Abstract

Let λ be a partition, with l parts, and let F^λ be the irreducible finite dimensional representation of $GL(m)$ associated to λ when $l \leq m$. The Littlewood Restriction Rule describes how F^λ decomposes when restricted to the orthogonal group $O(m)$ or to the symplectic group $Sp(\frac{m}{2})$ under the condition that $l \leq \frac{m}{2}$. In this paper, this result is extended to all partitions λ. Our method combines resolutions of unitary highest weight modules by generalized Verma modules with reciprocity laws from the theory of dual pairs in classical invariant theory.

Corollaries include determination of the Gelfand-Kirillov dimension of any unitary highest weight representation occurring in a dual pair setting, and the determination of their Hilbert series (as a graded module for p^{-}). Let L be a unitary highest weight representation of either $sp(n, R)$, $so^\ast(2n)$ or $u(p, q)$. When the highest weight of L plus ρ satisfies a partial dominance condition called quasi-dominance, we associate to L a reductive Lie algebra g_L and a graded finite dimensional representation B_L of g_L. The representation B_L will have a Hilbert series $P(q)$ which is a polynomial in q with positive integer coefficients. Let $\delta(L) = \delta$ be the Gelfand-Kirillov dimension of L and set c_L equal to the ratio of the dimensions of the zeroth levels in the gradings of L and B_L. Then the Hilbert series of L may be expressed in the form

$$H_L(q) = c_L \frac{P(q)}{(1 - q)\delta}.$$

In the easiest example of the correspondence $L \rightarrow B_L$, the two components of the Weil representation of the symplectic group correspond to the two spin representations of an orthogonal group.

Acknowledgement Both authors thank Professor Nolan Wallach for his interest in this project as well as several critical suggestions. A form of Theorem 5 is one of the results in the second author’s thesis which was directed by Professor Nolan Wallach. Additionally we thank the referee for his detailed comments and suggestions. The exposition has been much improved by these suggestions.

*The second author conducted this research in part for the Clay Mathematics Institute
Extending the Littlewood Restriction Rule (1) Let V be a complex vector space of dimension n with a nondegenerate symmetric or skew symmetric form. The group leaving the form invariant is the group G, the orthogonal group $O(n)$ or the symplectic group $Sp(n/2)$ when n is even. The representations F^λ of $GL(V)$ are parameterized by the partitions λ with at most n parts. For any integer partition $\lambda = (\lambda_1 \geq \cdots \geq \lambda_l)$ with at most l parts, let $F^\lambda_{(l)}$ be the irreducible representation of $GL(l)$ indexed in the usual way by its highest weight (see [1] section 5.2.1). Similarly, for each nonnegative integer partition μ with at most l parts, let $V^\mu_{(l)}$ be the irreducible representation of $Sp(l)$ with highest weight μ. Let $E^\nu_{(l)}$ denote the irreducible representation of $O(l)$ associated to the non-negative integer partition ν with at most l parts and having Young diagram whose first two columns have lengths which sum to l or less. The parameters in the $O(l)$ case are somewhat more delicate than the earlier two cases due in part to the disconnectedness of the group. For more details consult ([1], Chapter 10).

In 1940 D.E. Littlewood gave a formula for the decomposition of F^λ as a representation of G by restriction.

Theorem 1 (Littlewood Restriction [2, 3]) Suppose that λ is a partition having at most $\frac{n}{2}$ (positive) parts.

(i) Suppose n is even and set $k = \frac{n}{2}$. Then the multiplicity of the $Sp(k)$ representation V^μ in F^λ equals

$$\sum_\xi \dim \text{Hom}_{GL(n)}(F^\lambda, F^\mu \otimes F^\xi),$$

where the sum is over all nonnegative integer partitions ξ with columns of even length.

(ii) Then, for all n the multiplicity of the $O(n)$ representation E^ν in F^λ equals

$$\sum_\xi \dim \text{Hom}_{GL(n)}(F^\lambda, F^\nu \otimes F^\xi),$$

where the sum is over all nonnegative integer partitions ξ with rows of even length.

Recently Gavarini [4] used Brauer algebra methods to reprove and slightly extend Littlewood’s formula. In this announcement we describe some new results in character theory and an interpretation of these results through Howe duality. This will yield yet another proof of Littlewood Restriction and more importantly a generalization valid for all parameters λ. Our formula is rather more complex in form (see (5) below) but reduces to the above formula when λ is a partition having at most $\frac{n}{2}$ (positive) parts.

