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Block preconditioners for finite element discretization of
incompressible flow with thermal convection
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SUMMARY

We derive block preconditioners for a finite element discretization of incompressible flow coupled to
heat transport by the Boussinesq approximation. Our techniques rely on effectively approximating the
Schur complement obtained by eliminating the fluid variables to obtain an equation for temperature alone.
Additionally, the method utilizes existing block-structured preconditioners and multilevel methods for the
Navier—Stokes equations and scalar convection-diffusion. We find that the preconditioner remains robust
and scalable even when the subsolves are applied quite inexactly. Copyright c© 0000 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

In this paper, we extend block preconditioners for inf-sup stable finite element discretizations of the
incompressible Navier–Stokes equations,

−ν∆u+ u · ∇u+∇p = f

∇ · u = 0,
(1)

posed on some domain Ω ⊂ Rd for d = 2, 3 and equipped with appropriate boundary conditions, to
a particular non-dimensionalization of a coupled fluid-thermal problem, Bénard convection:

−∆u+ u · ∇u+∇p = −Ra
Pr

ĝT

∇ · u = 0

− 1

Pr
∆T + u · ∇T = 0,

(2)

again posed on some domain Ω along with boundary conditions. The fluid velocity and pressure
are u and p, respectively, in both equations, and the temperature is T . The ν in (1) is the fluid
viscosity. The Rayleigh number Ra measures the ratio of energy from buoyant forces to viscous
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2 V. E. HOWLE AND R. C. KIRBY

dissipation and heat conduction, the Prandtl number Pr measures the ratio of viscosity to heat
conduction, and ĝ denotes a unit vector along the axis in which gravity acts. This model employs
the Boussinesq approximation, in which temperature-dependent density variations are assumed to
affect the momentum balance only through a buoyant force. For more information, including the
non-dimensionalization used in (2), we follow the treatment of Carey and Oden [6].

While variations of this problem are quite classical in the fluid mechanics literature, it still is
attracting interest among solver research as a challenging model problem for coupled physics. For
example, it is considered as an example for pseudo-transient continuation in [7] and for AMG-type
preconditioners in [18].

2. DISCRETIZATION AND LINEARIZATION

We will consider inf-sup stable P 2 − P 1 Taylor-Hood discretizations of the fluid equations, and P 1

approximation of the temperature. We let Vh be the vector-valued P 2 velocity space and Wh the
scalar-valued P 1 space. The weak formulation of the incompressible Navier–Stokes equations is to
find (uh, ph) ∈ Vh ×Wh such that

ν (∇uh,∇vh) + (uh · ∇uh, vh)− (ph,∇ · vh) = (f, vh)

(∇ · uh, wh) = 0,
(3)

for all (vh, wh) ∈ Vh ×Wh satisfying the homogeneous boundary conditions.
The thermal convection problem admits the weak form

(∇uh,∇vh) + (uh · ∇uh, vh)− (ph,∇ · vh) =
Ra

Pr
(Th, vh,g)

(∇ · uh, wh) = 0

1

Pr
(∇Th,∇rh) + (uh · ∇Th, rh) = 0,

(4)

where vh,g means the component of vh in the direction of gravity.
In fact, our numerical simulations will use a more complicated weak form based on Nitsche

boundary conditions [21, 13, 1]. Our numerical calculations are performed using the Sundance
library [19], but the standard row-replacement Dirichlet boundary conditions disturb the block
structure. Nitsche boundary conditions leave the block structure intact. For simplicity of exposition
we use standard Dirichlet boundary conditions in this paper, although the formulation naturally
carries over to Nitsche-type conditions.

