Nonclassical Jacobi Polynomials and Sobolev Orthogonality

Andrea Bruder and L. L. Littlejohn

Abstract. In this paper, we consider the second-order Jacobi differential expression

$$\ell_{\alpha,\beta}[y](x) = \frac{-1}{(1-x)^a(1+x)^{-1}} \left((1-x)^{\alpha+1} y'(x) \right)' \quad (x \in (-1,1));$$

here, the Jacobi parameters are $\alpha > -1$ and $\beta = -1$. This is a non-classical setting since the classical setting for this expression is generally considered when $\alpha, \beta > -1$. In the classical setting, it is well-known that the Jacobi polynomials $\{P_n^{(\alpha,\beta)}\}_{n=0}^{\infty}$ are (orthogonal) eigenfunctions of a self-adjoint operator $T_{\alpha,\beta}$, generated by the Jacobi differential expression, in the Hilbert space $L^2((-1,1); (1-x)^a (1+x)^{-1})$. When $\alpha > -1$ and $\beta = -1$, the Jacobi polynomial of degree 0 does not belong to the Hilbert space $L^2((-1,1); (1-x)^a (1+x)^{-1})$. However, in this paper, we show that the full sequence of Jacobi polynomials $\{P_n^{(\alpha,-1)}\}_{n=0}^{\infty}$ forms a complete orthogonal set in a Hilbert–Sobolev space W_α, generated by the inner product

$$\phi(f,g) := f(-1)\overline{g(-1)} + \int_{-1}^{1} f'(t)\overline{g'(t)}(1-t)^{\alpha+1} dt.$$

We also construct a self-adjoint operator T_α, generated by $\ell_{\alpha,-1}[\cdot]$ in W_α, that has the Jacobi polynomials $\{P_n^{(\alpha,-1)}\}_{n=0}^{\infty}$ as eigenfunctions.

Mathematics Subject Classification (2010). Primary 33C45, 34B30, 47B25; Secondary 34B20, 47B65.
1. Introduction

For $\alpha, \beta > -1$, the special functions properties as well as the spectral properties of the classical Jacobi differential expression

$$l_{\alpha, \beta}[y](x) := \frac{1}{\omega_{\alpha, \beta}(x)} \left[\left(- (1-x)^{\alpha+1} (1+x)^{\beta+1} \right) y'(x) \right]' + k (1-x)^{\alpha} (1+x)^{\beta} y(x)$$

$$= - (1-x^2) y''(x) + (\alpha - \beta + (\alpha + \beta + 2)x) y'(x) + ky(x)$$

where $k \geq 0$ is fixed, $x \in (-1, 1)$ and $\omega_{\alpha, \beta}(x) = (1-x)^{\alpha} (1+x)^{\beta}$ are well known. In this case, the nth degree Jacobi polynomial $y = \mathcal{P}_{n}^{\alpha, \beta}(x)$ is a solution of the equation

$$l_{\alpha, \beta}[y](x) = (n(n + \alpha + \beta + 1) + k) y(x) \quad (n \in \mathbb{N}_0);$$

details of the properties of these polynomials can be found in [7,16]. The right-definite spectral analysis has been studied in [1,9]. Through the Glazman–Krein–Naimark (GKN) theory it has been known that there exists a self-adjoint operator $A^{(\alpha, \beta)}$ generated from the Jacobi differential expression in the Hilbert space $L^2((-1, 1); (1-x)^{\alpha} (1+x)^{\beta})$ having the Jacobi polynomials as a complete set of eigenfunctions.

For $\alpha, \beta \geq -1$, let

$$L^2_{\alpha, \beta}(-1, 1) := L^2((-1, 1); (1-x)^{\alpha} (1+x)^{\beta})$$

be the weighted Hilbert space with usual inner product

$$(f,g)_{\alpha, \beta} = \int_{-1}^{1} f(x) g(x) (1-x)^{\alpha} (1+x)^{\beta} dx$$

and related norm $\| \cdot \|_{\alpha, \beta}$. We will study the nonclassical Jacobi case when $\alpha > -1$ and $\beta = -1$. One main difference to the classical case is that the constant Jacobi polynomial $P_{0}^{\alpha, -1}(x)$ does not belong to the Hilbert space $L^2_{\alpha, -1}(-1, 1)$. However, it is true that the Jacobi polynomials $\{P_{n}^{\alpha, -1}\}_{n=1}^{\infty}$ still form a complete orthogonal set in $L^2_{\alpha, -1}(-1, 1)$. Moreover, by the GKN theory, there exists a self-adjoint differential operator $A^{(\alpha, -1)}$, generated by $l_{\alpha, -1}[\cdot]$, that is positively bounded below in $L^2_{\alpha, -1}(-1, 1)$, that has the set $\{P_{n}^{(\alpha, -1)}\}_{n=1}^{\infty}$ as eigenfunctions. Furthermore, in [12], Kwon and Littlejohn showed that the full sequence of Jacobi polynomials $\{P_{n}^{(\alpha, -1)}\}_{n=0}^{\infty}$ are orthogonal in a Hilbert–Sobolev function space W_{α} with inner product

$$\phi(f,g) := f(-1)g(-1) + \int_{-1}^{1} f'(x)g'(x)(1-x)^{\alpha+1} dx.$$
In this paper we prove that the entire sequence of Jacobi polynomials \(\{P_n^{(\alpha,-1)}\}_{n=0}^{\infty} \) are, in fact, complete in \(W_\alpha \). More importantly, we construct a self-adjoint, positively bounded below operator \(T_\alpha \), generated from \(l_{\alpha,-1}[\cdot] \), in \(W_\alpha \) having the entire set of Jacobi polynomials \(\{P_n^{(\alpha,-1)}\}_{n=0}^{\infty} \) as a complete set of eigenfunctions. The general left-definite theory, that was recently developed by Littlejohn and Wellman [13] is, surprisingly, of paramount importance in the construction of this self-adjoint operator.

We note that, for \(m \in \mathbb{N} \), the Jacobi polynomials \(\{P_n^{(\alpha,-m)}\}_{n=0}^{\infty} \) are orthogonal with respect to inner products of the form (1.3) but whose integrand involves the \(m \)th derivative of the functions. In this respect, we refer the reader to [2–4,11,12] where general results on the Sobolev orthogonality of the Jacobi or Gegenbauer polynomials when one or both parameters \(\alpha \) and \(\beta \) are negative integers.

2. Preliminaries: Properties of the Jacobi Polynomials

For \(\alpha, \beta > -1 \), the Jacobi polynomials \(\{P_n^{(\alpha,\beta)}(x)\}_{n=0}^{\infty} \) are defined by

\[
P_n^{(\alpha,\beta)}(x) := k_n^{\alpha,\beta} \sum_{j=0}^{n} \frac{(1+x)^{n-j}}{j!(n-j)!} \frac{(1+\alpha+j)(1+\alpha+\beta+j)}{(1-x)^j} \, (2.1)
\]

where

\[
k_n^{\alpha,\beta} := \frac{(n!)^{1/2}(1+\alpha+\beta+2n)^{1/2}}{2^{\alpha+\beta+1/2}(\Gamma(\alpha+n+1))^{1/2}(\Gamma(\beta+n+1))^{1/2}};
\]

see [7,15,16] for detailed discussions of these polynomials. For each \(n \in \mathbb{N}_0 \), \(y = P_n^{(\alpha,\beta)}(x) \) is a solution of the Jacobi differential equation

\[
l_{\alpha,\beta}[y](x) = (n(n+\alpha+\beta+1)+k) \, y(x).
\]

The Jacobi polynomials can always be normalized, in any number of ways, and we will assume that the polynomials are normalized in various spaces throughout this paper. They form a complete orthogonal set in the Hilbert space \(L^2_{\alpha,\beta}(-1,1) \). In fact, they satisfy the orthogonality relation

\[
\int_{-1}^{1} P_n^{(\alpha,\beta)}(x) P_r^{(\alpha,\beta)}(x)(1-x)^\alpha(1+x)^\beta \, dx = \frac{2^{\alpha+\beta+1}\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{(2n+\alpha+\beta+1)\Gamma(n+\alpha+\beta+1)n!} \delta_{n,r}
\]

for \(\alpha, \beta > -1 \). The derivatives of the Jacobi polynomials satisfy the identity

\[
\frac{d^j}{dx^j} P_n^{(\alpha,\beta)}(x) = a^{(\alpha,\beta)}(n,j) P_{n-j}^{(\alpha+j,\beta+j)}(x) \quad (n,j \in \mathbb{N}_0),
\]
where
\[a^{(\alpha,\beta)}(n, j) = \frac{(n!)^{1/2} (\Gamma(\alpha + \beta + n + 1 + j))^{1/2}}{((n-j)!)^{1/2} (\Gamma(\alpha + \beta + n + 1))^{1/2}} \quad (j = 0, 1, \ldots, n), \]
and \(a^{(\alpha,\beta)}(n, j) = 0 \) if \(j > n \). Furthermore, for \(n, r, j \in \mathbb{N}_0 \), we have the orthogonality relation
\[\int_{-1}^{1} \frac{d^j}{dx^j} P^{(\alpha,\beta)}_n(x) \frac{d^j}{dx^j} P^{(\alpha,\beta)}_r(x) w_{\alpha+j,\beta+j}(x) dx = \frac{n! \Gamma(\alpha + \beta + n + 1 + j)}{(n-j)! \Gamma(\alpha + \beta + n + 1)} \delta_{n,r}. \tag{2.3} \]

When \(\alpha > -1 \) and \(\beta = -1 \), the natural setting for the Jacobi polynomials \(\{P^{(\alpha,-1)}_n\} \) is still the Hilbert space \(L^2_{\alpha,-1}(-1,1) \). However, because of the singularity in the weight function, \(P^{(\alpha,-1)}_0 \notin L^2_{\alpha,-1}(-1,1) \). Moreover, with the definition of the Jacobi polynomials as given in, say [7],
\[P^{(\alpha,-1)}_n(x) := \sum_{j=0}^{n} \binom{n + \alpha}{n+j} \binom{n-1}{n-j} \left(\frac{x - 1}{2} \right)^j \left(\frac{x + 1}{2} \right)^{n-j}, \]
notice that the first Jacobi polynomial \(P^{(\alpha,-1)}_1(x) \) is degenerate. However, any multiple of the first degree polynomial \(y = x+1 \) will be a solution of the Jacobi differential equation
\[l^{(\alpha,-1)}[y](x) = (n(n + \alpha) + k)y(x). \]
Therefore, by renormalizing the sequence of Jacobi polynomials as follows:
\[P^{(\alpha,-1)}_1(x) = \sqrt{\frac{(\alpha + 1)(\alpha + 2)}{2^{\alpha+2}}} (x + 1), \]
and, for \(n \geq 2 \),
\[P^{(\alpha,-1)}_n(x) = \sqrt{\frac{n(2n + \alpha)}{2^{\alpha}(n + \alpha)}} \sum_{j=0}^{n} \binom{n + \alpha}{n+j} \binom{n-1}{n-j} \left(\frac{x - 1}{2} \right)^j \left(\frac{x + 1}{2} \right)^{n-j}, \]
the sequence \(\{P^{(\alpha,-1)}_n\}_{n=1}^{\infty} \) is an orthonormal set in \(L^2_{\alpha,-1}(-1,1) \). We remark that the full set of Jacobi polynomials \(\{P^{(\alpha,-1)}_n\}_{n=0}^{\infty} \) cannot be orthogonal on the real line with respect to any bilinear form of type
\[\int_{\mathbb{R}} f \overline{g} d\mu, \]
where \(\mu \) is a (possibly signed) measure. This is an application of Favard’s classic theorem in orthogonal polynomials. However,
Lemma 1. The sequence \(\left\{ P_n^{(\alpha,-1)}(x) \right\}_{n=1}^\infty \) of Jacobi polynomials of degree \(n \geq 1 \) forms a complete orthogonal set in the Hilbert space \(L^2_{\alpha,-1}(-1,1) \). Equivalently, the set of all polynomials \(p \in P[-1,1] \) of degree \(\geq 1 \) satisfying \(p(-1) = 0 \) is dense in the space \(L^2_{\alpha,-1}(-1,1) \).