Gelfand-Kirillov Dimension (2) The character theory mentioned above is for unitarizable highest weight representations of a real reductive group. Much is known about these representations. They were classified in 1980 [5] and
Their characters and cohomology formulas were determined a decade later [7, 8, 9]. Here we report some refinements to this character theory and focus on a set of coarser invariants which can be determined more precisely. These are the Hilbert series, Gelfand Kirillov dimension and Bernstein degree.

Let \(L \) denote a unitarizable highest weight representation for \(g \), one of the classical Lie algebras \(\mathfrak{su}(p, q) \), \(\mathfrak{sp}(n, \mathbb{R}) \) or \(\mathfrak{so}^*(2n) \). These Lie algebras occur as part of the reductive dual pairs [10]:

\[
\begin{align*}
(i) & \quad \text{Sp}(k) \times \mathfrak{so}^*(2n) \text{ acting on } \mathcal{P}(M_{2k \times n}) \\
(ii) & \quad O(k) \times \mathfrak{sp}(n) \text{ acting on } \mathcal{P}(M_{k \times n}^*) \\
(iii) & \quad U(k) \times \mathfrak{u}(p, q) \text{ acting on } \mathcal{P}(M_{k \times n}^*)
\end{align*}
\]

where \(n = p + q \). Let \(\text{GKdim} \) denote the Gelfand Kirillov dimension. Our first main result is:

Theorem 2 Suppose that \(L \) is a unitarizable highest weight representation occurring in one of the dual pair settings (2.1).

1. If \(g = \mathfrak{so}^*(2n) \), then \(\text{GKdim}(L) \) equals \(k(2n - 2k - 1) \) for \(1 \leq k \leq \lceil \frac{n-2}{2} \rceil \) and equals \(\binom{n}{2} \) otherwise.

2. If \(g = \mathfrak{sp}(n) \), then \(\text{GKdim}(L) \) equals \(\frac{k}{2}(2n - k + 1) \) for \(1 \leq k \leq n - 1 \) and equals \(\binom{n+1}{2} \) otherwise.

3. If \(g = \mathfrak{u}(p, q) \), then \(\text{GKdim}(L) \) equals \(k(n - k) \) for \(1 \leq k \leq \min\{p, q\} \) and equals \(pq \) otherwise.

Note that in all cases the GK dimension depends only on the dual pair setting given by \(k \) and \(n \) and is independent of \(\lambda \) otherwise. It is of course convenient to compute \(\text{GKdim} \) of \(L \) directly from the highest weight. Let \(\beta \) denote the maximal root of \(g \).

Corollary 3 Set \(s = -\frac{2\langle \lambda, \beta \rangle}{\langle \beta, \beta \rangle} \). Then for \(\mathfrak{so}^*(2n) \),

\[
\text{GKdim } L = \begin{cases}
\frac{k}{2}(2n - s - 1) & \text{for } 2 \leq s \leq 2\left\lfloor \frac{n}{2} \right\rfloor - 2 \\
\binom{n}{2} & \text{otherwise}
\end{cases}
\]

for \(\mathfrak{sp}(n) \),

\[
\text{GKdim } L = \begin{cases}
s(2n - 2s + 1) & \text{for } 1 \leq 2s \leq n \\
\binom{n+1}{2} & \text{otherwise}
\end{cases}
\]

and for \(\mathfrak{u}(p, q) \) with \(n = p + q \),

\[
\text{GKdim } L = \begin{cases}
s(n - s) & \text{for } 1 \leq s \leq \min\{p, q\} \\
pq & \text{otherwise}
\end{cases}
\]

The referee has noted that Theorem 2 is known to experts.
Hilbert series and examples (3) For any Hermitian symmetric pair \(g, \mathfrak{f} \), let \(\mathfrak{h} \) be a Cartan subalgebra of both \(\mathfrak{f} \) and \(g \) and let \(g = p^- \oplus \mathfrak{f} \oplus p^+ \) be a \(\mathfrak{f} \)-module decomposition of \(g \). Choose \(\Delta^+ \) a set of positive roots for the root system \(\Delta \) such that \(p^+ \) is the span of the positive noncompact root spaces. Set \(\rho \) equal to half the sum of all the positive roots and let \(\mathcal{W} \) (resp. \(\mathcal{W}_k \)) denote the Weyl group of \(g \) (resp. \(\mathfrak{f} \)).

