Constrained Inference for Bridging the Distributional Gap in Natural Language Processing

Tao Meng
Advisor: Kai-Wei Chang
Distributional Gap

- Distribution in model predictions is deviated from that in the ground truth.
- Widely exists in real-world applications
 - Training data is not drawn from the same distribution of test
 - Test domain is naturally low-resource
 - E.g., cross-lingual transfer, English → Urdu
 - NLP models are large. One model is applied in different tasks and domains.
 - BERT-Large, GPT-3, etc.
 - Training is computational expensive
- Causing systematic errors
Solution: constraints

- Constraints are a set of rules for the model predictions
 - Compiling domain knowledge
 - Predications satisfy the constraints

Constraint: In an ADP-NOUN arc in Hindi, ADP is more likely to be on the right.

- Boost performance (English transfer to Hindi: 34% → 53%)
Research Questions

• What kind of constraints can better bridge the gaps

• How to formulate constraints

• How to incorporate constraints with natural language processing models
Goal

• In results:
 • Constraints guide the model to make predictions in our expected distribution

• In method:
 • Various of NLP models are able to incorporate constraints efficiently (e.g., without retraining / fine-tuning the models)

• In practicality:
 • Constraints are easy to acquire
 • Constraints are effective yet controllable
Progress and Future Plan

• What I have done…
 • Word order constraints in cross-lingual transfer dependency parsing[1]
 • Gender ratio constraints in gender bias amplification mitigation[2]
 • A integer linear programming framework for mining constraints from data[3]

• Future plan:
 • Incorporate constraints in natural language generation (NLG)
 • Automatically learn general constraints from data