Topology, homology and quantum mechanics

Jon Harrison1, J.P. Keating2, J.M. Robbins2 and A. Sawicki2

1Baylor University, 2University of Bristol

Baylor – 9/27/12
Outline

1. Topology in QM
2. Quantum statistics
3. Statistics on networks

Wills building Bristol University
Outline

1. Topology in QM
2. Quantum statistics
3. Statistics on networks
Quantum mechanics

Two slit experiment – wave-particle duality

Schrödinger equation

\[i\hbar \frac{\partial}{\partial t} \psi(r, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right) \psi(r, t) \]

\[|\psi|^2 \] probability density for particle.
Quantum mechanics

Two slit experiment – wave-particle duality

\[
i\hbar \frac{\partial}{\partial t} \psi(r, t) = \left(\frac{-\hbar^2}{2m} \nabla^2 + V(r) \right) \psi(r, t)
\]

\[|\psi|^2 \text{ probability density for particle.}\]
Quantum mechanics

Two slit experiment – wave-particle duality

Schrödinger equation

\[i\hbar \frac{\partial}{\partial t} \psi(r, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right) \psi(r, t) \]

\[|\psi|^2 \text{ probability density for particle.} \]
Quantum mechanics

Two slit experiment – wave-particle duality

\[i\hbar \frac{\partial}{\partial t} \psi(r, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right) \psi(r, t) \]

\[|\psi|^2 \text{ probability density for particle.} \]
Quantum mechanics

Two slit experiment – wave-particle duality

Schrödinger equation

\[i\hbar \frac{\partial}{\partial t} \psi(x, t) = \left(-\frac{\hbar^2}{2m} \nabla^2 + V(x) \right) \psi(x, t) \]

\[|\psi|^2 \] probability density for particle.
Feynman path integral

Action $S(p) = \int_0^T \frac{mx^2}{2} - V(x) \, dt$ – the integral of the classical Lagrangian along path p.

Contribution of p to probability amplitude for transition between two states is $e^{i \hbar S(p)}$. Total probability amplitude obtained by summing over all possible paths connecting A & B.
Feynman path integral

Action $S(p) = \int_0^T \frac{m\dot{x}^2}{2} - V(x) \, dt$ – the integral of the classical Lagrangian along path p.

Contribution of p to probability amplitude for transition between two states is $e^{\frac{i}{\hbar}S(p)}$. Total probability amplitude obtained by summing over all possible paths connecting A & B.

Formal solution to Schrödinger eqn at time T is $\exp(-\frac{i}{\hbar}HT)\psi_0$

where $H = -\frac{\hbar^2}{2m} \nabla^2 + V(x)$. Transition amplitude from ψ_0 to final state ψ_f is $\int \psi_f^* \exp(-\frac{i}{\hbar}HT)\psi_0$. Breaking T into infinitesimal time steps leads to the path integral.
Aharonov-Bohm effect
Aharonov-Bohm effect

Turn on magnetic field \mathbf{B} in region inaccessible to particle.
Aharonov-Bohm effect

Path integral formulation.

\[B = \nabla \times A \]

Contribution from path enclosing \(B \) acquires a phase \(e^{i\theta} \) where \(\theta = \oint A \, ds \), as \(A \) cannot be zero everywhere on path enclosing \(B \).
Aharonov-Bohm effect

Path integral formulation.

\[B = \nabla \times A. \]

Contribution from paths enclosing \(B \) acquires a phase \(e^{i\theta} \) where \(\theta = \oint A \cdot ds \), as \(A \) cannot be zero everywhere on path enclosing \(B \).
Wavefunction $\psi(x)$ for $x \in \mathbb{R}^n$.
In general we are free to change ψ by a phase factor.

- $\psi(x) \rightarrow e^{i\phi(x)}\psi(x)$
- $p \rightarrow -i\hbar \nabla + \hbar \nabla \phi$

Let $\phi(x) = \int_0^x A \cdot ds$ where $\nabla \times A = 0$
Quantum statistics

Two particles in space X.

Alternative approaches:

- Quantize X^2 and restrict Hilbert space to symmetric and anti-symmetric subspaces.

\[\psi(x_1, x_2) = \pm \psi(x_2, x_1) \]

Bose-Einstein/Fermi-Dirac statistics.
Quantum statistics

Two particles in space X.

Alternative approaches:

- Quantize X^2 and restrict Hilbert space to symmetric and anti-symmetric subspaces.

$$\psi(x_1, x_2) = \pm \psi(x_2, x_1) \quad (1)$$

Bose-Einstein/Fermi-Dirac statistics.