Suppose \(L \) is a unitarizable highest weight representation with highest weight \(\lambda \). In [9] one associates to \(\lambda \) a subgroup \(\mathcal{W}_\lambda \) of \(\mathcal{W} \), a root system \(\Delta_\lambda \) and a Hermitian symmetric pair \(g_\lambda, \mathfrak{f}_\lambda \) as follows. Let \(\Delta^+_\lambda \) denote the roots with root spaces in \(p^+ \). For any root \(\alpha \) let \(\alpha^* \) denote the coroot defined by \((\alpha^*, \xi) = \frac{2(\alpha, \xi)}{\langle \alpha, \alpha \rangle} \). Suppose \(\lambda \) is \(\mathfrak{f} \)-dominant and define \(\mathcal{W}_\lambda \) to be the subgroup of the Weyl group \(\mathcal{W} \) generated by the identity and all the reflections \(r_\alpha \) which satisfy the following three conditions:

\[
\begin{align*}
(i) & \quad \alpha \in \Delta^+_\lambda \quad \text{and} \quad (\lambda + \rho, \alpha^*) \in \mathbb{N}^* . \\
(ii) & \quad \text{If } \delta \in \Delta \text{ and } (\lambda + \rho, \delta) = 0 \text{ then } (\alpha, \delta) = 0 . \\
(iii) & \quad \text{If } \delta \in \Delta \text{ is long and } (\lambda + \rho, \delta) = 0 \text{ then } \alpha \text{ is short} .
\end{align*}
\]

When the root system \(\Delta \) contains only one root length we call the roots short. Let \(\Delta_\lambda = \left\{ x \in \mathcal{W}_\lambda \mid x \Delta^+_\lambda \supset \Delta^+ \right\} \) and \(\Delta^{\mathfrak{f}, i} = \left\{ x \in \mathcal{W}_\lambda \mid \text{card}(x \Delta^+_\lambda \cap -\Delta^+_\lambda) = i \right\} \).

Let \(\rho_\lambda \) denote half the sum of the positive roots of \(g_\lambda \) and set \(\delta_\lambda = \rho - \rho_\lambda \). For any \(\mathfrak{f} \)-integral \(\xi \in \mathfrak{h}^* \), let \(\xi^{++} \) denote the unique element in the \(\mathcal{W}_k \)-orbit of \(\xi \) which is \(\Delta^+_\lambda \) dominant. For any \(\mathfrak{f} \)-dominant integral weight \(\lambda \) define the generalized Verma module with highest weight \(\lambda \) to be the induced module defined by: \(N(\lambda + \rho) = U(g) \otimes \mathbb{C} \lambda \mathcal{E}_\lambda \), with \(\mathcal{E}_\lambda \) is the irreducible \(\mathfrak{f} \) representation with highest weight \(\lambda \). For any \(\mathfrak{f} \)-dominant integral weights \(\xi \) and \(\zeta \), let \(m_\xi^\zeta \) denote the multiplicity of the \(\mathfrak{f} \) representation \(E_\xi \) in the \(g \) generalized Verma module \(N(\zeta + \rho) \). If \(S(p^-) \) denotes the symmetric tensor algebra of \(p^- \), then:

\[
m_\xi^\zeta = \dim \text{Hom}_g(E_\xi, E_\zeta \otimes S(p^-)).
\]

We let \(L(\lambda + \rho) \) denote the unique irreducible quotient of \(N(\lambda + \rho) \), which is the irreducible highest weight representation of \(g \) with highest weight \(\lambda \).

Remark 1 We have used three separate notations which overlap in the case of finite dimensional representations. The predominant notation for irreducible finite dimensional representations is by highest weight. However in some classical
settings we switch to coordinate versions of highest weights which are then identified with integer partitions. Finally when we are considering highest weight \mathfrak{g}-modules we use the generalized Verma module parameters of highest weight plus ρ.

Suppose λ is Δ^+_λ-dominant and let Σ_λ denote the set of all positive roots α where $(\alpha, \lambda + \rho) = 0$. Then Σ_λ is a set of strongly orthogonal noncompact roots. For such λ, we say $\lambda + \rho$ is quasi-dominant if $(\alpha, \lambda + \rho) > 0$ for all positive roots α which are orthogonal to all elements of Σ_λ.