Proof. We have

\[
\int_{-1}^{1} |f(x)|^2 (1-x)^\alpha (1+x)^{-1} \, dx = \int_{-1}^{1} |(1+x)^{-1} f(x)|^2 (1-x)^\alpha (1+x) \, dx,
\]
that is to say,

\[
f \in L^2_{\alpha,-1}(-1,1) \iff (1+x)^{-1} f \in L^2_{\alpha,1}(-1,1),
\]
and in this case,

\[
\|f\|_{L^2_{\alpha,-1}} = \|(1+x)^{-1} f\|_{L^2_{\alpha,1}}.
\]

Let \(f \in L^2_{\alpha,-1}(-1,1) \) and let \(\epsilon > 0 \). Then

\[
(1+x)^{-1} f \in L^2_{\alpha,1}(-1,1);
\]

since the Jacobi polynomials \(\left\{ P_n^{(\alpha,1)}(x) \right\}_{n=0}^\infty \) forms a complete orthogonal set in \(L^2_{\alpha,1}(-1,1) \), there exists \(q \in P[-1,1] \) such that

\[
\|(1+x)^{-1} f - q\|_{L^2_{\alpha,1}} < \epsilon.
\]

Let \(p(x) := (1+x)q(x) \), so \(\deg(p) \geq 1, p(-1) = 0 \), and \(q(x) = (1+x)^{-1} p(x) \). Then

\[
\epsilon > \|(1+x)^{-1} f - (1+x)^{-1} p\|_{L^2_{\alpha,1}} = \|(1+x)^{-1} (f-p)\|_{L^2_{\alpha,1}} = \|f-p\|_{L^2_{\alpha,-1}}.
\]

\[
\square
\]

3. An Operator Inequality

The following result, due to Chisholm, Everitt, and Littlejohn [6], is important in establishing our main results. The authors in [6] proved a more general result for conjugate indices \(p \) and \(q \); for the purposes of this paper, we only state the result when \(p = q = 2 \).

Theorem 1. Suppose \(I = (a,b) \) is an open interval of the real line, where \(-\infty \leq a < b \leq \infty \). Suppose \(w \) is a positive Lebesgue measurable function on \((a,b) \) and \(\varphi, \psi \) are functions satisfying the three conditions:

(i) \(\varphi \in L^2_{\text{loc}}((a,b);w) \) and \(\psi \in L^2_{\text{loc}}((a,b);w) \);

(ii) for some \(c \in (a,b) \), suppose \(\varphi \in L^2((a,c);w) \) and \(\psi \in L^2((c,b);w) \);
(iii) for all \([\alpha, \beta] \subset (a, b)\),
\[
\int_a^\alpha |\varphi(t)|^2 w(t) dt > 0 \quad \text{and} \quad \int_\beta^b |\psi(t)|^2 w(t) dt > 0.
\]

Define the linear operators \(A\) and \(B\) on \(L^2((a, b); w)\) and \(L^2((a, b); w)\), respectively, by
\[
(Ag)(x) := \varphi(x) \int_x^b \psi(t) g(t) w(t) dt \quad (x \in (a, b) \text{ and } g \in L^2((a, b); w))
\]
\[
(Bg)(x) := \psi(x) \int_a^x \varphi(t) g(t) w(t) dt \quad (x \in (a, b) \text{ and } g \in L^2((a, b); w));
\]
then
\[
A : L^2((a, b); w) \to L^2_{\text{loc}}((a, b); w)
\]
\[
B : L^2((a, b); w) \to L^2_{\text{loc}}((a, b); w).
\]

Define \(K(\cdot) : (a, b) \to (0, \infty)\) by
\[
K(x) := \left\{ \int_a^x |\varphi(t)|^2 w(t) dt \right\}^{1/2} \left\{ \int_x^b |\psi(t)|^2 w(t) dt \right\}^{1/2} \quad (x \in (a, b))
\]
and the number \(K \in (0, \infty]\)
\[
K := \sup \{K(x) \mid x \in (a, b)\}.
\]

Then a necessary and sufficient condition that \(A\) and \(B\) are bounded linear operators on \(L^2((a, b); w)\) is that the number \(K\) is finite, i.e.
\[
K \in (0, \infty).
\]

4. Right-Definite Analysis of the Jacobi Expression When \(\alpha > -1\) and \(\beta = -1\)

Recall that, for \(\alpha > -1\) and \(\beta = -1\), the second-order Jacobi differential expression is defined to be
\[
\ell_{\alpha,-1}[y](x) := (1-x^2)y''(x) - (\alpha + 1)(x+1)y'(x) + ky(x)
\]
\[
= \frac{1}{w_{\alpha,-1}(x)}\left[(1-x)^{\alpha+1}y'(x) + k(1-x)^\alpha(1+x)^{-1}y \right], (4.1)
\]
where \(w_{\alpha,-1}(x) := (1-x)^\alpha(1+x)^{-1}, x \in (-1, 1)\) and \(k\) is a fixed, non-negative constant.

Both points \(x = \pm 1\) are regular singular endpoints of \(l_{\alpha,-1}[\cdot]\) in the sense of Frobenius. In fact, in the case \(\alpha \geq 1\) and \(\beta = -1\), both endpoints \(x = \pm 1\)
are limit-point in $L^2_{\alpha,-1}(-1,1)$, defined in (1.1), and thus the right-definite GKN self-adjoint operator is unique and there are no boundary conditions prescribed in the domain of $A^{(\alpha,-1)}$. For $-1 < \alpha < 1$, the endpoint $x = -1$ is in the limit-point condition, whereas $x = +1$ is in the limit-circle case. Therefore, when $-1 < \alpha < 1$, one boundary condition is necessary to define the self-adjoint operator $A^{(\alpha,-1)}$ having the Jacobi polynomials $\{P_n^{(\alpha,-1)}\}_{n=1}^{\infty}$ as eigenfunctions.

For $\alpha > -1$, the maximal domain $\Delta_{\alpha,-1}$ of $\ell_{\alpha,-1}[\cdot]$ in the Hilbert space $L^2_{\alpha,-1}(-1,1)$ is defined to be

$$\Delta_{\alpha,-1} := \{ f : (-1,1) \to \mathbb{C} | f, f' \in AC_{\text{loc}}(-1,1); f, \ell_{\alpha,-1}[f] \in L^2_{\alpha,-1}(-1,1) \}$$

$$= \{ f : (-1,1) \to \mathbb{C} | f, f' \in AC_{\text{loc}}(-1,1); \frac{(1-x)^{\alpha/2}}{(1+x)^{1/2}} f \in L^2(-1,1); (1-x)^{-\alpha/2}(1+x)^{1/2} ((1-x)^{\alpha+1} f'(x))' \in L^2(-1,1) \}.$$

The maximal operator $T^{(\alpha,-1)}_{\text{max}}$ associated with $\ell_{\alpha,-1}[\cdot]$ is given by

$$T^{(\alpha,-1)}_{\text{max}}(f) := \ell_{\alpha,-1}[f]$$

$$\mathcal{D}(T^{(\alpha,-1)}_{\text{max}}) := \Delta_{\alpha,-1}.$$

The minimal operator is defined as $T^{(\alpha,-1)}_{\text{min}} := (T^{(\alpha,-1)}_{\text{max}})^*$, the Hilbert space adjoint of $T^{(\alpha,-1)}_{\text{max}}$. The operator $T^{(\alpha,-1)}_{\text{min}}$ is closed, symmetric and satisfies

$$(T^{(\alpha,-1)}_{\text{min}})^* = T^{(\alpha,-1)}_{\text{max}}.$$

The deficiency index $d(T^{(\alpha,-1)}_{\text{min}})$ of $T^{(\alpha,-1)}_{\text{min}}$ is

$$d(T^{(\alpha,-1)}_{\text{min}}) = \begin{cases} (0,0) & \text{if } \beta = -1, \; \alpha \geq 1 \\ (1,1) & \text{if } \beta = -1, \; -1 < \alpha < 1. \end{cases}$$

This can be seen from the limit-point/limit-circle classification of the singular endpoints $x = \pm 1$:

(i) $x = \pm 1$ are limit-point if $\beta = -1, \; \alpha \geq 1$ and

(ii) $x = -1$ is limit-point, $x = 1$ is limit-circle if $\beta = -1, \; -1 < \alpha < 1$.

Consequently, by von Neumann’s theory of self-adjoint extensions of symmetric operators ([8], chapter XII), $T^{(\alpha,-1)}_{\text{min}}$ has self-adjoint extensions in $L^2_{\alpha,-1}(-1,1)$ for $\alpha > -1$ and $\beta = -1$.

We define the operator $A^{(\alpha,-1)} : \mathcal{D}(A^{(\alpha,-1)}) \subset L^2_{\alpha,-1}(-1,1) \to L^2_{\alpha,-1}(-1,1)$ as follows:

$$\begin{cases} (A^{(\alpha,-1)} f)(x) := \ell_{\alpha,-1}[f](x) & (\text{a.e. } x \in (-1,1)) \\ f \in \mathcal{D}(A^{(\alpha,-1)}), \end{cases}$$

(4.2)
where \(\mathcal{D}(A^{(\alpha,-1)}) \) is defined by

\[
\mathcal{D}(A^{(\alpha,-1)}) := \begin{cases} \{ f \in \Delta_{\alpha,-1} \mid \lim_{x \to 1-} (1-x)^{\alpha+1} f'(x) = 0 \} & \text{if } -1 < \alpha < 1 \\
\Delta_{\alpha,-1} & \text{if } \alpha \geq 1. \end{cases}
\]

(4.3)

From the GKN theory, \(A^{(\alpha,-1)} \) is self-adjoint in \(L^2_{\alpha,-1}(-1,1) \). More importantly, from our point of view, the Jacobi polynomials \(\{ P_n^{(\alpha,-1)} \}_{n=1}^{\infty} \) of degree \(\geq 1 \) form a complete set of eigenfunctions of \(A^{(\alpha,-1)} \); see Lemma 1. Furthermore, the spectrum of \(A^{(\alpha,-1)} \) is discrete and given by

\[\sigma(A^{(\alpha,-1)}) = \{ n(n+\alpha) \mid n \in \mathbb{N} \}. \]

In order to develop left-definite properties of \(A^{(\alpha,-1)} \) which, in turn, are important to construct the self-adjoint operator \(T_\alpha \) in the Sobolev space \(W_\alpha \), we turn our attention to developing properties of functions in the spaces \(\Delta_{\alpha,-1} \) and \(\mathcal{D}(A^{(\alpha,-1)}) \).

