}{4} \left[\omega\rho(M_J) + \sqrt{\omega^2 \rho(M_J)^2 - 4(\omega - 1)} \right]^2 & \text{for } 0 < \omega \leq \omega_b, \\
\omega - 1 & \text{for } \omega_b \leq \omega < 2,
\end{cases}
\]
where

\[
\omega_b = \frac{2}{1 + \sqrt{1 - \rho(M_J)^2}}
\]

is the optimal relaxation parameter satisfying

\[
\rho(M_{SOR}(\omega_b)) = \min_{\omega} \rho(M_{SOR}(\omega)).
\]

Proof. When \(p = 1 \), we have \(M = N = 0 \), so that \(\beta = 0 \), implying that \(\rho(M_p(\omega)) = \rho(M_{SOR}(\omega)) \). Thus, by Theorem 4.2,

\[
\rho(M_{SOR}(\omega)) \leq \rho(\omega),
\]

and the expression (4.16) for \(\rho(\omega) \) is reduced to

\[
\rho(\omega) = \begin{cases}
\frac{1}{4} \left[\omega \rho(M_J) + \sqrt{\omega^2 \rho(M_J)^2 - 4(\omega - 1)} \right]^2 & \text{for } 0 < \omega \leq \omega_a, \\
\omega - 1 & \text{for } \omega_a \leq \omega < 2.
\end{cases}
\]

On the other hand, it is easy to see that

\[
\rho(\omega) = \frac{1}{4} \left[\omega \rho(M_J) + \sqrt{\omega^2 \rho(M_J)^2 - 4(\omega - 1)} \right]^2
\]

is a solution of Equation (4.6) with \(\alpha = \rho(M_J) \) and \(\beta = 0 \). Hence, with (4.4) we can see that \(\rho(\omega) \) is an eigenvalue of \(M_{SOR}(\omega) \). This gives

\[
\rho(M_{SOR}(\omega)) \geq \rho(\omega).
\]

Therefore, combining (4.20) and (4.21) gives \(\rho(M_{SOR}(\omega)) = \rho(\omega) \).

Further, with \(p = 1 \), (4.15) becomes

\[
\omega^2 \rho(M_J)^2 - \omega^2 \left[4 + \rho(M_J)^2 \right] + 8\omega - 4 = 0,
\]

which can be simplified to

\[
\omega^2 \rho(M_J)^2 - 4(\omega - 1) = 0.
\]

Solving this equation for \(\omega \) gives the expression (4.18), so that \(\omega_a = \omega_b \).

Therefore, (4.16) implies (4.17) and (4.19).

COROLLARY 4.3 (THE DAMPED-JACOBI OPTIMAL RELAXATION PARAMETER THEOREM). Let \(M_J(\omega) \) be the damped-Jacobi iteration matrix, and \(\mu \) its smallest eigenvalue. Then

\[
\rho(M_J(\omega)) = \begin{cases}
1 + \omega \rho(M_J) - \omega, & 0 < \omega \leq \omega_b, \\
\omega - \omega \mu - 1, & \omega_b \leq \omega < \frac{2}{1 - \mu},
\end{cases}
\]
where
\[
\omega_b = \frac{2}{2 - \mu - \rho(M_f)}.
\]
and
\[
\rho(M_f(\omega_b)) = \min_\omega \rho(M_f(\omega)) = \frac{\rho(M_f) - \mu}{2 - \mu - \rho(M_f)}.
\]

Proof: In the case of \(p = n \), we have \(M = U \), \(N = L \) and \(B = C = 0 \). Thus, \(\beta = \rho(M_f) \) and \(\beta = \mu \). By using Theorems 4.2 and 4.3, we have \(\rho(M_f(\omega)) \leq \rho(\omega) \), and \(\rho(\omega) \) can be expressed by (4.22).

On the other hand, (4.4) implies that \(\rho(\omega) \) must be an eigenvalue of \(M_f(\omega) \), implying \(\rho(M_f(\omega)) \geq \rho(\omega) \). Hence, \(\rho(M_f(\omega)) = \rho(\omega) \).