- Treat particles as indistinguishable, $\psi(x_1, x_2) \equiv \psi(x_2, x_1)$.

Quantize configuration space,

$$C_2(X) = (X^2 - \Delta) / S_2 \quad (2)$$
Bose-Einstein and Fermi-Dirac statistics

In \mathbb{R}^3 using the relative coordinate, at a constant separation the configuration space $C_2(\mathbb{R}^3)$ is the projective plane.

Exchanging particles corresponds to traveling around a closed loop p in C_2. On the projective plane p is not contractible but p^2 is contractible. To associate a phase $e^{i\theta}$ to p requires $(e^{i\theta})^2 = 1$ or $e^{i\theta} = \pm 1$. Quantizing C_2 with a phase -1 associated to exchange paths corresponds to Fermi-Dirac statistics while a phase $+1$ corresponds to Bose-Einstein statistics.
Fermi-Dirac statistics are only consistent with multi-particle states constructed from *different* single-particle states. The electron has Fermi-Dirac statistics ⇒
Fermi-Dirac statistics are only consistent with multi-particle states constructed from *different* single-particle states. The electron has Fermi-Dirac statistics \Rightarrow chemistry!
Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2.

Any phase $e^{i\theta}$ can be associated with a primitive exchange path.
Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2.

- Two particles not coincident.

Any phase $e^{i\theta}$ can be associated with a primitive exchange path.
Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2.

- Two particles not coincident.
- Relative position coordinate $x \in \mathbb{R}^2 \setminus \mathbf{0}$.

Any phase $e^{i\theta}$ can be associated with a primitive exchange path.
Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2.

- Two particles not coincident.
- Relative position coordinate $x \in \mathbb{R}^2 \setminus 0$.
- Topology of configuration space the same as puncturing space with a magnetic field in A-B experiment.

Any phase $e^{i\theta}$ can be associated with a primitive exchange path.
Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2.

- Two particles not coincident.
- Relative position coordinate $\mathbf{x} \in \mathbb{R}^2 \setminus \mathbf{0}$.
- Topology of configuration space the same as puncturing space with a magnetic field in A-B experiment.
- Exchange paths; closed loops about $\mathbf{0}$.

Any phase $e^{i\theta}$ can be associated with a primitive exchange path.
Anyon statistics

Pair of indistinguishable particles in \mathbb{R}^2.

- Two particles not coincident.
- Relative position coordinate $x \in \mathbb{R}^2 \setminus 0$.
- Topology of configuration space the same as puncturing space with a magnetic field in A-B experiment.
- Exchange paths; closed loops about 0.
- A phase change around loops can be encoded in a vector potential.

Any phase $e^{i\theta}$ can be associated with a primitive exchange path.
Fractional quantum Hall effect

Hall effect (1879)
Fractional quantum Hall effect

Hall effect (1879)

Quantum Hall effect (1975)
Low temp & large B.

Conductance quantized $E_n = \frac{\hbar e B}{m} (n + 1/2)$.
Fractional quantum Hall effect

Hall effect (1879)

![Hall effect diagram]

Quantum Hall effect (1975)
Low temp & large B.

Conductance quantized $E_n = \frac{\hbar e B}{m} (n + 1/2)$.

Fractional quantum Hall effect (Tsui and Strömer 1982)
Gallium arsenide.
Integers can be replaced with rational numbers p/q.
Explained using Laughlin wavefn, *composite particles with anyon statistics.*
Configuration space of n particles

X one particle configuration space.

Definition

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^n - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}$.

Jon Harrison Topology and quantum mechanics
Configuration space of n particles

X one particle configuration space.

Definition

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^n - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}$.

- $\pi_1(C_n(\mathbb{R}^d)) = S_n$ for $d \geq 3$ abelianization $H_1(C_n(\mathbb{R}^d)) = \mathbb{Z}/2$
Configuration space of \(n \) particles

\(X \) one particle configuration space.

Definition

Configuration space of \(n \) indistinguishable particles in \(X \),

\[
C_n(X) = (X^n - \Delta_n)/S_n
\]

where \(\Delta_n = \{x_1, \ldots, x_n| x_i = x_j \text{ for some } i \neq j \} \).

- \(\pi_1(C_n(\mathbb{R}^d)) = S_n \) for \(d \geq 3 \) abelianization \(H_1(C_n(\mathbb{R}^d)) = \mathbb{Z}/2 \)
- \(\pi_1(C_n(\mathbb{R}^2)) = B_n \) braid group of \(n \) strands, \(H_1(C_n(\mathbb{R}^2)) = \mathbb{Z} \).
Configuration space of n particles

X one particle configuration space.