Observe that if \(f, g \in \Delta_{\alpha,-1} \), then \(\ell_{\alpha,-1}[f] \bar{g} \in L^2_{\alpha,-1}(-1,1) \). Furthermore, for \(f, g \in \Delta_{\alpha,-1} \), Green’s formula gives us

\[
\int_0^x (1-t)^{\alpha+1} f'(t) \bar{g}(t) dt = (1-x)^{\alpha+1} f'(x) \bar{g}(x) - f'(0) \bar{g}(0)
\]

\[
- \int_0^x \ell_{\alpha,-1}[f](t) \bar{g}(t)(1-t)^{\alpha}(1+t)^{-1} dt
\]

\[
+ k \int_0^x f(t) \bar{g}(t)(1-t)^{\alpha}(1+t)^{-1} dt \quad (-1 < x < 1).
\]

(4.4)

Lemma 2. For \(\alpha > -1 \) and \(f \in \Delta_{\alpha,-1} \), we have \(f' \in L^2(-1,0) \). In particular, we can define \(f \) at \(x = -1 \) such that \(f \in AC[-1,0] \). Moreover, it is necessary that \(f(-1) = 0 \).

Proof. Let \(f \in \Delta_{\alpha,-1} \). Note that

\[
f'(x) = -(1-x)^{-\alpha-1} \int_0^x \frac{(1-t)^{-\alpha/2}(1+t)^{1/2}}{(1-t)^{-\alpha/2}(1+t)^{1/2}}((1-t)^{\alpha+1} f'(t))' dt
\]

\[
+(1-x)^{-\alpha-1} f'(0) \quad (x \in (-1,0]).
\]

From the definition of \(\Delta_{\alpha,-1} \), we see that \((1-t)^{-\alpha/2}(1+t)^{1/2}((1-t)^{\alpha+1} f'(t))' \in L^2(-1,1) \); consequently, we apply the inequality in Theorem 1 on the interval \((-1,0]\) with

\[\varphi(x) = (1-x)^{-\alpha-1}, \quad \psi(x) = \frac{1}{(1-x)^{-\alpha/2}(1+x)^{1/2}} \quad (x \in (-1,0]). \]
Since the function $1 - t$ is bounded on $(-1,0]$, there exists a constant M such that
\[
\int_{-1}^{x} \varphi^2(t)dt \int_{0}^{x} \psi^2(t) dt = \int_{-1}^{x} (1-t)^{-2\alpha-2} dt \int_{0}^{x} (1-t)^{\alpha}(1+t)^{-1} dt \\
\leq M \int_{-1}^{x} dt \int_{0}^{x} (1+t)^{-1} dt = -M(x+1)\ln(1+x);
\]
since $(x+1)\ln(1+x)$ is bounded on $(-1,0]$, the inequality from Theorem 1 implies that $f' \in L^2(-1,0)$ as claimed. From the identity
\[
f(x) = f(0) - \int_{x}^{0} f'(t) dt \quad (-1 < x \leq 0),
\]
define
\[
f(-1) := f(0) - \int_{-1}^{0} f'(t) dt.
\]
With f defined this way, we see that $f \in AC[-1,0]$. We now show that $f(-1) = 0$. We suppose that f is real-valued and, by way of contradiction and without loss of generality, we assume that $f(-1) > 0$. Then there exists $x^* \in (-1,0]$ such that $f(t) \geq c$ for all $t \in (-1,x^*]$, where c is some positive number. Since $(1-x)^{\alpha}$ is bounded below on $(-1,0]$ by a constant $K > 0$, we see that
\[
-\infty > \int_{-1}^{1} |f(t)|^2 (1-t)^{\alpha}(1+t)^{-1} dt \\
\geq \int_{-1}^{x^*} |f(t)|^2 (1-t)^{\alpha}(1+t)^{-1} dt \geq Kc^2 \int_{-1}^{x^*} (1+t)^{-1} dt = \infty,
\]
a contradiction. Hence $f(-1) = 0$. \hfill \Box

Lemma 3. For $\alpha > -1$ and $f \in \Delta_{\alpha,-1}$, we have $(1-x)^{(\alpha+1)/2} f' \in L^2(-1,0)$.

Proof. Suppose, to the contrary, that
\[
\int_{-1}^{0} |f'(t)|^2 (1-t)^{\alpha+1} dt = \infty.
\]
We assume, without loss of generality, that f is real-valued. From (4.4), we see that
\[
\int_0^x (1-t)^{\alpha+1}(f'(t))^2\,dt = f'(0)f(0) - (1-x)^{\alpha+1}f'(x)f(x)
\]
\[
- \int_0^x \ell_{\alpha,-1}(t)f(t)(1-t)^\alpha(1+t)^{-1}\,dt
\]
\[
+ k \int_0^{x^*} (f(t))^2(1-t)^\alpha(1+t)^{-1}\,dt \quad (-1 < x \leq 0);
\]
(4.5)

consequently, it must be the case that
\[
\lim_{x \to -1^+} (1-x)^{\alpha+1}f'(x)f(x) = -\infty,
\]
and hence
\[
\lim_{x \to -1^+} f'(x)f(x) = -\infty.
\]
It follows that there exists $x^* \in (-1,0], f'(x)f(x) \leq -1$ for $x \in (-1,x^*].$

Integrating, we see that
\[
\frac{(f(x^*))^2}{2} - \frac{(f(x))^2}{2} = \int_x^{x^*} f'(t)f(t)\,dt \leq -1 \int_x^{x^*} dt = x - x^*
\]
so that
\[
(f(x))^2 \geq -2x + (f(x^*))^2 + 2x^* \geq -2(x-x^*) \quad (x \in (-1,x^*)].
\]
(4.6)

With
\[
M_{\alpha} = \min_{t \in (-1,x^*]} (1-t)^\alpha,
\]

after integrating the inequality in (4.6), we see that
\[
\int_x^{x^*} (f(t))^2(1-t)^\alpha(1+t)^{-1}\,dt \geq -2 \int_x^{x^*} (t-x^*)(1-t)^\alpha(1+t)^{-1}\,dt
\]
\[
\geq -2M_{\alpha} \int_x^{x^*} (t-x^*)(1+t)^{-1}\,dt
\]
\[
\to \infty \quad \text{as } x \to -1^+.
\]
However, this contradicts the fact that \(f \in \Delta_{\alpha,-1} \), and in particular, that
\[
\int_{-1}^{1} |f(t)|^2 (1-t)^\alpha (1+t)^{-1} dt < \infty.
\]
\[
\square
\]

Lemma 4. Let \(f, g \in \Delta_{\alpha,-1} \). Then
\[
\lim_{x \to -1^+} (1-x)^{\alpha+1} f'(x) g(x) = 0.
\]

Proof. Let \(f, g \in \Delta_{\alpha,-1} \); assume that both \(f \) and \(g \) are real-valued. We note that, from Lemma 2, that \(f(-1) = g(-1) = 0 \). From (4.5) and Lemma 3, we see that
\[
\lim_{x \to -1^+} (1-x)^{\alpha+1} f'(x) g(x)
\]
exists and is finite. Suppose, then, that
\[
\lim_{x \to -1^+} (1-x)^{\alpha+1} f'(x) g(x) = c > 0.
\]
Then we can assume there exists \(x^* \in (-1,0) \) such that
\[
f'(x) > 0, \quad g(x) > 0, \quad \text{and} \quad (1-x)^{\alpha+1} f'(x) \geq \frac{c}{2g(x)} \quad (x \in (-1,x^*)).
\]
Multiply this inequality by \(|g'(x)| \) to get
\[
(1-x)^{\alpha+1} f'(x) |g'(x)| \geq \frac{c |g'(x)|}{2g(x)} \quad (x \in (-1,x^*)).
\]
Now integrate to obtain
\[
\infty > \int_{-1}^{1} (1-t)^{\alpha+1} f'(t) |g'(t)| dt \quad \text{(using Lemma 3)}
\]
\[
\geq \int_{-x}^{-1} (1-t)^{\alpha+1} f'(t) |g'(t)| dt \geq \frac{c}{2} \int_{x}^{x^*} \frac{|g'(t)|}{g(t)} dt \geq \frac{c}{2} \int_{x}^{x^*} \frac{g'(t)}{g(t)} dt
\]
\[
= \frac{c}{2} |\ln g(x^*) - \ln g(x)| \to \infty \text{ as } x \to -1^+ \text{ since } g(-1) = 0.
\]
This contradiction gives us the required result. \(\square \)

We summarize the results from Lemmas 2, 3, and 4.

Theorem 2. Assume \(\alpha > -1 \) and \(\beta = -1 \). Let \(f, g \in \Delta_{\alpha,-1} \). Then
(a) \(f' \in L^2(-1,0) \);
(b) \(f \in AC[-1,0] \);
(c) The Jacobi differential expression (4.1) is strong limit point at $x = -1$; that is to say,
\[\lim_{x \to -1^+} (1 - x)^{\alpha+1} f'(x)g(x) = 0; \]

(d) The Jacobi differential expression (4.1) is Dirichlet at $x = -1$; that is to say,
\[\int_{-1}^{0} (1 - x)^{\alpha+1} |f'(x)|^2 dx < \infty. \]

As a consequence of this theorem, note that for $f, g \in \Delta_{\alpha,-1}$, and for
$-1 < x \leq 0$,
\[\int_{-1}^{0} (1 - t)^{\alpha+1} f'(t)g'(t) dt = f'(0)g(0) - \int_{x}^{0} \ell_{\alpha,-1}[f](t)g(t)(1 - t)^{\alpha}(1 + t)^{-1} dt. \]

We now turn our attention to establishing that the Jacobi differential expression (4.1) is both strong-limit point and Dirichlet at $x = 1$ on $\mathcal{D}(A^{(\alpha,-1)})$, defined in (4.3).

Lemma 5. Let $\alpha > -1$. Then, for all $f \in \mathcal{D}(A^{(\alpha,-1)})$,
\[\lim_{x \to 1^-} (1 - x)^{\alpha+1} f'(x) = 0. \]

Proof. From the definition of $\mathcal{D}(A^{(\alpha,-1)})$ in (4.3), this result is automatically true for $-1 < \alpha < 1$. So we assume $\alpha \geq 1$. Let $f \in \mathcal{D}(A^{(\alpha,-1)})$. Since the Jacobi expression is limit point at $x = 1$ in this case, we know that
\[\lim_{x \to 1^-} (1 - x)^{\alpha+1} [f'(x)g(x) - f(x)g'(x)] = 0 \quad (g \in \Delta_{\alpha,-1}). \]

Construct a real-valued $\tilde{g} \in C^2[-1,1]$ such that
\[\tilde{g}(x) = \begin{cases}
0 & \text{for } x \text{ near } -1 \\
1 & \text{for } x \text{ near } +1;
\end{cases} \]

for example, we could take
\[\tilde{g}(x) = \begin{cases}
0 & \text{if } -1 < x \leq 0 \\
-16x^3 + 12x^2 & \text{if } 0 < x < 1/2 \\
1 & \text{if } 1/2 \leq x \leq 1.
\end{cases} \]

Clearly $\tilde{g} \in \Delta_{\alpha,-1}$; moreover, with this choice of \tilde{g}, we have
\[0 = \lim_{x \to 1^-} (1 - x)^{\alpha+1} [f'(x)\tilde{g}(x) - f(x)\tilde{g}'(x)] = \lim_{x \to 1^-} (1 - x)^{\alpha+1} f'(x). \]
The proof of the following lemma is similar to the proof given in Lemma 4; we omit the details. This result shows that the Jacobi expression is Dirichlet at $x = 1$ on $D(\alpha,-1)$.