Further, in the case of damped-Jacobi (i.e., \(p = n \)), Equation (4.15) becomes
\[
-\left[\omega(2 - \rho(M_f) - \mu)\right]^2 + 4\omega(2 - \rho(M_f) - \mu) - 4 = 0,
\]
which can be simplified to \([\omega(2 - \rho(M_f) - \mu) - 2]^2 = 0 \). Solving this equation for \(\omega \) gives (4.23), and then (4.24). □

5. A model problem analysis. We consider the following Poisson model problem
\[
-\Delta u = f(x, y), \quad 0 < x, y < 1,
\]
where \(u(x, y) = g(x, y) \) on the boundary of the unit domain \(0 < x, y < 1 \).

With a given mesh size \(h = \frac{1}{n + 1} \), we obtain a second-order finite difference approximation of (5.1)
\[
4u(x, y) - u(x - h, y) - u(x + h, y) - u(x, y - h) - u(x, y + h) = h^2 f(x, y),
\]
which can be simplified to \([\omega(2 - \rho(M_f) - \mu) - 2]^2 = 0 \). Solving this equation for \(\omega \) gives (4.23), and then (4.24). □

We number mesh points in a natural ordering (i.e. from left to right and bottom to top) such that the system of equations in (5.2) is written in a form of linear system (2.1). We then partition the index set \(W = \{i + (j - 1)n \mid i, j = 1, 2, \ldots, n\} \) into \(n \) subsets such that subset \(R_k \) for \(k = 1, 2, \ldots, n \) consists of the ordering numbers of the mesh points on the \(k \)-th mesh line (i.e., \(R_k = \{i + (k - 1)n \mid i = 1, 2, \ldots, n\} \)). Based on this line partition, the JGS iterates \{\(u(x, y)^k \)\} for solving (5.2) are defined by
\[
\begin{align*}
u(x, y)^{k+1} &= \frac{1}{4} \left[u(x - h, y)^{k+1} + u(x + h, y)^k \\
&\quad + u(x, y - h)^k + u(x, y + h)^k + h^2 f(x, y) \right],
\end{align*}
\]
where $u(x,y)^k = g(x,y)$ for a boundary mesh point (x,y).

Theorem 5.1. Let ρ_{JGS} be the spectral radius of the iteration matrix of the JGS defined in (5.3). Then

$$
(5.4) \quad \rho_{JGS} = \left(\frac{\cos h\pi + \sqrt{\cos^2 h\pi + 8 \cos h\pi}}{4}\right)^2.
$$

Proof. Let λ and v be an eigenvalue and a corresponding eigenvector of the iteration matrix of the JGS defined in (5.3), respectively. Then, they satisfy

$$
(5.5) \quad 4\lambda v(x,y) = \lambda v(x-h,y) + v(x+h,y) + v(x-h,y) + v(x,y+h),
$$

where $v(x,y) = 0$ when (x,y) is a boundary mesh point.

Setting $v(x,y) = \lambda^{\frac{n}{h}} \sin \pi \mu x \sin \pi \nu y$ in (5.5), we can get

$$
2\lambda = \lambda^{\frac{n}{h}} \cos \pi \mu h + \cos \pi \nu h,
$$

where $\mu, \nu = 1, 2, \ldots, h^{-1} - 1$. Solving the above equation for λ gives

$$
\lambda_{\mu, \nu} = \left(\frac{\cos \mu h\pi + \sqrt{\cos^2 \mu h\pi + 8 \cos \nu h\pi}}{4}\right)^2.
$$

Thus, the spectral radius $\rho_{JGS} = \max |\lambda_{\mu, \nu}| = \lambda_{1,1}$ as given in (5.4).