Definition

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^n - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}$.

- $\pi_1(C_n(\mathbb{R}^d)) = S_n$ for $d \geq 3$ abelianization $H_1(C_n(\mathbb{R}^d)) = \mathbb{Z}/2$
- $\pi_1(C_n(\mathbb{R}^2)) = B_n$ braid group of n strands, $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$.
- $\pi_1(C_n(\mathbb{R})) = 1$
What happens on a graph where the underlying space has arbitrarily complex topology?
Quantum graph

Graph G
Vertices $\{1, \ldots, v\}$
Edges $\mathcal{E} = \{(i, j)\}$

- Adjacency matrix A, $A_{jk} = 1$ if $j \sim k$, $A_{jk} = 0$ otherwise.
- v_j valency of vertex j.
- For many particles on a metric graph boundary conditions are hard to incorporate as particles become coincident.
|ψ⟩ = \sum_{j=1}^{\nu} \psi_j |j⟩ \text{ in Hilbert space } \mathbb{C}^\nu.

Hamiltonian \(H \), \(\nu \times \nu \) Hermitian matrix.

e.g. discrete Laplacian \(H = A - D \), where \(D = \text{diag}\{v_1, \ldots, v_\nu\} \).

Transitions possible between adjacent vertices.
Single particle QM on combinatorial graph

- $|\psi\rangle = \sum_{j=1}^{V} \psi_{j} |j\rangle$ in Hilbert space \mathbb{C}^{V}.
- Hamiltonian H, $V \times V$ Hermitian matrix.

 e.g. discrete Laplacian $H = A - D$, where $D = \text{diag}\{v_1, \ldots, v_V\}$.

Transitions possible between adjacent vertices.

Gauge potential

Ω is a $V \times V$ real antisymmetric matrix, $\Omega_{ij} = 0$ if $(ij) \notin E$.

Incorporate gauge potential in Hamiltonian, $H \rightarrow H^{\Omega}$ where

$H^{\Omega}_{ij} = e^{i\Omega_{ij}} H_{ij}$.
Gauge transformation

Let $U = \text{diag}\{e^{i\theta_1}, \ldots, e^{i\theta_v}\}$,

$$|\psi\rangle \rightarrow U|\psi\rangle$$

$$H \rightarrow UHU^*$$

A gauge potential Ω is \textit{trivial} if $H^\Omega = UHU^*$ for some U, i.e. H^Ω is generated by a gauge transformation. For a trivial gauge potential

$$\Omega_{jk} = \begin{cases}
\theta_k - \theta_j + 2\pi M_{jk}, & j \sim k, \\
0, & \text{otherwise},
\end{cases} \quad (3)$$

where M is an antisymmetric integer matrix.
Let T be a *spanning tree* of G, a connected subgraph whose cycles are all self-retracing.
Let T be a *spanning tree* of G, a connected subgraph whose cycles are all self-retracing.

Index every edge not in T with $\phi \in \{1, \ldots, f\}$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{tree_diagram.png}
\caption{Example of a spanning tree T of a graph G.
\end{figure}
Let T be a spanning tree of G, a connected subgraph whose cycles are all self-retracing.

Index every edge not in T with $\phi \in \{1, \ldots, f\}$. $c_\phi(\star)$ denotes fundamental cycle using edge e_ϕ based at \star. $\pi_1(G)$ generated by $\{c_\phi(\star)\}$. $H_1(G) = \pi_1(G)/(c_ic_j \sim c_jc_i)$ abelianized homotopy group.
$C_2(G) = (\mathcal{N}^2 - \Delta)/S_2$ can be regarded as graph G_2. An edge in G_2 corresponds to keeping one particle fixed while the other is moved along an edge of G. A_2 is adjacency matrix of G_2.

Example: K_3

$G = K_3$

![Diagram of graphs G and G_2](image)
$C_2(G) = (\mathcal{V}^2 - \Delta)/S_2$ can be regarded as graph G_2. An edge in G_2 corresponds to keeping one particle fixed while the other is moved along an edge of G. A_2 is adjacency matrix of G_2.

Example: K_3

$$G = K_3$$

![Graphs](image)
Two-particle graph

\[C_2(G) = (\mathcal{V}^2 - \Delta)/S_2 \]
can be regarded as graph \(G_2 \).
An edge in \(G_2 \) corresponds to keeping one particle fixed while the other is moved along an edge of \(G \).