We will primarily be interested in Newton-type algorithms for the nonlinear system of equations,
which require the Jacobian operators. These block systems have a tighter coupling between the
fluid and temperature equations, giving rise to a more challenging preconditioning problem than
successively iterating between the two equations. We linearize at the level of the weak form, giving
rise to a linear variational problem for the Newton step for Navier–Stokes. The weak forms of these
Jacobians are

ν (∇uh,∇vh) +
(
u0h · ∇uh, vh

)
+
(
uh · ∇u0h, vh

)
− (ph,∇ · vh) = (f, vh)

(∇ · uh, wh) = 0,
(5)

for Navier–Stokes and

(∇uh,∇vh) +
(
u0h · ∇uh, vh

)
+
(
uh · ∇u0h, vh

)
− (ph,∇ · vh) =

Ra

Pr
(Th, vh,g)

(∇ · uh, wh) = 0

1

Pr
(∇Th,∇rh) +

(
u0h · ∇Th, rh

)
+
(
uh · ∇T 0

h , rh
)

= 0,

(6)

for convection, where T 0
h and u0h are the temperature and velocity about which the system is

linearized.
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BLOCK PRECONDITIONERS FOR CONVECTION 3

The linear algebraic problem for a single Newton step for Navier–Stokes takes the form(
F Bt

−B 0

)(
u
p

)
=

(
f1
f2

)
, (7)

where B and Bt are matrices corresponding to discrete divergence and gradient operators, and F
operates on the discrete velocity space. If an equal-order stabilized method is used [4], the bottom
right block will be nonzero. Typically, preconditioners can be appropriately modified to account for
this; see, for example, [10].

If we define the block vectors x =

(
u
p

)
and g =

(
f1
f2

)
, then we may write the block system

in the simpler form
Nx = g, (8)

where N represents the block 2× 2 Navier–Stokes system (7). We will use this later when deriving
methods for the convection problem when we wish to treat the linearized Navier–Stokes equations
as a single entity.

The linear system for a Newton step for the convection problem takes the form F Bt M1

−B 0 0
M2 0 K

 u
p
T

 =

 f1
f2
f3

 . (9)

The matrices F and B are the same as in linearized Navier–Stokes. The matrix M1 arises from the
term (Ra

PrT, vg), where g is the Cartesian direction in which gravity acts (y in 2d, z in 3d). In 2d,
if the velocity variables in each direction are segregated, this has the form of M t

1 = (0,M t), where
M is a rectangular mass matrix with rows corresponding to the P 2 basis functions and columns
to P 1. The matrix M2 arises from the Jacobian term (u · ∇T0, r), where T0 is the temperature in
the current Newton iterate. The matrix K comes from 1

Pr (∇T,∇r) + (u0 · ∇T, r), so is a standard
linear convection-diffusion operator. In our simulations, the fluid velocity has not become large
enough to require additional stabilization of this term, although it would not complicate the block
structure if such terms were included.

If we cluster the velocity and pressure unknowns as in (8), the convection system becomes(
N M̃1

M̃2 K

)(
x
T

)
=

(
g
f3

)
, (10)

where M̃1 =

(
M1

0

)
and M̃2 = (M2, 0).

3. BLOCK PRECONDITIONERS FOR THE THERMAL-TEMPERATURE SYSTEM

As with Navier–Stokes [9] and other coupled systems [23], we begin our discussion with a block
LU factorization of (10):(

N M̃1

M̃2 K

)
=

(
I 0

M̃2N
−1 I

)(
N M̃1

0 ST

)
, (11)

where ST ≡ K − M̃2N
−1M1 is the Schur complement obtained by eliminating the fluid variables.

We denoting the block matrix on the left as A and the right-hand side as LU . The matrix L = AU−1

is unit lower triangular, where we invert U to obtain

U−1 =

(
N−1 0

0 I

)(
I −M̃1

0 I

)(
I 0
0 S−1T

)
. (12)
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4 V. E. HOWLE AND R. C. KIRBY

GMRES for the preconditioned system AU−1 will converge in exactly two (very expensive)
iterations [20]. While this iteration is typically impractical, it motivates preconditioners based on
approximations to the Schur complement. To our knowledge, our work is the first to use this
approach with approximate Schur complements for Bénard convection. Our insight comes from
examining the operator-level theory, so we look at the weak forms giving rise to the particular
blocks more closely.
N comes from the weak form of the linearized Navier–Stokes equations

〈N(u, p), (v, w)〉 = (∇u,∇v) + (u0 · ∇u, v) + (u · ∇u0, v)− (p,∇ · v) + (∇ · u,w).