For any Hermitian symmetric pair g, k and irreducible highest weight g-module M, let M_0 denote the k-submodule generated by any highest weight vector. Set $M_j = p^- \cdot M_{j-1}$ for $j > 0$. Define the Hilbert series $H_M(q)$ of M by:

$$H_M(q) = \sum_{j \geq 0} \dim M_j \ q^j. \quad (3.4)$$

Since the enveloping algebra of p^- is Noetherian there is a unique integer d and a unique polynomial $R_M(q)$ such that:

$$H_M(q) = \frac{R_M(q)}{(1-q)^d} \quad \text{where} \quad R_M(q) = \sum_{0 \leq j \leq e} a_j \ q^j \quad (3.5)$$

In this setting the integer d is the Gelfand Kirillov dimension, $d = GKdim M$. Expanding the denominator as a series we obtain:

$$H_M(q) = \sum_{s,j} a_j \left(\frac{d-1+s}{d-1} \right) q^{s+j}. \quad (3.6)$$

The coefficient of q^t can be expressed as a polynomial in t for large values of t. The leading coefficient of this polynomial is $\frac{1}{(d-1)!} \sum_{0 \leq j \leq e} a_j = \frac{R_{M(1)}}{(d-1)!}$ and is called the Bernstein degree of M and denoted $Bdeg(M)$.

For any g_λ-dominant integral μ we let B_μ denote the irreducible finite dimensional g_λ-module with highest weight μ. Let p^-_λ denote the subalgebra of p^- spanned by the root spaces for roots in $-\Delta^+_\lambda \cap \Delta_\lambda$ and let B_μ^λ denote the grading of B_μ as a p^-_λ-module. Define the Hilbert series by:

$$P(q) = P_\lambda(q) = \sum \dim B_\mu^\lambda \ q^j. \quad (3.7)$$

This is of course a polynomial. For any \mathfrak{t}-dominant integral weight μ, let E_μ (resp. $E_{\mathfrak{t}_\lambda, \mu}$) denote the irreducible finite dimensional \mathfrak{t} (resp. \mathfrak{t}_λ)-module with highest weight μ.

5
Theorem 4 Suppose that \(L = L(\lambda + \rho) \) is a unitarizable representation occurring in one of the dual pair settings (2.1) and that \(\lambda + \rho \) is quasi-dominant. Set \(d \) equal to the GK dimension of \(L \) as given by Theorem 2. Then the Hilbert series of \(L \) is:

\[
H_L(q) = \frac{\dim E_\lambda}{\dim E_{\text{t}_\lambda, \lambda + \delta_\lambda}} \frac{P_{\lambda + \delta_\lambda}(q)}{(1 - q)^d}.
\]

In particular, the Bernstein degree of \(L \) is given by:

\[
\text{Bdeg}(L) = \frac{\dim E_\lambda}{\dim E_{\text{t}_\lambda, \lambda + \delta_\lambda}} \dim B_{\lambda + \delta_\lambda}.
\]

To illustrate through an example all the parameters, roots, Hermitian symmetric pairs and finite dimensional representations involved we consider a special set of representations, the Wallach representations (see [12]). Let \(r \) equal the split rank of \(g \), let \(\zeta \) be the fundamental weight of \(g \) which is orthogonal to all the roots of \(k \). Suppose \(g \) is isomorphic to either \(\mathfrak{so}^*(2n) \), \(\mathfrak{sp}(n) \) or \(\mathfrak{su}(p, q) \) and set \(c = 2, \frac{1}{2} \) or 1 depending on which of the three cases we are in. For \(1 \leq j < r \) define the \(j \)th Wallach representation \(W_j \) to be the unitarizable highest weight representation with highest weight \(-j \zeta\).

Suppose \(L \) is a Wallach representation for \(\mathfrak{sp}(n) \) having highest weight \(\lambda = -\frac{j}{2} (1, 1, \ldots, 1) \) for some \(j, 1 \leq j \leq n - 1 \). Then

\[
\lambda + \rho = (n - \frac{j}{2}, n - 1 - \frac{j}{2}, \ldots, 1 - \frac{j}{2}),
\]

the set of strongly orthogonal roots

\[
\Sigma_\lambda = \{e_{n+1-j+l} + e_{n+1-l}|1 \leq l \leq \left\lfloor \frac{j}{2} \right\rfloor\}
\]

and \(\Delta_\lambda \) is the root system of type \(D_{n+1-j} \) with simple roots