Lemma 6. Suppose $\alpha > -1$. Then, for any $f \in D(\alpha,-1)$, we have

$$(1 - x)^{\alpha+1/2} f' \in L^2(0,1).$$

We are now in position to prove that the Jacobi expression (4.1) is strong limit point at $x = 1$ on $D(\alpha,-1)$. The proof is similar to the one of Lemma 4 but different enough to warrant a demonstration.

Lemma 7. Suppose $\alpha > -1$. Then for $f, g \in D(\alpha,-1)$, we have

$$\lim_{x \to 1^-} (1 - x)^{\alpha+1} f'(x) g(x) = 0.$$

Proof. Let $f, g \in D(\alpha,-1)$. From (4.4), the definition of $D(\alpha,-1)$, and Lemma 6, we see that

$$\lim_{x \to 1^-} (1 - x)^{\alpha+1} f'(x) g(x)$$

exists and is finite. Without loss of generality, assume that both f and g are real-valued on $(-1,1)$; furthermore, by way of contradiction, we assume that

$$\lim_{x \to 1^-} (1 - x)^{\alpha+1} f'(x) g(x) = c > 0.$$

Again, we assume that there exists $x^* \in [0,1)$ such that

$$(1 - x)^{\alpha+1} f'(x) > 0, \ g(x) > 0, \ (1 - x)^{\alpha+1} f'(x) g(x) \geq c/2 \ (x \in [x^*,1)).$$

Hence it follows that

$$\left| \frac{(1 - x)^{\alpha+1} f'(x)}{(1 - x)^{\alpha+1} f'(x)} \right| g(x) \geq \frac{c}{2} \left(\frac{(1 - x)^{\alpha+1} f'(x)}{(1 - x)^{\alpha+1} f'(x)} \right) (x \in [x^*,1)).$$

Integrate over $[x^*, x]$ to get

$$\infty > \frac{1}{\ell_{\alpha,-1}} \int_{-1}^1 [f(t)] g(t) (1-t)^{\alpha} (1+t)^{-1} dt - k \int_{-1}^1 (f(t))^2 (1-t)^{\alpha} (1+t)^{-1} dt$$

$$= \int_{-1}^1 \left| (1-t)^{\alpha+1} f'(t) \right| g(t) dt \geq \int_{x}^{x^*} \left| (1-t)^{\alpha+1} f'(t) \right| g(t) dt$$

$$\geq \frac{c}{2} \int_{x}^{x^*} \frac{(1-t)^{\alpha+1} f'(t)}{(1-t)^{\alpha+1} f'(t)} dt \geq \frac{c}{2} \int_{x}^{x^*} \frac{(1-t)^{\alpha+1} f'(t)}{(1-t)^{\alpha+1} f'(t)} dt$$

$$= \frac{c}{2} \ln((1 - x^*)^{\alpha+1} f'(x^*)) - \ln((1 - x)^{\alpha+1} f'(x)) \to \infty \text{ as } x \to 1^-$$

by Lemma 5. This contradiction gives us the required result. \qed
Summarizing Lemmas 6 and 7, we have the following theorem.

Theorem 3. For \(\alpha > -1\) and \(\beta = -1\), the Jacobi differential expression \(\ell_{\alpha,-1}[]\), given in (4.1), is strong limit point and Dirichlet at \(x = 1\) on \(D(A^{(\alpha,-1)})\). That is to say,

(a) \(\lim_{x \to 1^-} (1 - x)^{\alpha+1} f'(x)g(x) = 0\) for all \(f, g \in D(A^{(\alpha,-1)})\), and

(b) \(\int_0^1 (1 - x)^{\alpha+1} |f'(x)|^2 \, dx < \infty\) for all \(f \in D(A^{(\alpha,-1)})\).

Combining Theorems 2 and 3, we see that Dirichlet’s formula, for \(f, g \in D(A^{(\alpha,-1)})\), over the interval \((-1, 1)\) reads:

\[
(A^{(\alpha,-1)} f, g)_{\alpha,-1} = \int_{-1}^1 [(1 - t)^{\alpha+1} f'(t)\overline{g}(t) + k f(t)\overline{g}(t)(1 - t)^{\alpha}(1 + t)^{-1}] \, dt.
\]

(4.8)

In particular, we see that

\[
(A^{(\alpha,-1)} f, f)_{\alpha,-1} \geq k (f, f)_{\alpha,-1} \quad (f \in D(A^{(\alpha,-1)}));
\]

(4.9)

that is to say, \(A^{(\alpha,-1)}\) is bounded below by \(kI\) in \(L^2_{\alpha,-1}(-1, 1)\). The consequence of the inequality in (4.9) is that the left-definite theory, developed by Littlejohn and Wellman, can be applied to \(A^{(\alpha,-1)}\). We now briefly review this theory.

5. **General Left-Definite Theory**

In [13], Littlejohn and Wellman developed a general abstract left-definite theory for a self-adjoint operator \(A\) that is bounded below in a Hilbert space \((H, (\cdot, \cdot))\).

Let \(V\) be a vector space over \(\mathbb{C}\) with inner product \((\cdot, \cdot)\) such that \(H := (V, (\cdot, \cdot))\) is a Hilbert space. Let \(r > 0\) and suppose that \(V_r\) is a vector subspace of \(V\) with inner product \((\cdot, \cdot)_r\); denote this inner product space by \(W_r := (V_r, (\cdot, \cdot)_r)\). Let \(A : D(A) \subset H \to H\) be a self-adjoint operator that is bounded below by \(rI\) for some \(r > 0\), that is to say

\[(Ax, x) \geq r(x, x) \quad (x \in D(A)).\]

Then, for any \(s > 0\), the operator \(A^s\) is self-adjoint and bounded below in \(H\) by \(r^sI\).

Definition 1. Let \(s > 0\) and let \(V_s\) be a vector subspace of the Hilbert space \(H = (V, (\cdot, \cdot))\) with inner product \((\cdot, \cdot)_s\). We say that \(W_s = (V_s, (\cdot, \cdot)_s)\) is an \(s^{th}\) left-definite space associated with the pair \((H, A)\) if

(i) \(W_s\) is a Hilbert space
(ii) \(D(A^s)\) is a vector subspace of \(V_s\)
(iii) \(D(A^s)\) is dense in \(W_s\)
(iv) \((x, x)_s \geq r^s(x, x)\) for all \(x \in V_s\)
(v) \((x,y)_s = (A^s x, y)\) for all \(x \in \mathcal{D}(A^s), y \in V_s\).

Littlejohn and Wellman in [13, Theorem 3.1] prove the following result.

Theorem 4. Let \(A : \mathcal{D}(A) \subset H \to H\) be a self-adjoint operator that is bounded below by \(rI\) for some \(r > 0\). Let \(s > 0\) and define \(W_s := (V_s, (\cdot, \cdot)_s)\) by

\[V_s = \mathcal{D}(A^{s/2}) \]

and

\[(x,y)_s = (A^{s/2} x, A^{s/2} y) \quad (x,y \in V_s). \]

Then \(W_s\) is the unique left-definite space associated with the pair \((H,A)\).

Definition 2. For \(s > 0\), let \(W_s := (V_s, (\cdot, \cdot)_s)\) be the \(s^{th}\) left-definite space associated with \((H,A)\). If there exists a self-adjoint operator \(B_s : \mathcal{D}(B_s) \subset W_s \to W_s\) satisfying

\[B_s f = Af \quad (f \in \mathcal{D}(B_s) \subset \mathcal{D}(A)), \]

we call such an operator an \(s^{th}\) left-definite operator associated with the pair \((H,A)\).

In [13, Theorem 3.2], the authors prove the following existence/uniqueness result.

Theorem 5. Let \(A\) be a self-adjoint operator in a Hilbert space \(H\) that is bounded below by \(rI\) for some \(r > 0\). For any \(s > 0\), let \(W_s := (V_s, (\cdot, \cdot)_s)\) denote the \(s^{th}\) left-definite space associated with \((H,A)\). Then there exists a unique left-definite operator \(B_s\) in \(W_s\) associated with \((H,A)\). Furthermore,

\[\mathcal{D}(B_s) = V_{s+2} \subset \mathcal{D}(A). \]

We refer the reader to other results established in [13]. We note if, in addition to the hypotheses assumed in this section, that \(A\) is bounded then the left-definite theory is trivial; specifically, \(V = V_s\) and \(A = A_s\) for all \(s > 0\). Only in the unbounded case will there be a non-trivial left-definite theory associated with \((H,A)\). Moreover, we note that the authors in [13] prove \(\sigma(A) = \sigma(A_s)\) for all \(s > 0\); in fact, the point spectrum \(\sigma_p\) and continuous spectrum \(\sigma_c\) match up for \(A\) and each left-definite operator \(A_s\).

6. Left-Definite Theory of the Nonclassical Jacobi Differential Equation

Let \(k > 0\). For each \(n \in \mathbb{N}\), define

\[V_n^{(\alpha,-1)} := \{ f : (-1,1) \to \mathbb{C} | f \in AC_{loc}^{(n-1)}; f^{(j)} \in L_{\alpha+j,j-1}^2(-1,1), j = 0, \ldots, n \} \]
and let $(\cdot, \cdot)^{(\alpha,-1)}_n$ and $\|\cdot\|^{(\alpha,-1)}_n$ denote, respectively, the Sobolev inner product
\[
(f, g)^{(\alpha,-1)}_n := \sum_{j=0}^{n} c_j^{(\alpha,-1)}(n, k) \int_{-1}^{1} f^{(j)}(t) g^{(j)}(t)(1-t)^{\alpha+j}(1+t)^{j-1} dt
\]
and norm $\|f\|^{(\alpha,-1)}_n := (f, f)^{(\alpha,-1)}_n^{1/2}$, where the numbers $c_j^{(\alpha,-1)}(n, k)$ are defined as in [9] by
\[
c_j^{(\alpha,-1)}(n, k) := \begin{cases}
0 & \text{if } k = 0 \\
k^n & \text{if } k > 0
\end{cases} ,
\]
and, for $j \in \{1, 2, \ldots, n\}$,
\[
c_{j}^{(\alpha,-1)}(n, k) := \begin{cases}
P^{(\alpha,-1)} S_{n}^{(j)} & \text{if } k = 0 \\
\sum_{s=0}^{n-j} \binom{n}{s} P^{(\alpha,-1)} S_{n-s}^{(j)} k^s & \text{if } k > 0
\end{cases} ,
\]
where the Jacobi–Stirling number $P^{(\alpha,-1)} S_{n}^{(j)}$ of order (n, j) is defined by
\[
P^{(\alpha,-1)} S_{n}^{(j)} := \sum_{r=0}^{j} (-1)^{r+j} \frac{\Gamma(\alpha+r)\Gamma(\alpha+2r+1)[r(r+\alpha)]^n}{r!(j-r)!\Gamma(\alpha+2r)\Gamma(\alpha+j+r+1)},
\]
for $(n, j \in \mathbb{N}; j \leq n)$. We extend this definition to include
\[
P^{(\alpha,-1)} S_{n}^{(0)} := 1, \quad P^{(\alpha,-1)} S_{n}^{(j)} := 0 \quad \text{if } j \in \mathbb{N} \text{ and } 0 \leq n \leq j-1, \quad P^{(\alpha,-1)} S_{n}^{(n)} := 0 \quad \text{for } n \in \mathbb{N}.
\]
In [9], the authors prove that $P^{(\alpha,-1)} S_{n}^{(j)} > 0$ for $n, j \in \mathbb{N}, j \leq n$. Let
\[
W^{(\alpha,-1)}_n := \left(V^{(\alpha,-1)}_n, (\cdot, \cdot)^{(\alpha,-1)}_n \right).
\]
We will show that the vector space $W^{(\alpha,-1)}_n$ is the n^{th} left-definite space associated with the pair $(L^{2}_{\alpha,n-1}(-1,1), A^{(\alpha,-1)})$, where $A^{(\alpha,-1)}$ is the self-adjoint Jacobi operator defined in (4.2) and (4.3). Using the results from [9] mutatis mutandis, Theorem 6 follows; for a proof see [5].