To be more precise, we might write N = Nu0
, for the operator depends on the state u0 about which

the problem is linearized. This is a linear second-order elliptic operator, bounded from (H1)d × L2
0

into its dual. It also possesses elliptic regularity, so that its inverse maps
The block M̃1 is given by

〈M̃1(u, p), r〉 = (u · ∇c0, r),
which gives rise to a mass-like matrix on vector-valued functions, albeit with a possibly
discontinuous coefficient ∇c0. So, with the Riesz Representation Theorem, it is a bounded linear
operator on L2.

The block M̃2 takes any L2 function and computes

〈M̃2c, (v, w)〉 = −Ra
Pr

(cg, v),

the (scaled) L2 inner product of one component of v with an L2 or H1 function c. This is likewise a
bounded operator.

Finally, the block K : H1
D →

(
H1

D

)′
is given by

〈Kc, r〉 =
1

Pr
(∇c,∇r) + (u0 · ∇c, r),

which is a linear, second-order elliptic operator possessing full elliptic regularity.
Now, we consider the Schur complement ST = K − M̃1N

−1M̃2 as an operator on H1 functions
satisfying the temperature boundary conditions. K takes such functions into H−1 and M̃1N

−1M̃2

into L2; the Schur complement is a well-defined elliptic integro-differential operator. Motivated
by techniques in [12] and [17], we consider using a differential operator as a preconditioner. In
particular, we consider K. As a right preconditioner, we have(

K − M̃1N
−1M̃2

)
K−1 = I − M̃1N

−1M̃2K
−1.

M̃1, M̃2 are bounded operators on L2. Moreover, the regularity of K and N means that K−1 and
N−1 are compact operators mapping from from L2-type spaces into smoother ones compactly
embedded in L2. This is due to regularity (which requires basic assumptions on the smoothness
of the boundary and input data) and the Rellich selection theorem [11].

This preconditioned operator, then, takes the form of a compact perturbation of the identity.
From the classic theory of compact operators, we know that the eigenvalues of STK

−1 have finite
multiplicity (nontrivial in infinite dimensions) and have 1 as the only accumulation point. Krylov
methods in Hilbert space are known to converge superlinearly on such operators [5, 24]. Although
we do not have rigorous estimates when we restrict to the finite-dimensional setting, we do find
favorable convergence properties in practice.

So then, we propose the preconditioner P−1 ≈ U−1 by substituting our approximation S−1T ≈
K−1 into (12)

P−1 =

(
N−1 0

0 I

)(
I −M̃1

0 I

)(
I 0
0 K−1

)
. (13)

This preconditioner still requires the solution of a linearized Navier–Stokes system and a scalar
convection-diffusion system. Each could be applied inexactly (and we study this numerically later),
or we could make an even further approximation by replacing the N−1 with a preconditioner for the
Navier–Stokes system, to which we now turn.
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BLOCK PRECONDITIONERS FOR CONVECTION 5

Figure 1. Temperature profile of Bénard convection problem on a 64× 64 mesh using Taylor-Hood finite
elements with Ra = 2× 105 and Pr = 1. No-flow velocity boundary conditions are imposed, and the
temperature is set to be 1 on the right boundary and 0 on the left boundary, with insulated boundary
conditions on the top and bottom. The nonlinear algebraic equations were solved to a Newton tolerance

of 10−6.