Since $\cos h\pi \sim 1 - \pi^2 h^2 / 2$, the spectral radius ρ_{JGS} can be approximated by

$$
\rho_{JGS} \sim 1 - \frac{2}{3} \pi^2 h^2.
$$

From [10] we know that the Jacobi and Gauss-Seidel spectral radii ρ_J and ρ_{GS} for (5.2) have the approximate expressions

$$
\rho_J \sim 1 - \frac{1}{2} \pi^2 h^2, \quad \text{and} \quad \rho_{GS} \sim 1 - \pi^2 h^2.
$$

Hence, we have

$$
\rho_J > \rho_{JGS} > \rho_{GS}.
$$

This confirms a conclusion of Theorem 3.1. That is, JGS converges faster than Jacobi but slower than Gauss-Seidel, asymptotically.

We next consider JSOR for solving (5.2). We will show that the value ω_a given in Theorem 4.3 is a good approximation of the optimal relaxation parameter ω_b.

To compute ω_a by using Equation (4.15), we need the values of $\rho(M_J)$, β, and $\tilde{\beta}$, where $\tilde{\beta}$ and $\tilde{\beta}$ are the smallest and largest eigenvalues of $M + N$.
respectively. From [10] we know $\rho(M_J) = \cos \pi h$. To get β and $\hat{\beta}$, we consider the eigenvalue problem

$$
\frac{1}{4} \left[w(x, y - h) + w(x, y + h) \right] = \beta w(x, y)
$$

(i.e., $(M + N)w = \beta w$). Setting $w(x, y) = \sin \pi i x \sin j \pi y$ for $i, j = 1, 2, \ldots, h^{-1} - 1$, we find $\beta = \frac{1}{2} \cos(j \pi h)$. Thus,

$$
\beta = \frac{1}{2} \cos \pi(1 - h), \quad \text{and} \quad \hat{\beta} = \rho(M + N) = \frac{1}{2} \cos \pi h.
$$

For simplicity, we set $h = \frac{1}{10}$. We then find the three roots of Equation (4.15) (by using Matlab) as follows

$$
\omega_1 = 10.4892, \quad \omega_2 = 1.2929, \quad \text{and} \quad \omega_3 = 0.8840,
$$

as well as $\frac{2}{1 - \beta} = 1.3554$. According to Theorem 4.3, we set $\omega_0 = \omega_2 = 1.2929$. To confirm it, we plot the function $g(\omega)$ in Fig. 2, showing that $g(\omega)$ does have the minimum at $\omega = \omega_0 = 1.2929$.

We also compute the optimal relaxation parameter ω_0 directly according to the definition (4.1) by using Matlab. We get $\omega_0 = 1.29$, and $\rho(M_p(\omega_0)) \approx 0.9079$.

We then numerically test the performance of JSOR using $\omega_0 = 1.29$ and $\omega_0 = 1.2929$ for solving (5.2) with $f(x, y) = g(x, y) = 0$ and $h = \frac{1}{10}$. We use the initial guess $u^0 = 1$, and the convergence criterion

$$
\frac{\|f - Au^j\|_2}{\|f\|_2} \leq \epsilon
$$

with $\epsilon = 10^{-6}$. We find that JSOR using $\omega = \omega_0$ takes only one more iteration than using $\omega = \omega_0$ to satisfy (5.6) (one is 174 and the other 173). This shows that the value ω_0 given by Theorem 4.3 is a good approximation to the optimal relaxation parameter ω_0 of JSOR.

We also test JSOR using other values of ω, and plot the total number of JSOR iterations as a function of ω in Fig. 3. It confirms that ω_0 is the optimal relaxation parameter, and JSOR is divergent when $\omega \geq \frac{2}{1 - \beta} = 1.3554$.

6. Parallel performance of JSOR. In this section, we demonstrate the parallel performance of JSOR by considering the model problem (5.2) with $f(x, y) = 2\pi^2 \sin \pi x \sin \pi y$ and $h = 1/161$. For simplicity, the grid mesh is partitioned into p strips to implement on p processors for $p = \ldots$
Fig. 2. The upper-bound function \(g(\omega) \), defined in (4.16), of the spectral radius \(\rho(M_{\omega}(\omega)) \) of JSOR for solving (5.2) with \(h = \frac{1}{10} \). Here \(b \) denotes \(2/(1 - \beta) \). It shows that \(g(\omega) \) has the minimum value at \(\omega_a \), and \(g(\omega) \geq 1 \) for \(\omega \geq \frac{2}{1 - \beta} \).