Theorem 6. Let $k > 0$. For each $n \in \mathbb{N}, W^{(\alpha,-1)}_n$ is a Hilbert space.

Theorem 7. The Jacobi polynomials $\{P^{(\alpha,-1)}_m\}_{m=1}^{\infty}$ form a complete orthogonal set in each $W^{(\alpha,-1)}_n$. Equivalently, the set of polynomials \mathcal{P} is dense in $W^{(\alpha,-1)}_n$.

Proof. Fix $n \in \mathbb{N}$, and let $f \in W^{(\alpha,-1)}_n$, so
\[
f^{(n)} \in L^{2}_{\alpha+n,n-1}(-1,1).
\]
Since \(\{ P_{m}^{(\alpha+n,n-1)} \}_{m=0}^{\infty} \) is a complete orthonormal set in \(L_{\alpha+n,n-1}^{2}(-1,1) \), we know
\[
\sum_{m=0}^{r} c_{m,n}^{(\alpha-1)} P_{m}^{(\alpha+n,n-1)} \to f^{(n)} \quad \text{as} \quad r \to \infty \quad \text{in} \quad L_{\alpha+n,n-1}^{2}(-1,1) \quad (6.1)
\]
where \(c_{m,n}^{(\alpha-1)} \) are the Fourier coefficients given by
\[
c_{m,n}^{(\alpha-1)} = \int_{-1}^{1} f^{(n)}(t) P_{m}^{(\alpha+n,n-1)}(t)(1-t)^{\alpha+n}(1+t)^{n-1} dt
\]
for \(m \in \mathbb{N}_{0} \). For \(r \geq n \) define the polynomials
\[
p_{r}(t) := \sum_{m=\max\{2,n\}}^{r} c_{m-n,n}^{(\alpha-1)} \frac{((m-n)!)^{1/2} (\Gamma(\alpha+m))^{1/2}}{(m!)^{1/2} (\Gamma(\alpha+m+n))^{1/2}} P_{m}^{(\alpha-1)}(t).
\]
From
\[
\frac{d^{j}}{dt^{j}} P_{m}^{(\alpha-1)}(t) = \frac{(m!)^{1/2} (\Gamma(\alpha+m+j))^{1/2}}{((m-j)!)^{1/2} (\Gamma(\alpha+m))^{1/2}} P_{m-j}^{(\alpha+j,j-1)}(t),
\]
we see that, for \(j = 0, 1, \ldots, n \),
\[
p_{r}^{(j)}(t) = \sum_{m=\max\{2,n\}}^{r} c_{m-n,n}^{(\alpha-1)} \frac{((m-n)!)^{1/2} (\Gamma(\alpha+m+j))^{1/2}}{(\Gamma(\alpha+m+n))^{1/2} ((m-j)!)^{1/2}} P_{m-j}^{(\alpha+j,j-1)}(t).
\]
In particular, by (6.1),
\[
p_{r}^{(n)}(t) = \sum_{m=\max\{2,n\}}^{r} c_{m-n,n}^{(\alpha-1)} P_{m-n}^{(\alpha+n,n-1)} = \sum_{l=0}^{r-\max\{2,n\}} c_{l,n}^{(\alpha-1)} P_{l}^{(\alpha+n,n-1)}
\]
\[
= \sum_{m=0}^{s} c_{m,n}^{(\alpha-1)} P_{m}^{(\alpha+n,n-1)} \to f^{(n)}
\]
as \(r \to \infty \) in \(L_{\alpha+n,n-1}^{2}(-1,1) \). Furthermore, by Riesz-Fischer, there exists a subsequence \(\{ p_{r_{j}}^{(n)} \} \) of \(\{ p_{r}^{(n)} \} \) such that
\[
p_{r_{j}}^{(n)} \to f^{(n)} \quad \text{for a.e.} \quad t \in (-1,1).
\]
By Dirichlet’s test, the sequence
\[
\left\{ \frac{c_{m-n,n}^{(\alpha-1)} ((m-n)!)^{1/2} (\Gamma(\alpha+m+j))^{1/2}}{(\Gamma(\alpha+m+n))^{1/2} ((m-j)!)^{1/2}} \right\} \in \ell^{2},
\]
so there exists a \(g_{j} \in L_{\alpha+j,j-1}^{2}(-1,1) \) such that
\[
p_{r_{j}} \to g_{j} \quad \text{in} \quad L_{\alpha+j,j-1}^{2}(-1,1).
\]
(6.2)
For a.e. \(a, t \in (-1, 1) \),

\[
\int_a^t p_{r_j}^{(n)}(u)du \to \int_a^t f^{(n)}(u)du.
\]

Integrate both sides and obtain

\[
p_{r_j}^{(n-1)}(t) \to f^{(n-1)}(t) + c_1 \quad \text{for a.e. } t \in (-1, 1) \tag{6.3}
\]

for some constant \(c_1 \). Passing through the subsequence implies

\[
g_{n-1}(t) = f^{(n-1)}(t) + c_1 \quad \text{for a.e. } t \in (-1, 1).
\]

From (6.3), we see that

\[
\int_a^t p_{r_j}^{(n-1)}(u)du \to \int_a^t f^{(n-1)}(u)du + c_1 \int_a^t du,
\]

that is,

\[
p_{r_j}^{(n-2)}(t) \to f^{(n-2)}(t) + c_1 t + c_2 \quad \text{for a.e. } t \in (-1, 1)
\]
or

\[
g_{n-2}(t) = f^{(n-2)}(t) + c_1 t + c_2 \quad \text{for a.e. } t \in (-1, 1).
\]

Continue this process to see that for \(j \in \{0, 1, \ldots, n-1\} \),

\[
g_j(t) = f^{(j)}(t) + q_{n-j+1} \quad \text{for a.e. } t \in (-1, 1),
\]

where \(q_{n-j-1} \) is a polynomial of degree \(\leq n-j-1 \) and where \(q_{n-j-1}' = q_{n-j-2} \).

Hence, with (6.2),

\[
p_r^{(j)} \to f^{(j)} + q_{n-j-1} \quad \text{in } L^2_{\alpha+j,j-1}(-1, 1) \tag{6.4}
\]

For \(r \geq n \), define \(\pi_r(t) := p_r(t) - q_{n-1}(t) \). Note that, with (6.4),

\[
\pi_r^{(j)}(t) = p_r^{(j)}(t) - q_{n-1}^{(j)}(t) = p_r^{(j)}(t) - q_{n-j-1}(t) \to f^{(j)}(t).
\]

Hence, as \(r \to \infty \),

\[
\left(\|f - \pi_r\|_{\alpha,-1}^{(n,k)} \right)^2 = \sum_{j=0}^n c_j^{(\alpha,-1)}(n,k) \\
\times \int_{-1}^{-1} \left| f^{(j)}(t) - \pi_r^{(j)}(t) \right|^2 (1-t)^{\alpha+j}(1+t)^{j-1} dt \to 0.
\]

\[\square\]

Lemma 8. For \(p, q \in \mathcal{P} \), the vector space of all polynomials \(p : [-1, 1] \to \mathbb{C} \), and for \(n \geq 1 \),

\[
(p, q)_n^{(\alpha,-1)} = \left(\left(A^{(\alpha,-1)} \right)^n p, q \right)_{\alpha,-1}.
\]
Nonclassical Jacobi Polynomials and Sobolev Orthogonality

Proof. First we note that this may be restated as

\[
\left(\ln_{\alpha,-1}[p], q\right)_{\alpha,-1} = \int_{-1}^{1} \ln_{\alpha,-1}[p](x)q(x)w_{\alpha,-1}(x)dx
= \sum_{j=0}^{n} c_j^{(\alpha,-1)}(n,k)p(j)(x)\overline{q(j)}(x)(1-x)^{j+\alpha}(1+x)^{j-1}dx.
\]

(6.5)

Since the Jacobi polynomials form a basis for \(P \), it suffices to prove (6.5) for \(p = P_m^{(\alpha,-1)} \) and \(q = P_r^{(\alpha,-1)} \) for arbitrary \(m, r \in \mathbb{N}_0 \). From

\[
\ln_{\alpha,-1}[P_m^{(\alpha,-1)}](x) = (m(m-1) + k)nP_m^{(\alpha,-1)}(x) \quad (m \in \mathbb{N}_0)
\]

and

\[
\left(P_r^{(\alpha,-1)}, P_m^{(\alpha,-1)} \right)_{\alpha,-1} = \delta_{r,m} \quad (r, m \in \mathbb{N}_0),
\]

the left-hand side of (6.5) becomes

\[
\left(\ln_{\alpha,-1}[P_m^{(\alpha,-1)}], P_r^{(\alpha,-1)} \right)_{\alpha,-1} = \int_{-1}^{1} \ln_{\alpha,-1}[P_m^{(\alpha,-1)}](x)\overline{P_r^{(\alpha,-1)}}(x)w_{\alpha,-1}(x)dx
= (m(m-1) + k)n\delta_{r,m}.
\]

(6.6)

Upon using (2.3) for \(\alpha > -1, \beta = -1 \) and the recurrence relation for the \(c_j^{(\alpha,-1)}(n,k) \), that is,

\[
(m(m+\alpha) + k)n = \sum_{j=0}^{n} c_j^{(\alpha,-1)}(n,k) \frac{m!(m+\alpha+j-1)!}{(m-j)!(m+\alpha-1)!}
\]

the right-hand side of (6.5) becomes

\[
\sum_{j=0}^{n} c_j^{(\alpha,-1)}(n,k) \times \int_{-1}^{1} \left(P_m^{(\alpha,-1)}(x) \right)^{(j)}(x)\left(\overline{P_r^{(\alpha,-1)}}(x) \right)^{(j)}(x)(1-x)^{j-1}(1+x)^{j-1}dx
= \sum_{j=0}^{n} c_j^{(\alpha,-1)}(n,k) \frac{m!(m+\alpha+j-1)!}{(m-j)!(m+\alpha-1)!} \delta_{r,m}
= (m(m+\alpha) + k)n\delta_{r,m}.
\]

(6.8)

Comparing (6.6) and (6.8) completes the proof of the lemma. \(\Box \)
Theorem 8. For \(k > 0 \), let \(A^{(\alpha,-1)} \) be the Jacobi self-adjoint operator in \(L^2_{\alpha,-1}(-1,1) \), defined in (4.2) and (4.3), having the sequence of Jacobi polynomials \(\{P_m^{(\alpha,-1)}\}_{m=1}^{\infty} \) as eigenfunctions. For each \(n \in \mathbb{N} \), let

\[
V_n^{(\alpha,-1)} = \left\{ f : (-1,1) \to \mathbb{C} \mid f \in AC_{loc}^{(n-1)}; f^{(j)} \in L^2_{\alpha+j,j-1}(-1,1), j=0,\ldots,n \right\}
\]

and, for \(f, g \in V_n^{(\alpha,-1)} \),

\[
(f,g)_{n}^{(\alpha,-1)} = \sum_{j=0}^{n} c_j^{(\alpha,-1)}(n,k) \int_{-1}^{1} f^{(j)}(t) g^{(j)}(t)(1-t)^{\alpha+j}(1+t)^{j-1} dt.
\]