Example: \(K_3 \)

\[G = K_3 \]

![Diagram of two graphs: G and G_2.](image)
Two-particle graph

\[C_2(G) = (\mathcal{V}^2 - \Delta)/S_2 \]
can be regarded as graph \(G_2 \). An edge in \(G_2 \) corresponds to keeping one particle fixed while the other is moved along an edge of \(G \). \(A_2 \) is adjacency matrix of \(G_2 \).

Example: \(K_3 \)

\[G = K_3 \]

\(\begin{align*}
G & \quad \quad \quad \quad G_2 \\
1 & \quad \quad \quad \quad (1,2)
\end{align*} \]

\[\begin{align*}
2 & \quad \quad \quad \quad (1,3)
\end{align*} \]
$C_2(G) = (\mathcal{V}^2 - \Delta)/S_2$ can be regarded as graph G_2. An edge in G_2 corresponds to keeping one particle fixed while the other is moved along an edge of G. A_2 is adjacency matrix of G_2.

Example: K_3

$$G = K_3$$
Definition

Contactable cycles are cycles on G_2 that are not self-retracing but are metrically contractible for two particles on Γ.

Pairs of disjoint edges in G generate contractible cycles.
Contractible cycles

Definition

Contactable cycles are cycles on G_2 that are not self-retracing but are metrically contractible for two particles on Γ.

Pairs of disjoint edges in G generate contractible cycles.
Contractible cycles

Definition

Contactable cycles are cycles on G_2 that are not self-retracing but are metrically contractible for two particles on Γ.

Pairs of disjoint edges in G generate contractible cycles.
Definition

Contactable cycles are cycles on G_2 that are not self-retracing but are metrically contractible for two particles on Γ.

Pairs of disjoint edges in G generate contractible cycles.
Definition

Contactable cycles are cycles on G_2 that are not self-retracing but are metrically contractible for two particles on Γ.

Pairs of disjoint edges in G generate contractible cycles.
Contractible cycles

Definition

Contactable cycles are cycles on G_2 that are not self-retracing but are metrically contractible for two particles on Γ.

Pairs of disjoint edges in G generate contractible cycles.
Contractible cycles

Definition

Contactable cycles are cycles on G_2 that are not self-retracing but are metrically contractible for two particles on Γ.

Pairs of disjoint edges in G generate contractible cycles. Let $\mathcal{K}(G_2) \subset \mathcal{C}(G_2)$ be set of contractible cycles mod self-retracing.

\[
\mathcal{C}(G_2)/\mathcal{K}(G_2) \cong \pi_1(C_2(\Gamma))
\]

\[
H_1(C_2(\Gamma)) = \pi_1(C_2(\Gamma))/(c_i c_j \sim c_j c_i)
\]
Example: Lasso graph

\[H_1(G_2) \sim \mathbb{Z}^2 \]
Example: Lasso graph

$H_1(G_2) \sim \mathbb{Z}^2$
Topological gauge potentials

Definition

Ω_2 is a *topological gauge potential* for G_2 if $\Omega_2(c) = 0 \mod 2\pi$ for every contractible loop c on G_2.
Topological gauge potentials

Definition

\(\Omega_2 \) is a *topological gauge potential* for \(G_2 \) if \(\Omega_2(c) = 0 \mod 2\pi \) for every contractible loop \(c \) on \(G_2 \).

Classification:

- Choose spanning tree \(T_2 \) of \(G_2 \).
Definition

Ω_2 is a topological gauge potential for G_2 if $\Omega_2(c) = 0 \mod 2\pi$ for every contractible loop c on G_2.

Classification:

- Choose spanning tree T_2 of G_2.
- Fix gauge: $\Omega_e = 0$ for $e \in T_2$.

Jon Harrison
Topology and quantum mechanics
Definition

Ω_2 is a *topological gauge potential* for G_2 if $\Omega_2(c) = 0 \mod 2\pi$ for every contractible loop c on G_2.

Classification:

- Choose spanning tree T_2 of G_2.
- Fix gauge: $\Omega_e = 0$ for $e \in T_2$.
- $\omega := (\omega_1, \ldots, \omega_{f_2})$ where ω_{ϕ_2} is flux of Ω_2 through c_{ϕ_2}.
Definition

Ω_2 is a *topological gauge potential* for G_2 if $\Omega_2(c) = 0 \mod 2\pi$ for every contractible loop c on G_2.