\[
\{e_1 - e_2, \ldots, e_{n-j} - e_{n+1-j}, e_{n-j} + e_{n+1-j}\},
\]

and the Hermitian symmetric pair \(g_\lambda, \mathfrak{f}_\lambda \) is \(\mathfrak{so}^*(2n + 2 - 2j) \). Here \(\Sigma_\lambda \) contains a long root precisely when \(j \) is even and for all \(j, \lambda + \rho \) is quasi-dominant. The first \(n + 1 - j \) coordinates of \(\lambda + \rho - \rho_\lambda \) all equal \(\frac{j}{2} \) and so this weight \(\lambda + \rho - \rho_\lambda \) equals \(j \) times the last fundamental weight of \(D_{n+1-j} \) on \(\mathfrak{g}_\lambda, \mathfrak{g}_\lambda \] \(\cap \mathfrak{h} \) plus a central character of \(g_\lambda \). Also in this example the dimensions of \(E_\lambda \) and \(E_{\text{t}_\lambda, \lambda + \delta_\lambda} \) are both one.
We next apply Theorem 4 to some well-known representations to determine their $GK\dim$, Hilbert series and Bernstein degree. We begin with the Wallach representations. For $\mathfrak{so}^*(2n)$ the Hilbert series for the first Wallach representation is:

$$H_L(q) = \frac{R(q)}{(1-q)^{2n-3}} = \frac{1}{(1-q)^{2n-3}} \frac{1}{n-2} \sum_{0 \leq s \leq n-3} \binom{n-2}{s} \binom{n-2}{s+1} q^s.$$ (4.1)

For $\mathfrak{sp}(n)$ the Hilbert series for the first Wallach representation is:

$$H_L(q) = \frac{1}{(1-q)^n} \sum_{0 \leq t \leq \lfloor n/2 \rfloor} \binom{n}{2t} q^t.$$ (4.3)

This is the Hilbert series for the half of the Weil representation generated by a one dimensional representation of \mathfrak{t}. The other part of the Weil representation has Hilbert series:

$$H_L(q) = \frac{1}{(1-q)^n} \sum_{0 \leq t \leq \lfloor n/2 \rfloor} \binom{n}{2t+1} q^t.$$ (4.4)

For the components of the Weil representation of $\mathfrak{sp}(n)$ there is an elementary derivation of the Hilbert series which we now give for comparison. Let L_e and L_o denote the even and odd components of the Weil representation acting respectively on the even and odd degree polynomials in n variables. Then

$$\frac{(1+q)^n}{(1-q^2)^n} = \frac{1}{(1-q)^n} = H_{L_e}(q^2) + q H_{L_o}(q^2).$$ (4.5)

Breaking the numerator $(1+q)^n$ into its even and odd degree parts in q gives the expressions (4.2) and (4.3).

For $U(p,q)$ the Hilbert series for the first Wallach representation is:

$$H_L(q) = \frac{1}{(1-q)^{n-1}} \sum_{0 \leq t < \min(p,q)} \binom{p-1}{t} \binom{q-1}{t} q^t.$$ (4.6)

These examples are obtained from Corollary 3 and Theorem 4 by writing out respectively the Hilbert series of the $n-3^{rd}$ exterior power of the standard representation of $\mathfrak{so}^*(2n-4)$, the two components of the spin representation of $\mathfrak{so}^*(2n)$ and the $p-1^{st}$ fundamental representation of $U(p-1,q-1)$. Combinatorial expressions for the Hilbert series of other Wallach representations can be given as well.

We say a highest weight representation L is positive if all the nonzero coefficients of the polynomial $R_L(q)$ in (3.5) are positive. All Cohen-Macaulay $S(\mathfrak{p}^-)$-modules including the Wallach representations are positive but many unitary
highest weight representations are not. And so Theorem 4 introduces a large
class of positive highest weight representations which include all the examples
in the previous paragraph. This theorem asserts that if $\lambda + \rho$ is quasi-dominant
then $L(\lambda + \rho)$ is positive.

We conjecture that among positive highest weight modules occurring in the
dual pair setting which are non-trivial quotients of generalized Verma mod-
ules, the modules with quasi-dominant highest weights prevail. However, the
conditions of positivity and quasi-dominance are not equivalent. The former
properly contain the latter. There are irreducible positive generalized Verma
modules with highest weights which are not quasi-dominant. We would like
to know to what extent the conditions of positivity and quasi-dominance are
related.