Then \(W_n^{(\alpha,-1)} = \left(V_n^{(\alpha,-1)}, \langle \cdot, \cdot \rangle_n^{(\alpha,-1)} \right) \) is the \(n \)th left-definite space associated with the pair \((L^2_{\alpha,-1}(-1,1), A^{(\alpha,-1)}) \). Moreover, the Jacobi polynomials \(\{P_m^{(\alpha,-1)}\}_{m=1}^{\infty} \) form a complete orthogonal set in each \(W_n^{(\alpha,-1)} \), and they satisfy the orthogonality relation

\[
(P_m^{(\alpha,-1)}, P_l^{(\alpha,-1)})_{n} = (m(m-1) + k)\delta_{m,l}.
\]

Furthermore, define

\[
B_n^{(\alpha,-1)} := D\left(B_n^{(\alpha,-1)} \right) \subset W_n^{(\alpha,-1)} \to W_n^{(\alpha,-1)}
\]

by

\[
B_n^{(\alpha,-1)} f := l_{\alpha,-1}[f] \quad (f \in D\left(B_n^{(\alpha,-1)} \right) := V_{n+2}^{(\alpha,-1)}).
\]

Then \(B_n^{(\alpha,-1)} \) is the \(n \)th left-definite operator associated with \((L^2_{\alpha,-1}(-1,1), A^{(\alpha,-1)}) \). Lastly, the spectrum of \(B_n^{(\alpha,-1)} \) is given by

\[
\sigma\left(B_n^{(\alpha,-1)} \right) = \{m(m-1) + k \mid m \in \mathbb{N}_0 \} = \sigma\{A^{(\alpha,-1)}\},
\]

with the Jacobi polynomials \(\{P_m^{(\alpha,-1)}\}_{m=1}^{\infty} \) forming a complete set of eigenfunctions of each \(B_n^{(\alpha,-1)} \).

Proof. Let \(n \in \mathbb{N} \). We need to show that \(W_n^{(\alpha,-1)} \) satisfies the five properties in Definition 1 in Sect. 5. (i) \(W_n^{(\alpha,-1)} \) is a Hilbert space (see Theorem 6 and Ref. [5]). (ii) We need to show

\[
D\left((A^{(\alpha,-1)})^n \right) \subset W_n^{(\alpha,-1)} \subset L^2_{\alpha,-1}(-1,1).
\]

Let \(f \in D\left((A^{(\alpha,-1)})^n \right) \). Since the Jacobi polynomials \(\{P_m^{(\alpha,-1)}\}_{m=1}^{\infty} \) form a complete orthonormal set in \(L^2_{\alpha,-1}(-1,1) \), we see that

\[
p_j \to f \quad \text{in} \ L^2_{\alpha,-1}(-1,1) \quad \text{as} \ j \to \infty \quad (6.9)
\]
where
\[p_j(t) := \sum_{m=0}^{j} c_m^{(\alpha,-1)} P_m^{(\alpha,-1)}(t) \quad (t \in (-1, 1)), \]
and, for \(m \in \mathbb{N}_0 \),
\[c_m^{(\alpha,-1)} := \left(f, P_m^{(\alpha,-1)} \right)_{\alpha,-1} = \int_{-1}^{1} f(t) P_m^{(\alpha,-1)}(t) (1 - t)^\alpha (1 + t)^{-1} dt. \]
Since \((A^{(\alpha,-1)})^n f \in L^2_{\alpha,-1}(-1, 1)\), we see that as \(j \to \infty \),
\[\sum_{m=0}^{j} \tilde{c}_m^{(\alpha,-1)} P_m^{(\alpha,-1)} \to (A^{(\alpha,-1)})^n f \quad \text{in} \quad L^2_{\alpha,-1}(-1, 1) \]
where
\[\tilde{c}_m^{(\alpha,-1)} := \left((A^{(\alpha,-1)})^n f, P_m^{(\alpha,-1)} \right)_{\alpha,-1} = (f, (A^{(\alpha,-1)})^n P_m^{(\alpha,-1)})_{\alpha,-1} \]
\[= (m(m + \alpha) + k)^n \left(f, P_m^{(\alpha,-1)} \right)_{\alpha,-1} \]
\[= (m(m + \alpha) + k)^n c_m^{(\alpha,-1)}; \]
consequently,
\[(A^{(\alpha,-1)})^n p_j \to (A^{(\alpha,-1)})^n f \]
in \(L^2_{\alpha,-1}(-1, 1) \) as \(j \to \infty \). Moreover, by Lemma 8,
\[\left(\|p_j - p_r\|^{(\alpha,-1)}_n \right)^2 = \left((A^{(\alpha,-1)})^n [p_j - p_r], p_j - p_r \right)_{\alpha,-1} \]
\[\to 0 \quad \text{as} \quad j, r \to \infty \]
so \(\{p_j\}^{\infty}_{j=0} \) is Cauchy in \(W_n^{(\alpha,-1)} \). Since \(W_n^{(\alpha,-1)} \) is a Hilbert space (Theorem 6), there exists
\[g \in W_n^{(\alpha,-1)} \subset L^2_{\alpha,-1}(-1, 1) \]
such that
\[p_j \to g \quad \text{in} \quad W_n^{(\alpha,-1)} \quad \text{as} \quad j \to \infty. \]
Furthermore, since
\[(f, f)_n^{(\alpha,-1)} = \sum_{j=0}^{n} c_j^{(\alpha,-1)}(n, k) \left\| f^{(j)} \right\|_{j+\alpha,j-1}^2 \]
\[\geq c_0^{(\alpha,-1)}(n, k) \left\| f^{(j)} \right\|_{\alpha,-1}^2 = k^n (f, f)_{\alpha,-1}, \]
we see that
\[\|p_j - g\|_{\alpha,-1} \leq k^{-n/2} \|p_j - g\|_n^{(\alpha,-1)}, \]
and hence,

\[p_j \to g \quad \text{in } L^2_{\alpha,-1}(-1,1). \]

(6.10)

Comparing (6.9) and (6.10), \(f = g \in W^{(\alpha,-1)}_n \).

(iii) We need to show: \(\mathcal{D}(\{A^{(\alpha,-1)}_n\}) \) is dense in \(W^{(\alpha,-1)}_n \). Since the set of polynomials is contained in \(\mathcal{D}(\{A^{(\alpha,-1)}_n\}) \) and is dense in \(W^{(\alpha,-1)}_n \) (by Theorem 7), \(\mathcal{D}(\{A^{(\alpha,-1)}_n\}) \) is dense in \(W^{(\alpha,-1)}_n \). Furthermore, from Theorem 7, the Jacobi polynomials \(\{P^{(\alpha,-1)}_m\}_{m=1}^{\infty} \) form a complete orthonormal set in \(W^{(\alpha,-1)}_n \).

(iv) We need to show that \(\langle f, f \rangle^{(\alpha,-1)}_n \geq k^n \langle f, f \rangle^{(\alpha,-1)}_1 \) for \(f \in V^{(\alpha,-1)}_n \). This is clear from the definition of \(\langle \cdot, \cdot \rangle^{(\alpha,-1)}_n \).

(v) We need to show: \(\langle f, g \rangle^{(\alpha,-1)}_n = \langle (A^{(\alpha,-1)}_n)f, g \rangle^{(\alpha,-1)}_1 \) for \(f \in \mathcal{D}(\{A^{(\alpha,-1)}_n\}) \) and \(g \in V^{(\alpha,-1)}_n \). This is true for any \(f, g \in \mathcal{P} \) by Lemma 8. Let \(f \in \mathcal{D}(\{A^{(\alpha,-1)}_n\}) \subset W^{(\alpha,-1)}_n, g \in W^{(\alpha,-1)}_n \). Since the set of polynomials \(\mathcal{P} \) is dense in both \(W^{(\alpha,-1)}_n \) and \(L^2_{\alpha,-1}(-1,1) \), and since convergence in the space \(W^{(\alpha,-1)}_n \) implies convergence in \(L^2_{\alpha,-1}(-1,1) \) (by (iv)), there exist sequences \(\{p_j\}_{j=0}^{\infty} \) and \(\{q_j\}_{j=0}^{\infty} \) such that

\[p_j \to f \quad \text{in } W^{(\alpha,-1)}_n \text{ as } j \to \infty \]

\[\left(A^{(\alpha,-1)} \right)^n p_j \to \left(A^{(\alpha,-1)} \right)^n f \]

in \(L^2_{\alpha,-1}(-1,1) \) as \(j \to \infty \) and

\[q_j \to g \]

in \(W^{(\alpha,-1)}_n \) and \(L^2_{\alpha,-1}(-1,1) \) as \(j \to \infty \). Hence, by Lemma 8,

\[\left(\left(A^{(\alpha,-1)} \right)^n f, g \right)_{-1,-1} = \lim_{j \to \infty} \left(\left(A^{(\alpha,-1)} \right)^n p_j, q_j \right)_{\alpha,-1} = \lim_{j \to \infty} \left(p_j, q_j \right)_n = \langle f, f \rangle^{(\alpha,-1)}_n. \]

The results listed in the theorem on \(B^{(\alpha,-1)}_n \) and the spectrum of \(B^{(\alpha,-1)}_n \) follow immediately from the general left-definite theory. \(\square \)

7. The Sobolev Orthogonality of the Jacobi Polynomials

If we renormalize the Jacobi polynomials as follows:

\[\widetilde{P}_0^{(\alpha,-1)}(x) := 1, \quad \widetilde{P}_1^{(\alpha,-1)}(x) := \left(\frac{\alpha + 2}{2^{\alpha+2}} \right)^{1/2} (x + 1), \]

and, for \(n \geq 2 \),
Nonclassical Jacobi Polynomials and Sobolev Orthogonality

\[\tilde{P}_n^{(\alpha,-1)}(x) := \frac{(2n + \alpha)^{\frac{3}{2}}}{2^{n+\alpha/2} (n + \alpha)} \sum_{j=0}^{n} \binom{n + \alpha}{n - j} \binom{n - 1}{j} \left(\frac{x - 1}{2} \right)^j \left(\frac{x + 1}{2} \right)^{n-j}, \]

we obtain the following theorem; a proof can be found in [12]. A key result in establishing this result is in the following important identity

\[\tilde{P}_n^{(\alpha,-1)}(x) = (n + \alpha)!(n - 1)! \frac{(x + 1)\tilde{P}_{n-1}^{(\alpha,1)}(x)}{2n!(n + \alpha - 1)!} \quad (n \geq 2) \]

whose proof can easily be checked.

Theorem 9. The Jacobi polynomials \(\{\tilde{P}_n^{(\alpha,-1)}(x)\}_{n=0}^{\infty} \) are orthonormal with respect to the Sobolev inner product

\[\phi(f, g) := f(-1)\overline{g}(-1) + \int_{-1}^{1} (1-x)^{\alpha+1} f'(x)\overline{g'}(x)dx, \]

that is,

\[\phi(\tilde{P}_n^{(\alpha,-1)}, \tilde{P}_m^{(\alpha,-1)}) = \delta_{nm} \quad (n, m \in \mathbb{N}_0). \]

8. Jacobi Polynomials and a Self-Adjoint Operator in a Sobolev Space

Definition 3. Define

\[W_\alpha := \{ f : [-1, 1) \to \mathbb{C} \mid f \in AC[-1, 1) ; f' \in L^2_{\alpha+1,0}(-1,1) \} \]

\[\phi(f, g) := f(-1)\overline{g}(-1) + \int_{-1}^{1} f'(x)\overline{g'}(x)(1-x)^{\alpha+1}dx \quad (f, g \in W_\alpha). \]

Write \(\|f\|_\phi^2 = \phi(f, f) \) for \(f \in W_\alpha \).