Classification:

- Choose spanning tree T_2 of G_2.
- Fix gauge: $\Omega_e = 0$ for $e \in T_2$.
- $\omega := (\omega_1, \ldots, \omega_{f_2})$ where ω_{ϕ_2} is flux of Ω_2 through c_{ϕ_2}.
- Constraints from contractible loops $R\omega = 0 \mod 2\pi$, where R is integer matrix.
Aharonov-Bohm phases and two-body phases

Aharonov-Bohm phase

A free statistics phase that corresponds to taking one particle around a cycle in G with the other fixed.

An Aharonov-Bohm phase can be produced by threading a cycle of G with a magnetic flux.
Aharonov-Bohm phase

A free statistics phase that corresponds to taking one particle around a cycle in G with the other fixed.

An Aharonov-Bohm phase can be produced by threading a cycle of G with a magnetic flux.

Free phases not parameterized by Aharov-Bohm phases and discrete phases are *two body phases* which characterize Abelian graph statistics.
1 A-B phase.

1 free 2-body phase.

\[
\frac{(|E| - 1)(|E| - 2)}{2}
\]
free 2-body phases.

3 A-B & 1 free 2-body phase.
Non-planar graphs

Theorem (Kuratowski)

Every nonplanar graph – a graph which cannot be drawn in the plane without edges crossing – contains K_5 or $K_{3,3}$ as a subgraph or contains a subgraph that is homeomorphic to K_5 or $K_{3,3}$.
Non-planar graphs

Theorem (Kuratowski)

Every nonplanar graph – a graph which cannot be drawn in the plane without edges crossing – contains K_5 or $K_{3,3}$ as a subgraph or contains a subgraph that is homeomorphic to K_5 or $K_{3,3}$.

6 A-B phases & 1 discrete phase of 0 or π.

4 A-B phases & 1 discrete phase of 0 or π.

12 A-B, 6 2-body & 2 phases of 0 or π.
Figure: Configuration space graph G_2 of $K_{3,3}$, edges shown as solid lines are in the spanning subtree with root $(1, 2)$. Open edges are joined left to right and top to bottom.
Counting phases

Ko & Park (2011)

\[H_1(C_n(G)) = \mathbb{Z}^{N_1(G)+N_2(G)+N_3(G)+\beta_1(G)} \oplus \mathbb{Z}_2^{N'_3(G)} \] \hspace{1cm} (4)

- **\(N_1(G) \)** sum over one cuts \(j \) of \(N(n, G, j) \).

\[N(n, G, j) = \binom{n + \mu_j - 2}{n-1}(\mu(j) - 2) - \binom{n + \mu_j - 2}{n} - (v_j - \mu_j - 1) \]

\(\mu_j \) \# components of \(G \setminus j \).

- **\(N_2(G) \)** sum over two connected components of \(G \).
- **\(N_3(G) \)** \# 3-connected planar components of \(G \).
- **\(N'_3(G) \)** \# 3-connected non-planar components of \(G \).
- **\(\beta_1(G) \)** \# of loops of \(G \).
3-connected components

Lemma

A 3-connected graph has a single 2-body exchange phase.

Sketch proof:
We already know lemma holds for K_4 the simplest 3-connected graph.
3-connected components

Lemma

A 3-connected graph has a single 2-body exchange phase.

Sketch proof:
We already know lemma holds for K_4 the simplest 3-connected graph.

![Diagram of a 3-connected graph and a 2-body exchange phase](image)
Lemma

A 3-connected graph has a single 2-body exchange phase.

Sketch proof:
We already know lemma holds for K_4 the simplest 3-connected graph.
Lemma

A 3-connected graph has a single 2-body exchange phase.

Sketch proof:
We already know lemma holds for K_4 the simplest 3-connected graph.
Conclusions

- Formulated multi-particle QM on combinatorial graphs.
- Vector field used to incorporate statistics in Hamiltonian.
- Demonstrated new forms of quantum statistics for graphs.
- Graph statistics allow multiple anyon phases and discrete phases.
Conclusions

- Formulated multi-particle QM on combinatorial graphs.
- Vector field used to incorporate statistics in Hamiltonian.
- Demonstrated new forms of quantum statistics for graphs.
- Graph statistics allow multiple anyon phases and discrete phases.

Outlook

- Metric graphs
- Non-abelian statistics
- Many body properties: transport, analogue of fractional quantum Hall effect, Hartree-Fock.
- Physical mechanism for exotic graph statistics.
References

Thank You

What you were missing in Bristol