3.1. Further approximation: a 3× 3 block preconditioner

Rather than an exact (or inexact) application of N−1, it is also possible to simply use a Navier–
Stokes preconditioner. If that preconditioner is itself block-structured, we obtain a 3× 3 system. If
we consider approximate Schur complement methods of the form in [10], the first block matrix on
the right hand side of (12) expands into three matrices, and we expand the block of fluid variables
into separate blocks for pressure and velocity:

 F−1 0 0
0 I 0
0 0 I

 I −Bt 0
0 I 0
0 0 I

 I 0 0
0 X−1 0
0 0 I

 I 0 −M1

0 I 0
0 0 I

 I 0 0
0 I 0
0 0 K−1

 .
(14)

Here, X can be any of the pressure Schur complement approximations for Navier–Stokes [9]. If
other block preconditioners, such as those based on augmented Lagrangian methods [2, 3], are
considered, the first three matrices will be modified accordingly.

4. NUMERICAL RESULTS

In this section, we examine our various solution methodologies on a problem that is a slight
modification of the classic two-dimensional problem. In that problem, fluid is in a box with no-slip
boundary conditions for the fluid. A unit temperature difference is imposed in the vertical direction,
and insulating boundary conditions are applied on the remaining sides. At large Rayleigh numbers,
this creates an instability leading to overturning cells. In practice, this is a rather subtle problem to
simulate, requiring a very good initial guess for Newton’s method. The problem of imposing the
temperature difference horizontally gives an easier nonlinear system. Our algorithm, leads to the
temperature profile shown in Figure 1.
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6 V. E. HOWLE AND R. C. KIRBY

4.1. The 3× 3 block preconditioner

We begin with the preconditioner (14), which uses the Navier–Stokes preconditioner in place
of a preconditioned Navier–Stokes solve. We use the pressure convection-diffusion (PCD)
preconditioner [8], where the Schur complement for Navier–Stokes is approximated with X =

S̃p = ApF
−1
p Mp, as the Navier–Stokes preconditioner. Here Ap is a Laplacian operator on the

pressure space, Fp is a convection-diffusion operator on the pressure space, and Mp is a pressure
mass matrix. Table I displays the number of Newton steps and the average number of GMRES
iterations per Newton step for this method over a range Rayleigh numbers and problem sizes. We
used a Newton tolerance of 1× 10−6 with an inner GMRES tolerance of 1× 10−8 on the relative
residual. For the inner subsolves, we use GMRES preconditioned with algebraic multigrid on K
and CG preconditioned with algebraic multigrid on Ap and Mp. All inner solves have a stopping
tolerance on the relative residual of 1× 10−10. As we are using the Sundance library, which is part
of the Trilinos framework [16], for our numerical calculations, we also use Trilinos packages for the
linear systems that arise. Here we use the iterative solver package Belos [25] for the main GMRES
iteration. For the PCD subsolves F , Ap, and Mp, and for the K subsolve, as proof of concept we
use direct solves through the Trilinos package Amesos [22]. In terms of impact on the number of
GMRES iterations (as opposed to runtime performance), direct subsolves are the best case scenario.

We can see that the number of Newton iterations and the average number of GMRES iterations
per Newton step are essentially independent with respect to problem size. The number of Newton
steps is mildly dependent onRa, and the number of GMRES iterations per Newton step grows more
strongly withRa. This is to be expected, as increasingRa contributes to the off-diagonal blocks and
also increases the flow rate and hence asymmetry of the F matrix. We take the Rayleigh number up
to 2× 104. Much above this value, an equal-order discretization with stabilization would be needed.
In our experiments with Ra = 2× 105, only the coarsest mesh converged.

Ra 2× 102 2× 103 2× 104

N Newt GMRES Newt GMRES Newt GMRES
16 3 37.3 4 49.0 7 75.4
32 3 39.3 4 51.5 7 80.3
64 2 38.5 4 53.8 6 82.8

Table I. Number of Newton steps and average GMRES iteration count per Newton step when the linear
system is solved using the 3× 3 block preconditioner. A Newton tolerance of 1× 10−6 with an inner
GMRES tolerance of 1× 10−8 was used. All of the inner-most systems, F , Ap, Mp, and K were solved
using direct methods. The number of Newton iterations is essentially independent, with some small
dependence on Ra. The average number of GMRES iterations per Newton step is also largely independent

of problem size, but grows more strongly with Ra.