Theorem 10. \((W_\alpha, \phi(\cdot, \cdot))\) is a Hilbert space.

Proof. Let \(\{f_n\} \subset W_1 \) be a Cauchy sequence. Hence

\[\|f_n - f_m\|_\phi^2 = |f_n(-1) - f_m(-1)|^2 + \int_{-1}^{1} |f'_n(x) - f'_m(x)|^2 (1-x)^{\alpha+1}dx \]

\[\to 0 \quad \text{as} \ n, m \to \infty. \]

In particular, since

\[\int_{-1}^{1} |f'_n(x) - f'_m(x)|^2 (1-x)^{\alpha+1}dx \leq \|f_n - f_m\|_\phi^2, \]

we see that \(\{f'_n\} \) is Cauchy in \(L^2((-1,1);(1-x)^{\alpha+1}). \)
Since $L^2((-1,1); (1-x)^{\alpha+1})$ is complete, there exists $g \in L^2_{\alpha+1,0}(-1,1)$ such that
\[f'_n \to g \quad \text{as } n \to \infty \quad \text{in } L^2_{\alpha+1,0}(-1,1). \tag{8.1} \]
Also, since
\[|f_n(-1) - f_m(-1)|^2 \leq \|f_n - f_m\|_\phi^2 \]
we see that the sequence $\{f_n(-1)\}$ is Cauchy in \mathbb{C} and, hence, there exists $A \in \mathbb{C}$ such that
\[f_n(-1) \to A. \tag{8.2} \]
Furthermore, since $f_n \in AC([-1,1), n \in \mathbb{N})$, we see that
\[\frac{1}{1} \int_{-1}^{1} f'_n(t)(1-t)^{\alpha+1} dt \to \frac{1}{1} \int_{-1}^{1} g(t)(1-t)^{\alpha+1} dt, \]
Since $g \in AC([-1,1)$, we may define $f : [-1,1) \to \mathbb{C}$ by
\[f(x) = A + \int_{-1}^{x} g(t) dt. \]
It is clear that $f \in AC[-1,1)$ and $f'(x) = g(x) \in L^2_{\alpha+1,0}(-1,1)$ for a.e. $x \in [-1,1)$, so $f \in W_\alpha$. Furthermore, $f(-1) = A$. Now
\[\|f_n - f\|_\phi^2 = |f_n(-1) - f(-1)|^2 + \int_{-1}^{1} |f'_n(t) - f'(t)|^2 (1-t)^{\alpha+1} dt \]
\[= |f_n(-1) - A|^2 + \int_{-1}^{1} |f'_n(t) - g(t)|^2 (1-t)^{\alpha+1} dt \to 0 \]
as $n \to \infty$ by (8.1) and (8.2). Thus, $(W_\alpha, \phi(\cdot, \cdot))$ is complete. \qed

Theorem 11. Let W_α and $\phi(\cdot, \cdot)$ be as before, and
\[W_{\alpha,1} := \{ f \in W_\alpha \mid f(-1) = 0 \} \]
\[W_{\alpha,2} := \{ f \in W_\alpha \mid f'(x) = 0 \}. \]
Then $W_{\alpha,1}$ and $W_{\alpha,2}$ are closed, orthogonal subspaces of W_α and $W_\alpha = W_{\alpha,1} \oplus W_{\alpha,2}$.

Proof. Since $W_{\alpha,2}$ is one-dimensional, it is a closed subspace of W_α. The orthogonal complement of $W_{\alpha,2}$ is given by
\[W_{\alpha,2}^\perp := \{ f \in W_\alpha \mid \phi(f, g) = 0 \ (g \in W_{\alpha,2}) \}. \]
To see that $W_{\alpha,1} \subset W_{\alpha,2}^{\perp}$, let $f \in W_{\alpha,1}, g \in W_{\alpha,2}$ and consider
\[
\phi(f, g) = f(-1)g(-1) + \int_{-1}^{1} f'(x)g'(x)(1 - x)^{\alpha+1}dx = 0.
\]
The first summand vanishes because $f \in W_{\alpha,1}$, and the integral is 0 because $g \in W_{\alpha,2}$. Now let $f \in W_{\alpha}$. We need to find $f_1 \in W_{\alpha,1}$ and $f_2 \in W_{\alpha,2}$ such that $f = f_1 + f_2$. Let $f_1(x) = f(x) - f(-1)$ and $f_2(x) = f(-1)$; clearly, $f_i \in W_{\alpha,i}$ for $i = 1, 2$. \hfill \square

The next result shows that, surprisingly, the space $W_{\alpha,1}$ is precisely the first left-definite vector space $V_{1}^{(\alpha,-1)}$. It is this theorem that allows us to construct a self-adjoint operator T_{α} in W_{α} having the entire sequence of Jacobi polynomials $\{P_n^{(\alpha,-1)}\}_{n=0}^{\infty}$ as eigenfunctions. For $n \geq 2$,
\[
\tilde{P}_n^{(\alpha,-1)}(x) = \frac{(n + \alpha)!(n - 1)!}{2n!(n + \alpha - 1)!}(x + 1)\tilde{P}_{n-1}^{(\alpha,1)}(x).
\]

Theorem 12. $W_{\alpha,1} = V_{1}^{(\alpha,-1)}$.

Proof. Notice that functions in $W_{\alpha,1}$ are defined on $[-1, 1)$ while functions in $V_{1}^{(\alpha,-1)}$ are defined on $(-1, 1)$ so the connection between these two spaces is not immediately obvious.

$V_{1}^{(\alpha,-1)} \subseteq W_{\alpha,1}$: Let $f \in V_{1}^{(\alpha,-1)}$. Since $V_{1}^{(\alpha,-1)} \subset \Delta_{\alpha,-1}$ we see, by Lemma 2, that $f \in AC[-1, 1)$ and $f(-1) = 0$ so $f \in W_{\alpha,1}$.

$W_{\alpha,1} \subseteq V_{1}^{(\alpha,-1)}$: Let $f \in W_{\alpha,1}$. From the definition of both spaces, it clearly suffices to show that $f \in L_{2,\alpha,-1}^{2}(-1, 1)$. For $-1 < x < 0$,
\[
(1 - x)^{\alpha/2}(1 + x)^{-1/2} \int_{-1}^{x} f'(t)dt = (1 - x)^{\alpha/2}(1 + x)^{-1/2} f(x)
\]
since $f(-1) = 0$. We use Theorem 1 on $(-1, 0)$ with $\psi(x) = (1 - x)^{\alpha/2}(1 + x)^{-1/2}$ and $\varphi(x) = 1$. Clearly, ψ and φ satisfy the conditions of Theorem 1. Moreover
\[
\int_{-1}^{x} dt \int_{x}^{0} (1 - t)^{\alpha}(1 + t)^{-1} dt \leq c \int_{-1}^{x} dt \int_{x}^{0} \frac{dt}{1 + t} = -c(x + 1) \ln(1 + x),
\]
and, since this is a bounded function on $(-1, 0)$, we see that $f \in L_{2,\alpha,-1}^{2}(-1, 0)$. A similar argument shows that $f \in L_{2,\alpha,-1}^{2}(0, 1)$ and this completes the proof. \hfill \square

Theorem 13. The inner products $\phi(\cdot, \cdot)$ and $(\cdot, \cdot)_{1}^{(\alpha,-1)}$ are equivalent on $W_{\alpha,1} = V_{1}^{(\alpha,-1)}$.
Proof. First of all, \((W_{\alpha,1}, \phi(\cdot, \cdot))\) is a Hilbert space, and, by definition, \((V_1^{(\alpha,-1), \alpha,-1})\) is a Hilbert space. Let \(f, W_{\alpha,1} = V_1^{(\alpha,-1)}\). Then

\[
\|f\|_\phi^2 = \int_{-1}^1 |f'|^2 (1-x)^{\alpha+1} dx \leq \int_{-1}^1 [|f'|^2 (1-x)^{\alpha+1} + k(1-x)^\alpha (1+x)^{-1} |f|^2] dx = (\|f\|_1)^2.
\]

By the Open Mapping Theorem, these inner products are equivalent.

We now construct a self-adjoint operator \(T_{\alpha,1}\) in the space \(W_{\alpha,1}\), generated by the Jacobi expression \(l_{\alpha,-1}\), having the sequence of Jacobi polynomials \(\{P_n^{(\alpha,-1)}\}_{n=1}^\infty\) as eigenfunctions. Recall that by Theorem 12, \(V_1^{(\alpha,-1)} = W_{\alpha,1}\).

We also know that the operator

\[
B_1^{(\alpha,-1)} : D(B_1^{(\alpha,-1)}) := V_3^{(\alpha,-1)} \subset V_1^{(\alpha,-1)} \rightarrow V_1^{(\alpha,-1)}
\]

namely, the first left-definite operator associated with \((L_{\alpha,-1}^2(-1,1), A^{(\alpha,-1)})\), is self-adjoint and given specifically by

\[
B_1^{(\alpha,-1)}[f](x) = l_{\alpha,-1}[f](x) \text{ (a.e. } x \in (-1,1))
\]

\[
f \in D(B_1^{(\alpha,-1)}) = V_3^{(\alpha,-1)},
\]

where

\[
f \in D(B_1^{(\alpha,-1)}) = V_3^{(\alpha,-1)} = \{ f : (-1,1) \rightarrow \mathbb{C} \mid f, f', f'' \in AC_{loc}(-1,1); (1-x)^{(\alpha+3)/2}(1+x)f''', (1-x)^{(\alpha+2)/2}(1+x)^{1/2}f'', (1-x)^{(\alpha+1)/2}f', (1-x)^{\alpha/2}(1+x)^{-1/2}f \in L^2(-1,1) \}.
\]

More specifically, \(B_1^{(\alpha,-1)}\) is self-adjoint with respect to the first left-definite inner product \((\cdot, \cdot)_{V_3^{(\alpha,-1)}}\) which is equivalent to the inner product \(\phi(\cdot, \cdot)\). We shall prove that the operator \(T_{\alpha,1} : D(T_{\alpha,1}) \subset W_{\alpha,1} \rightarrow W_{\alpha,1}\) given by

\[
T_{\alpha,1} f = B_1^{(\alpha,-1)} f = l_{\alpha,-1}[f]
\]

\[f \in D(T_{\alpha,1}) := V_3^{(\alpha,-1)}
\]
is self-adjoint in \((W_{\alpha,1}, \phi(\cdot, \cdot))\).

Lemma 9. \(T_{\alpha,1}\) in \((W_{\alpha,1}, \phi(\cdot, \cdot))\) is densely defined.

Proof. The Jacobi polynomials \(\{P_n^{(\alpha,-1)}\}_{n=1}^\infty\) are eigenfunctions of \(T_{\alpha,1}\) and they are complete in \(V_3^{(\alpha,-1)}\).