Fig. 3. The total number of JSOR iterations for solving (5.2) with \(f(x, y) = g(x, y) = 0 \) and \(h = \frac{1}{10} \) as a function of relaxation parameter \(\omega \). It has the minimum value (173) at \(\omega = \omega_a = 1.29 \). The figure also shows that JSOR is divergent for \(\omega \geq \frac{2}{1 - \beta} = 13.554 \).
1, 2, 4, 8, and 16. An initial guess of zero is taken. The iterative convergence
criterion is (5.6) with $\epsilon = 10^{-4}$.

As a comparison of JSOR, we also implemented Jacobi on p processors.
Numerical experiments were made on a shared memory MIMD parallel
computer, the KSR1 at the University of Houston. The parallel programs
for JSOR and Jacobi were compiled using optimization level $-O2$. CPU
times were computed by using the system function, $user_seconds()$. The
optimal relaxation parameters of JSOR and SOR were estimated by nu-
merical experiments.

We first recall some standard terminology regarding parallel computa-
tion: $Speedup$ is $S(p) = T(1)/T(p)$, where $T(p)$ is the CPU time needed for
solving the given problem on p processors [4], and $Linear$ $Speedup$ refers to
the ideal case when $T(p)$ equals $T(1)/p$. $Total$ $Time$ is the CPU time spent
from the beginning of the iteration until the convergence criterion (5.6) is
satisfied (here it does not include the CPU time spent on the calculation
of f, the initial guess, and the input/output of data). $Comm.$ $Time$ is the
CPU time spent on the interprocessor-data communication. $Comp.$ $Time$
is the CPU time only spent on the computation of the iteration and the
L_2-norm of the residual.

Fig. 4 displays the parallel performance of JSOR for solving (5.2) with
$h = 1/161$. Here JSOR used the optimal relaxation parameters for each
value of p. From the figure we see that $Comm.$ $Time$ is very small, indi-
cating that JSOR can be efficiently implemented on a parallel computer.
But, from the figure we also see that JSOR takes almost the same $Total$ $Time$
for each group of processors since the total number of JSOR iterations
increased almost linearly with respect to p as shown in Fig. 7. Hence,
JSOR does not provide a suitable parallel version of SOR since no $Speedup$
is achieved.

Fig. 5, however, shows that JGS, a particular case of JSOR with $\omega = 1$,
can take significantly less $Total$ $Time$ by using more processors. In fact,
from Fig. 7 we see that the total number of JGS iterations is a slowly
increasing function of p. Hence, compared to the sequential Gauss-Seidel,
JGS can have substantial $Speedup$. For this example, JGS has $S(p) = 9$ for
$p = 16$.

As a comparison, we also implemented Jacobi for solving the same
problem and based on the same domain partitioning as JSOR. We get the
speedup $S(p) = 12$ for Jacobi for $p = 16$. Even though Jacobi has a
larger $Speedup$ than JGS, Jacobi takes much more $Total$ $Time$ due to its
slower convergence speed than JGS (see Figs. 6 and 7). Hence, JGS has
significantly improved the parallel performance of Jacobi. Moreover, the
convergence speed of JGS is improved further by JSOR using the optimal
relaxation parameter as shown in Fig. 7. Indeed, even with one processor
JSOR (or SOR) using the optimal relaxation parameter can take much less
CPU time than the JGS using many processors (see Fig. 6).
Fig. 4. The parallel performance of the JSOR using $\omega = \omega_0(p)$.

Fig. 5. The parallel performance of JGS (a particular case of JSOR with $\omega = 1$).
Obviously, the convergence rate of JSOR can be improved by applying more than one step of SOR to the solution of each block equation in (2.4). This is a common way to define an “incomplete” block Jacobi scheme. But, we observe that even for the two-block Jacobi method (i.e., set \(p = 2 \), and solve each block equation in (2.4) exactly), the spectral radius may be much larger than the spectral radius of SOR using the optimal relaxation parameter. For example, we find that the spectral radii of the two-block Jacobi method and the SOR method using \(\omega_b = 1.491 \) for solving (5.1) with \(h = 1/9 \) are 0.6848 and 0.491, respectively. Hence, the two-block Jacobi has a much slower convergence speed than the SOR using the optimal relaxation parameter. So, it is not possible to generate a scheme from the “incomplete” block Jacobi approach that can be competitive with SOR using the optimal relaxation parameter.