For this preconditioner to be efficient, we must be able to use iterative methods on the subsolves
with fairly low accuracy without significantly degrading the number of GMRES iterations needed.
In Tables II and III, we use GMRES preconditioned with algebraic multigrid on the inner F and K
systems. For the Ap and Mp systems, we use CG preconditioned with algebraic multigrid. We use
loose tolerances on these inner-most iterations of 1× 10−4 in Table II and 1× 10−2 in Table III.
Because we are solving the inner systems inexactly, we switch to FGMRES for the main iteration.
We can see that number of GMRES (FGMRES) iterations increases as we lower the tolerance on
the inner solves. With inner tolerances of 1× 10−4 the number of FGMRES iterations remains
relatively independent of problem size. With inner tolerances of 1× 10−2, we get a little more
growth in FGMRES iterations with problem size. In both tables, the problem on the finest mesh
with Rayleigh number 2× 104 failed to converge. In both cases the failure was in the inner solve on
the F system, which failed to reach the respective tolerance after 1500 iterations.
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BLOCK PRECONDITIONERS FOR CONVECTION 7

F , Ap, Mp, K tols = 10−4

Ra 2× 102 2× 103 2× 104

N Newt FGMRES Newt FGMRES Newt FGMRES
16 3 41.0 4 51.0 7 77.0
32 3 44.0 4 55.3 7 81.7
64 2 45.0 4 59.3 - -

Table II. Number of Newton steps and average FGMRES iteration count per Newton step when the linear
system is solved using the 3× 3 block preconditioner. A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. The inner-most systems, F , Ap, Mp, and K have tolerances
of 1× 10−4. The number of Newton iterations is essentially independent, with some small dependence on
Ra. The average number of GMRES iterations per Newton step is also largely independent of problem size,
but grows more strongly with Ra. The method failed on the finest grid with Ra = 2× 104. At this Rayleigh

number, the F solve failed to reach a tolerance of 10−4 after 1500 iterations.

F , Ap, Mp, K tols = 10−2

Ra 2× 102 2× 103 2× 104

N Newt FGMRES Newt FGMRES Newt FGMRES
16 3 85.7 4 101.3 7 128.9
32 3 118.3 4 134.8 7 157.6
64 2 143.0 4 175.3 - -

Table III. Number of Newton steps and average FGMRES iteration count per Newton step when the linear
system is solved using the 3× 3 block preconditioner. A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. The inner-most systems, F , Ap, Mp, and K have tolerances
of 1× 10−2. The number of Newton iterations is essentially independent, with some small dependence on
Ra. The average number of GMRES iterations per Newton step is also largely independent of problem size,
but grows more strongly with Ra. The method failed on the finest grid with Ra = 2× 104. At this Rayleigh

number, the F solve failed to reach a tolerance of 10−2 after 1500 iterations.

4.2. The 2× 2 block preconditioner

Now, we turn to the nested 2× 2 preconditioner (13). (This presents some practical complications,
as the linear algebra has a nested block structure with the fluid block itself having subblocks. We
will address the software-related issues in a separate publication.)

In Tables IV through VII, we apply the preconditioner (13) using varying degrees of accuracy
on the subsolves, starting with all tight tolerances and gradually loosening the tolerances on the
subsolves. These tables show that although loosening the subsolve tolerances does lead to a larger
number of GMRES (FGMRES) iterations, there is no increase in the number of Newton steps. In
all cases, our linear system stopping criteria tolerances are on the relative residual.