Reciprocity laws and resolutions (5) The refinements in the character
type for unitarizable highest weight representations discussed above lead to
new finite dimensional branching formulas extending the work of Littlewood [2].
Let $S = \mathcal{P}(M_{2k \times n})$ or $\mathcal{P}(M_{k \times n}^*)$ as in (2.1). We consider the action of two dual
pairs on S. The first is $GL(m) \times GL(n)$ with $m = 2k$ or k and the second is
$G_1 \times g_2$, one of the two pairs (i) or (ii) in (2.1). In this setting G_1 is contained in
$GL(m)$ while $GL(n)$ is closely related to the maximal compact subgroup of g_2.
We can calculate the multiplicity of an irreducible $G_1 \times GL(n)$ representation
in S in two ways. The resulting identity is the branching formula. These
reciprocity laws have been studied by Howe ([11]) where the two dual pairs are
called see-saw pairs in the sense of Kudla.

The theory of dual pairs gives a decompositions of S for each of the three
actions.
As a $GL(m) \times GL(n)$ representation,

$$S = \sum_{\lambda} F^{\lambda}_{(m)} \otimes F^{\lambda}_{(n)},$$

(5.1)

where the sum is over all nonnegative integer partitions having $\min\{m, n\}$ or
fewer parts.
As a $Sp(k) \times so^*(2n)$ representation,

$$S = \sum_{\mu} V^{\mu}_{(k)} \otimes V^{(n)}_{\mu},$$

(5.2)

where the sum is over all nonnegative integer partitions μ having $\min\{k, n\}$ or
fewer parts.
And, as a $O(k) \times sp(n)$ representation,

$$S = \sum_{\nu} E^{\nu}_{(k)} \otimes E^{(n)}_{\nu},$$

(5.3)

where the sum is over all nonnegative integer partitions ν having $\min\{k, n\}$ or
fewer parts and having a Young diagram whose first two columns sum to k or
less.

As remarked above computing the multiplicity of $V^\mu \otimes F^\lambda_{(n)}$ in S and $E^\nu \otimes F^\lambda_{(n)}$
in S we obtain:
Theorem 5
(i) The multiplicity of the \(Sp(k) \) representation \(V_\mu^{(k)} \) in \(F_\lambda^{(2k)} \) equals the multiplicity of \(F_\mu^{(n)} \) in the unitarizable highest weight representation \(V_\mu^{(n)} \) of \(\mathfrak{so}^*(2n) \).

(ii) The multiplicity of the \(O(k) \) representation \(E_\nu^{(k)} \) in \(F_\lambda^{(2k)} \) equals the multiplicity of \(F_\nu^{(n)} \) in the unitarizable highest weight representation \(E_\nu^{(n)} \) of \(\mathfrak{sp}(n) \).

In the cases where the unitarizable highest weight representation is the full generalized Verma module we call the parameter a generic point. A short calculation shows that the Littlewood hypothesis is included in the generic set.

Corollary 6
(i) Suppose \(\mu \) is a generic point. Then the multiplicity of the \(Sp(k) \) representation \(V_\mu^{(k)} \) in \(F_\sigma^{(2k)} \) equals

\[
\sum_\xi \dim \mathrm{Hom}_{\mathrm{GL}(n)}(F_\nu^{(n)}, F_\mu^{(n)} \otimes F_\xi^{(n)}),
\]

where the sum is over all nonnegative integer partitions \(\xi \) with columns of even length.

(ii) Suppose \(\nu \) is a generic point. Then the multiplicity of the \(O(k) \) representation \(E_\nu^{(k)} \) in \(F_\sigma^{(2k)} \) equals

\[
\sum_\xi \dim \mathrm{Hom}_{\mathrm{GL}(n)}(F_\nu^{(n)}, F_\mu^{(n)} \otimes F_\xi^{(n)}),
\]

where the sum is over all nonnegative integer partitions \(\xi \) with rows of even length.

The formulas (5.4) and (5.5) are those of the Littlewood Restriction Theorem ([2], p.240). Littlewood’s hypotheses correspond to the unitarizable highest weight representations lying in the discrete series or in some cases the limits of the discrete series.

For a general unitarizable highest weight representation \(L \) from [9] we know the \(p^+ \)-cohomology formulas for \(L \). From this data we obtain explicit resolutions for \(L \) where the terms of this resolution are sums of generalized Verma modules.