Finally, we made numerical experiments using more than one step of SOR to solve each block equation in (2.4) for the same model problem as in Fig. 4 on 16 processors of the KSR1. Numerical results are listed in Table 1. They show that Total Time is an increasing function of the number of SOR iterations used in solving each block equation in (2.4) even though the total number of the resulting “incomplete” block Jacobi iterations is a decreasing function. This suggests that the JSOR method (i.e., apply only one SOR to each block equation in (2.4)) can be the best scheme we can define from the “incomplete” block Jacobi approach.

7. Conclusions. We have analyzed a parallel linear stationary iterative method, the JSOR method, theoretically and numerically. Defined by using a domain partition technique, JSOR can be easily and efficiently im-
Table 1

<table>
<thead>
<tr>
<th>SOR Itns. in each block</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block Jacobi Itns.</td>
<td>2845</td>
<td>2220</td>
<td>2078</td>
<td>1906</td>
<td>1906</td>
</tr>
<tr>
<td>Total Time in seconds</td>
<td>12.48</td>
<td>14.09</td>
<td>19.95</td>
<td>31.67</td>
<td>55.06</td>
</tr>
<tr>
<td>ω_3 for SOR</td>
<td>1.80</td>
<td>1.84</td>
<td>1.85</td>
<td>1.86</td>
<td>1.80</td>
</tr>
</tbody>
</table>

implemented on a MIMD parallel computer, especially for solving complicated scientific problems (to which it may be difficult to apply the Red/Black SOR method, a widely-used parallel version of SOR). JSOR has different parallel iterative expressions based on different domain partitions. In particular, JSOR contains the SOR and damped-Jacobi methods as two extreme cases. In this sense, the JSOR analysis can provide a general linear stationary iterative theory, including the classic SOR and damped-Jacobi theories as special cases.

We have proved several basic convergence theorems for JSOR, including one concerning the optimal relaxation parameter. We also have proved a comparison theorem for the convergence rates of JGS, Jacobi and Gauss-Seidel, and shown that the SOR and damped-Jacobi theorems follow directly from the corresponding JSOR theorems. Further, we have presented a model problem analysis for JSOR to confirm our theoretical results.

Numerical results on a parallel computer have been presented to demonstrate the parallel performance of JSOR. They have shown that
JSOR can communicate interprocessor data as efficiently as Jacobi, and can significantly improve the convergence rate of Jacobi. For JGS (i.e., JSOR with \(\omega = 1 \)), it has been shown to have a satisfactory speedup compared to the Gauss-Seidel method. But, in the case of optimal relaxation parameter, we have observed that the convergence speed of JSOR might be reduced almost linearly with respect to the partition number \(p \), so that it does not provide a suitable parallel version of the sequential SOR method since it has no speedup. Consequently, JSOR is not a satisfactory solver of linear systems. Instead, a principal application of JSOR is as a parallel smoother in the parallel multigrid method. Based on the JSOR analysis given here, we have proposed a JSOR smoothing analysis in [9], showing that a JSOR smoother can be more robust than the damped-Jacobi smoother, and can be as robust as an SOR smoother when \(p \) is not too large.

Numerical results in this paper also have shown that even the two-block Jacobi method may have a much slower convergence speed than SOR using the optimal relaxation parameter. This suggests that we cannot expect a parallel linear stationary iteration defined only by using an “incomplete” block Jacobi approach to have the same convergence rate as SOR. This observation motivated the development of the PSOR method in [7] to obtain a parallel linear stationary iterative method by domain partitioning with the same convergence rate as SOR and the same advantages as JSOR in the parallel implementation.

REFERENCES