To apply the preconditioner (13) requires solving one linear system with K and one with the
Navier–Stokes block N . We use GMRES right preconditioned with algebraic multigrid for the
K solve. The Navier–Stokes block is solved using FGMRES right preconditioned with the PCD
preconditioner. The PCD preconditioner requires linear solves on the convection-diffusion operator
F , the pressure Laplacian Ap, and the pressure mass matrix Mp. We use GMRES on the F solve
and CG on the Ap and Mp solves. Each of these is preconditioned with algebraic multigrid.

As before, we use Trilinos packages for the linear systems that arise. We use Belos for the
main GMRES (or FGMRES) iteration. Because we need FGMRES once the subsolves have looser
tolerances, for consistency, we use FGMRES throughout. Similarly, we use FGMRES from Belos
for the Navier–Stokes solve. For the K solve and the linear systems that arise from the PCD
preconditioner, we use the AztecOO [15] package and precondition using the algebraic multigrid
with smoothed aggregation from ML [14].

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



8 V. E. HOWLE AND R. C. KIRBY

We will see in Table IX, that although the looser tolerances in the subsolves lead to a larger
number of FGMRES iterations, each iteration is sufficiently cheaper that the loose tolerance runs
are noticeably faster than the runs with tight inner tolerances. All timing runs were performed (in
serial) on an 8-core Power Mac workstation with 32 GB of RAM.

To begin, in Table IV, we consider the case of carrying out all solves to very high tolerance.
This is typically suboptimal for run-time, but provides a baseline against which to compare iteration
counts when inexact solves are employed. The Navier–Stokes solve has a tolerance of 1× 10−10.
Within the PCD preconditioner, the F , Ap, and Mp solves have tolerances of 1× 10−10. Similarly,
the K solve has a tolerance of 1× 10−10. Again we display results over a range of Rayleigh
numbers and problem sizes. In Table IV and subsequent tables, we take the Rayleigh number up
to 2× 104. Much above this value, the iterative subsolves struggled significantly and an equal-order
discretization with stabilization would be needed. Here we experience independence in both the
number of Newton steps and the average number of FGMRES iterations with respect to problem
size and only mild growth in each with Ra. It is worth noting the very low iteration count – this
preconditioner only differs from [20] in the approximation of S ≈ K. This result suggests that our
Schur complement approximation is a quite effective starting point for further approximations, to
which we now turn.

NS tol = 10−10, PCD tols = 10−10, K tol = 10−10

Ra 2× 102 2× 103 2× 104

N Newt FGMRES Newt FGMRES Newt FGMRES
16 3 3.3 4 5.3 7 7.6
32 3 3.3 4 4.8 7 7.6
64 2 3.0 4 4.8 6 6.8

Table IV. Number of Newton steps and average FGMRES iteration count per Newton step when the linear
system is solved using the 2× 2 block preconditioner. A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. The Navier–Stokes solve has a tolerance of 1× 10−10. Within
the PCD preconditioner, the F , Ap, and Mp solves have tolerances of 1× 10−10. Similarly, the K solve has
a tolerance of 1× 10−10. The number of Newton iterations and the average number of iterations per Newton

step are essentially independent with some dependence on Ra.

Next, in Table V, we raise the tolerance on the iteration for applying N−1 to 1× 10−2, while
keeping the tolerances in the F , Ap, and Mp subsolves tight. This leads to mildly increased iteration
counts in the outer linear solve, but at a much-reduced cost in applying the preconditioner. We
examine these costs through timings in Tables IX and X.

NS tol = 10−2, PCD tols = 10−10, K tol = 10−10

Ra 2× 102 2× 103 2× 104

N Newt FGMRES Newt FGMRES Newt FGMRES
16 3 6.0 4 9.0 7 17.7
32 3 5.7 4 9.0 7 18.4
64 2 5.5 4 9.0 6 17.0

Table V. Number of Newton steps and average FGMRES iteration count per Newton step when the linear
system is solved using the inexact 2× 2 block preconditioner. A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. The Navier–Stokes solve has a tolerance of 1× 10−2. Within the
PCD preconditioner, the F , Ap, and Mp solves have tolerances of 1× 10−10. Similarly, the K solve has a
tolerance of 1× 10−10. The number of Newton iterations and the average number of iterations per Newton

step are essentially independent with some dependence on Ra.