Theorem 7
Suppose \(L = L(\lambda + \rho) \) is a unitarizable highest weight module. Then \(L \) admits a resolution in terms of generalized Verma modules. Specifically, for \(1 \leq i \leq r_\lambda = \text{card}(\Delta_\lambda \cap \Delta_{u^+}) \), set \(C^\lambda_i = \sum_{x \in W_\lambda^*} N((x(\lambda + \rho))^{++}) \). Then there is a resolution of \(L \):

\[
0 \to C^\lambda_{r_\lambda} \to \cdots \to C^\lambda_1 \to C^\lambda_0 \to L \to 0 .
\]

Combining Theorems 5 and 7 we obtain:
Corollary 8 Suppose that $F^\sigma \otimes F^\sigma$ occurs in S as in (5.1) and that $V^\mu_{(k)}$ and $E^\nu_{(k)}$ respectively occur as $Sp(k)$ and $O(k)$ subrepresentations of F^σ. Then

(i) the multiplicity of the $Sp(k)$ representation $V^\mu_{(k)}$ in $F^\sigma_{(2k)}$ equals the multiplicity of $F^\sigma_{(n)}$ in $V^\mu_{(n)}$ which is given by:

$$\sum_i \sum_x \epsilon_i^{\mu^\sharp} m_{x(i+\rho)}^{\alpha^\sharp} = (5.7)$$

where μ^\sharp (resp. σ^\sharp) is the highest weight of $V^\mu_{(n)}$ (resp. $F^\sigma_{(n)}$).

(ii) and the multiplicity of the $O(k)$ representation $E^\nu_{(k)}$ in $F^\sigma_{(k)}$ equals the multiplicity of $F^\sigma_{(n)}$ in $E^\nu_{(n)}$ which is given by:

$$\sum_i \sum_x \epsilon_i^{\nu^\sharp} m_{x(i+\rho)}^{\alpha^\sharp} = (5.8)$$

where ν^\sharp (resp. σ^\sharp) is the highest weight of $E^\nu_{(n)}$ (resp. $F^\sigma_{(n)}$).

The above corollary provides an algorithm for decomposing finite dimensional $GL(n)$ representations into irreducible orthogonal or symplectic representations. Such algorithms have been implemented using the MAPLE software package.

As an example of this multiplicity formula we list some cases for the orthogonal group.

Example 9 Let ν be a partition such that,

$$\nu = \bigl(\underbrace{d, \cdots, 2}_{a} \,, \underbrace{1, \cdots, 1}_{b} \,, \underbrace{0, \cdots, 0}_{c} \bigr)_{k}$$

with: $d \geq 2$ and $2 + 2a + b \leq k$.

Then for all σ,

$$\dim \ Hom_{O(k)}(E^\nu, F^\sigma) = m_{\nu^1}^{\alpha^\sharp} - m_{\nu^1}^{\nu_1^\sharp}$$

Where ν_1 is the k tuple given by:

$$\nu_1 = \bigl(\underbrace{d, \cdots, 2}_{c} \,, \underbrace{1, \cdots, 1}_{b} \,, \underbrace{0, \cdots, 0}_{a} \bigr)$$

Final remarks (6) Theorem 7 is the technical backbone of the article. In addition to giving the extension to all parameters of Littlewood Restriction, the proof of Theorem 4 begins with two applications of Theorem 7, one for g and one for g_λ. The argument then passes to the computation of a ratio using the hypothesis of quasi-dominance.
During the time this announcement has been refereed, there has been some related research which has appeared [13]. In this work the authors begin with a highest weight module L and then consider the associated variety $V(L)$ as defined by Vogan. This variety is the union of K_C–orbits and equals the closure of a single orbit. In [13] the GK dimension and the Bernstein degree of L are recovered from the corresponding objects for the variety $V(L)$. As an example of their technique they obtain the GK dimension and the degree of the Wallach representations ([13] pp.149-150). Our results in this setting obtain these two invariants as well as the full Hilbert series since all the highest weights are quasi-dominant. The results of these two very different approaches have substantial overlap although neither subsumes the other.

References

Contact information:
Thomas J. Enright
Dept. of Mathematics, 0112
University of California, San Diego
La Jolla, CA 92093-0112
E-mail: tenright@euclid.ucsd.edu

Jeb F. Willenbring
Mathematics Department
Yale University
New Haven, CT 06520-8283
E-mail: willenbring@math.yale.edu