As a further approximation, the subsolves within the Navier–Stokes preconditioner need only
be applied accurately enough to achieve the desired tolerance for the Navier–Stokes equations. An
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additional performance gain is realized then by raising the F ,Ap, andMp tolerances within the PCD
preconditioner. While the Ap and Mp solves are quite efficient, the F solve is the most difficult step
of the entire process, so relaxing this tolerance leads to a significant gain. We can see in Table VI that
raising these inner-most tolerances has almost no negative effect on either the number of Newton
steps or the average number of FGMRES iterations.

NS tol = 10−2, PCD tols = 10−4, K tol = 10−10

Ra 2× 102 2× 103 2× 104

N Newt FGMRES Newt FGMRES Newt FGMRES
16 3 6.0 4 9.5 7 17.3
32 3 6.0 4 9.0 7 17.4
64 2 5.0 4 9.0 6 17.2

Table VI. Number of Newton steps and average FGMRES iteration count per Newton step when the linear
system is solved using the inexact 2× 2 block preconditioner. A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. The Navier–Stokes solve has a tolerance of 1× 10−2. Within the
PCD preconditioner, the F , Ap, and Mp solves have tolerances of 1× 10−4. The K solve has a tolerance
of 1× 10−10. The number of Newton iterations and the average number of iterations per Newton step are
essentially independent with some dependence on Ra, and there has been almost no change in either as

compared with those in Table V.

While the N solve dominates the cost of applying the preconditioner, it is also interesting to
consider the effect of raising the tolerance on theK solve, which can also be strongly nonsymmetric
and present some difficulties. Table VII indicates that increasing this tolerance has little further effect
on the overall iteration count, though later we see it also has but a modest effect on overall run-time.

All of the runs with the 2× 2 preconditioner take significantly fewer GMRES (or FGMRES)
iterations than those with the 3× 3 preconditioner. However in terms of runtime efficiency, the
nested 2× 2 preconditioner also includes a solve on the Navier–Stokes block instead of just an
application of the preconditioner. We will examine this trade-off with some timings results in the
next subsection.

NS tol = 10−2, PCD tols = 10−4, K tol = 10−2

Ra 2× 102 2× 103 2× 104

N Newt FGMRES Newt FGMRES Newt FGMRES
16 3 6.3 4 9.7 7 17.4
32 3 6.3 4 9.8 7 18.0
64 2 5.5 4 9.3 6 15.3

Table VII. Number of Newton steps and average FGMRES iteration count per Newton step when the linear
system is solved using the inexact 2× 2 block preconditioner. A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. The Navier–Stokes solve has a tolerance of 1× 10−2. Within the
PCD preconditioner, the F , Ap, and Mp solves have tolerances of 1× 10−4. The K solve has a tolerance
of 1× 10−2. The number of Newton iterations and the average number of iterations per Newton step are

essentially independent with some dependence on Ra.
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4.3. Some timing results

Reporting thorough timing and inner iteration results for the large array of options considered would
quickly become unwieldy. Yet, it is also important to ascertain the relative effects of the various
approximations and strategies we propose. To this end, in Tables VIII and IX, we consider the 3× 3
and 2× 2 preconditioners, respectively, in the case of Ra = 2× 104 and nx = ny = 32 and report
timings for a range of approximations in the preconditioners. We can see that there is a significant
performance gain in the 2× 2 case as we loosen the tolerance on the Navier–Stokes solve, and an
even more significant gain, for both preconditioners, as we loosen the tolerances on the subsolves in
the PCD preconditioner. We also see modest performance improvements by relaxing the tolerance
on the K solve.

PCD tol = 10−10 PCD tol = 10−6 PCD tol = 10−4 PCD tol = 10−2

K tol = 10−10 K tol = 10−6 K tol = 10−4 K tol = 10−2

Newt FGMRES 7 80.3 7 80.3 7 81.7 7 157.6
Timing (sec) 922.2 493.0 297.3 231.8

Table VIII. The number of Newton iterations, the average number of iterations per Newton step, and timings
(in seconds) using the 3× 3 block preconditioner of (14). A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. We used Ra = 2× 104, and a problem size of nx = ny = 32. The
tightest subsolves on F , Ap, Mp, and K have a tolerance of 1× 10−10, then successively looser tolerances

of 1× 10−6, 1× 10−4, and 1× 10−2.

NS tol = 10−10 NS tol = 10−2 NS tol = 10−2 NS tol = 10−2

PCD tol = 10−10 PCD tol = 10−10 PCD tol = 10−4 PCD tol = 10−4

K tol = 10−10 K tol = 10−10 K tol = 10−10 K tol = 10−2

Newt FGMRES 7 7.1 7 18.4 7 17.4 7 18.0
Timing (sec) 674 477.6 269.1 281.2

Table IX. The number of Newton iterations, the average number of iterations per Newton step, and timings
(in seconds) using the 2× 2 block preconditioner of (13). A Newton tolerance of 1× 10−6 with an inner
FGMRES tolerance of 1× 10−8 was used. We used Ra = 2× 104, and a problem size of nx = ny = 32. The
“tight” NS FGMRES tolerance is 1× 10−10 and the “loose” NS FGMRES is 1× 10−2. “Tight” subsolves
on F , Ap, and Mp have a tolerance of 1× 10−10 and “loose” subsolves have tolerances of 1× 10−4. “Tight”

tolerance on the K solve is 1× 10−10, and “loose” is 1× 10−2.

In comparing the 2× 2 and 3× 3 timings, the two methods seem to be competitive in terms of
runtime efficiency. There is a trade off between a larger number of GMRES (or FGMRES) iterations
in the 3× 3 preconditioner verses the extra layer of a GMRES (or FGMRES) solve on the Navier-
Stokes block in the 2× 2 preconditioner. Based on our experience thus far, however, the 3× 3
preconditioner seems to be more fragile at the higher Rayleigh numbers and more dependent on the
quality of the solves on the convection-diffusion operator F .

Finally, we consider the 2× 2 preconditioner in the case with fixed Ra = 2× 104 and all loose
tolerances on the subsolves. We vary the problems size from nx = ny = 16 to nx = ny = 128.

5. CONCLUSION

We have proposed a methodology for developing block preconditioners for a nonisothermal
incompressible fluid. PDE-level insight leads to a very simple Schur-complement approximation
in the block factorization, and we conveniently make use of existing solvers for Navier–Stokes.
This strategy seems to be new for coupled fluids problems. Moreover, inexact preconditioner
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N = 8 N = 16 N = 32 N = 64 N = 128

Newt FGMRES 7 19.3 7 17.4 7 18.0 6 15.3 6 18.0
Timing (sec) 416 627.2 1660 4882 24790

Table X. The number of Newton iterations, the average number of iterations per Newton step, and timings
(in seconds) using the 2× 2 block preconditioner of (13) with all loose tolerances. A Newton tolerance of
1× 10−6 with an inner FGMRES tolerance of 1× 10−8 was used. We use Ra = 2× 104, and vary problems
size. The NS FGMRES tolerance is 1× 10−2, tolerances on the F , Ap, and Mp subsolves are 1× 10−4, and

the K solve tolerance is 1× 10−2.

application allows us to streamline the F solve, the typical bottleneck in Navier–Stokes solvers,
quite significantly.

Many of our insights are not specific to fluids, especially those regarding regularity and
compactness. In the future, we hope not only to extend our techniques to three dimensions and to
other fluids-based problems such as MHD, but also to consider their applicability in a more abstract
framework for multiphysics.
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