Theorem 14. \(T_{\alpha,1}\) is symmetric in \((W_{\alpha,1}, \phi(\cdot, \cdot))\).
Proof. From the previous lemma, it suffices to show that $T_{\alpha,1}$ is Hermitian. Let $f, g \in \mathcal{D}(T_{\alpha,1}) = V_3^{(\alpha,-1)}$. Since $V_3^{(\alpha,-1)} \subset V_1^{(\alpha,-1)}$ and $T_{\alpha,1}f, T_{\alpha,1}g \in V_1^{(\alpha,-1)}$, we know that

$$f(-1) = g(-1) = 0 = T_{\alpha,1}f(-1) = T_{\alpha,1}g(-1).$$

Integration by parts shows that $\phi(T_{\alpha,1}f, g) = \phi(f, T_{\alpha,1}g)$.

\[\square \]

Theorem 15. The operator $T_{\alpha,1}$ has the following properties:

1. $T_{\alpha,1}$ is self-adjoint in $(W_{\alpha,1}, \phi(\cdot, \cdot))$.
2. $\sigma(T_{\alpha,1}) = \{n(n + \alpha) + k \mid n \geq 2\}$.
3. $\{P_n^{(\alpha,-1)}\}_{n \geq 1}$ is a complete orthonormal set of eigenfunctions of $T_{\alpha,1}$ in the space $(W_{\alpha,1}, \phi(\cdot, \cdot))$.
4. $T_{\alpha,1}$ is bounded below by kI in $(W_{\alpha,1}, \phi(\cdot, \cdot))$.

Proof. For (iii): We know that $\{P_n^{(\alpha,-1)}\}_{n \geq 0}$ is a complete orthonormal set in $(W_{\alpha}, \phi(\cdot, \cdot))$ and we know that $W_{\alpha} = W_{\alpha,1} \oplus W_{\alpha,2}$. Also, we have $W_{\alpha,2} = \text{span}\{P_0^{(\alpha,-1)}\}$ and so $W_{\alpha,1} = W_{\alpha,2}^\perp = \text{span}\{P_n^{(\alpha,-1)}\}_{n \geq 1}$. We next prove that $T_{\alpha,1}$ is closed in $(W_{\alpha,1}, \phi(\cdot, \cdot))$. Take a sequence $\{f_n\} \subseteq \mathcal{D}(T_{\alpha,1}) = V_3^{(\alpha,-1)}$ such that

$$f_n \rightarrow f \quad \text{in} \quad (W_{\alpha,1}, \phi(\cdot, \cdot))$$

$$T_1f_n \rightarrow g \quad \text{in} \quad (W_{\alpha,1}, \phi(\cdot, \cdot)).$$

We show that $f \in \mathcal{D}(T_{\alpha,1})$ and $T_{\alpha,1}f = g$. We know that $B_1^{(\alpha,-1)}$ is self-adjoint and hence closed in $(W_{\alpha,1}, (\cdot, \cdot)_1^{(\alpha,-1)})$, and we know, since $\phi(\cdot, \cdot)$ and $(\cdot, \cdot)_1^{(\alpha,-1)}$ are equivalent, there exist constants c_1 and c_2 such that

$$c_1 \|f\|_\phi \leq \|f\|_1 \leq c_2 \|f\|_\phi \quad (f \in W_{\alpha,1} = V_1).$$

Hence,

$$\|f_n - f\|_1 \leq c_2 \|f_n - f\|_\phi \rightarrow 0;$$

that is,

$$f_n \rightarrow f \quad \text{in} \quad (W_{\alpha,1}, (\cdot, \cdot)_1^{(\alpha,-1)})$$

and

$$\|T_{\alpha,1}f_n - g\|_1 \leq c_2 \|T_{\alpha,1}f_n - g\|_\phi \rightarrow 0;$$

hence

$$T_{\alpha,1}f_n \rightarrow g \quad \text{in} \quad (W_{\alpha,1}, (\cdot, \cdot)_1^{(\alpha,-1)})$$
and since $T_{\alpha,1}$ is closed in $(W_{\alpha,1}, (\cdot, \cdot)_{1}^{(\alpha,-1)})$, we see that $f \in \mathcal{D}(T_{\alpha,1})$ and $T_{\alpha,1}f = g$. Also, we know that, for $n \geq 2$,

$$
(T_{\alpha,1}P_{n}^{(\alpha,-1)})(x) = l_{\alpha,-1}[P_{n}^{(\alpha,-1)}](x)
= (n(n + \alpha) + k)P_{n}^{(\alpha,-1)}(x).
$$

This implies

$$
\{n(n + \alpha) + k \mid n \geq 2\} \subseteq \sigma(T_{\alpha,1}).
$$

Since $\{P_{n}^{(\alpha,-1)}\}_{n \geq 1}$ is complete and $\lambda_n := n(n + \alpha) + k \to \infty$, we know that

$$
\sigma(T_{\alpha,1}) = \{n(n + \alpha) + k \mid n \geq 2\}
$$

which proves (ii) and (iii). To summarize: $T_{\alpha,1}$ is a closed, symmetric operator with a complete set of eigenfunctions. From [14], $T_{\alpha,1}$ is self-adjoint. This proves (i). To prove (iv), let $f \in \mathcal{D}(T_{\alpha,1})$. Then, since $T_{\alpha,1} : V_{3}^{(\alpha,-1)} \subset V_{1}^{(\alpha,-1)} \to V_{1}^{(\alpha,-1)}$,

$$
\phi(T_{\alpha,1}f, f) = (T_{\alpha,1}f)(-1)\bar{f}(-1) + \int_{-1}^{1} (T_{\alpha,1}f)'(x)\bar{f}'(x)(1 - x)^{\alpha+1} dx
= \int_{-1}^{1} (T_{\alpha,1}f)'(x)\bar{f}'(x)(1 - x)^{\alpha+1} dx
= \int_{-1}^{1} \left[\left| (1 - x)^{\alpha+1}f'(x) \right|^2 + k |f'(x)|^2 (1 - x)^{\alpha+1} \right] dx
\geq k \int_{-1}^{1} |f'(x)|^2 (1 - x)^{\alpha+1} dx = k\phi(f, f).
$$

Next, we define the operator $T_{\alpha,2} : \mathcal{D}(T_{\alpha,2}) \subset W_{\alpha,2} \to W_{\alpha,2}$ by

$$
(T_{\alpha,2}f)(x) = l_{\alpha,-1}[f](x)
$$

$$
\mathcal{D}(T_{\alpha,2}) := W_{\alpha,2}.
$$

It is straightforward to check that $T_{\alpha,2}$ is symmetric in $W_{\alpha,2}$ and since the domain of $T_{\alpha,2}$ is the entire space, it follows that $T_{\alpha,2}$ is self-adjoint.

We now construct the self-adjoint operator T_{α} in $(W_{\alpha}, \phi(\cdot, \cdot))$ that is generated by the Jacobi differential expression $l_{\alpha,-1}[\cdot]$, having the entire set of Jacobi polynomials $\{P_{n}^{(\alpha,-1)}\}_{n \geq 0}$ as eigenfunctions and having spectrum $\sigma(T_{\alpha}) = \{n(n + \alpha) + k \mid n \in \mathbb{N}_0\}$. For $f \in W_{\alpha}$, write

$$
f = f_1 + f_2
$$
where \(f_i \in W_{\alpha,i}, (i = 1, 2) \). Define \(T_\alpha : \mathcal{D}(T_\alpha) \subset W_\alpha \rightarrow W_\alpha \) by

\[
T_\alpha f = T_{\alpha,1}f_1 + T_{\alpha,2}f_2 = l_{\alpha,-1}[f_1] + l_{\alpha,-1}[f_2] = l_{\alpha,-1}[f],
\]

\[
\mathcal{D}(T_\alpha) = \mathcal{D}(T_{\alpha,1}) \oplus \mathcal{D}(T_{\alpha,2}).
\]

A proof that operators of this form are self-adjoint can be found in [10, Theorem 11.1]. Furthermore, since we know explicitly the domains of \(T_{\alpha,1} \) and \(T_{\alpha,2} \), we can specifically determine the domain \(\mathcal{D}(T_\alpha) \) of \(T_\alpha \).

Theorem 16. \(T_\alpha \) is self-adjoint in \((W_\alpha, \phi(\cdot, \cdot))\) and

\[
\mathcal{D}(T_\alpha) = \{ f : [-1, 1) \rightarrow \mathbb{C} \mid f \in AC[-1, 1); f', f'' \in AC_{loc}(-1, 1); (1 - x)^{\alpha+3}/2(1 + x)f''', (1 - x)^{\alpha+2}/2(1 + x)^{1/2}f'', (1 - x)^{\alpha+1}/2 f' \in L^2(-1, 1) \}
\]

\[
= \{ f : [-1, 1) \rightarrow \mathbb{C} \mid f \in AC[-1, 1); f', f'' \in AC_{loc}(-1, 1); f(-1) = 0 \}
\]

\[
= W_{\alpha,1}
\]

\[
V_1^{(\alpha,-1)} = \mathcal{D}(T_{\alpha,1}) = \{ f : (-1, 1) \rightarrow \mathbb{C} \mid f \in AC_{loc}(-1, 1); f', f'' \in AC_{loc}(-1, 1); (1 - x)^{\alpha+3}/2(1 + x)f''', (1 - x)^{\alpha+2}/2(1 + x)^{1/2}f'', (1 - x)^{\alpha+1}/2 f' \in L^2(-1, 1) \}
\]

\[
= \{ f : [-1, 1) \rightarrow \mathbb{C} \mid f \in AC[-1, 1); f', f'' \in AC_{loc}(-1, 1); f(-1) = 0; (1 - x)^{\alpha+3}/2(1 + x)f''', (1 - x)^{\alpha+2}/2(1 + x)^{1/2}f'', (1 - x)^{\alpha+1}/2 f' \in L^2(-1, 1) \}.
\]

Theorem 17. Let

\[
\mathcal{D} := \{ f : [-1, 1) \rightarrow \mathbb{C} \mid f \in AC[-1, 1); f', f'' \in AC_{loc}(-1, 1); (1 - x)^{\alpha+3}/2(1 + x)f''', (1 - x)^{\alpha+2}/2(1 + x)^{1/2}f'', (1 - x)^{\alpha+1}/2 f' \in L^2(-1, 1) \}.
\]

Then \(\mathcal{D}(T_\alpha) = \mathcal{D} \).
Proof. We first show $\mathcal{D}(T_\alpha) \subseteq \mathcal{D}$. Let $f \in \mathcal{D}(T_\alpha) = \mathcal{D}(T_{\alpha,1}) \oplus \mathcal{D}(T_{\alpha,2})$. Write

$$f = f_1 + f_2$$

where $f_1 \in \mathcal{D}(T_{\alpha,1}) = V_3^{(\alpha,-1)} \subseteq \mathcal{D}$, $f_2 \in \mathcal{D}(T_{\alpha,2}) \subseteq \mathcal{D}$. Then $f \in \mathcal{D}$. To show that $\mathcal{D} \subseteq \mathcal{D}(T_\alpha)$, let $f \in \mathcal{D}$. Write

$$f(x) = f_1(x) + f_2(x)$$

where

$$f_1(x) := f(x) + f(-1)$$

$$f_2(x) := -f(-1).$$

Then $f_1 \in \mathcal{D}$ and $f_1(-1) = 0$; that is, $f_1 \in V_3^{(\alpha,-1)} = \mathcal{D}(T_{\alpha,1})$. Also, $f_2''(x) = 0$ so $f_2 \in \mathcal{D}(T_{\alpha,2})$. Together, $f \in \mathcal{D}(T_\alpha)$.

\[\square\]

References

Nonclassical Jacobi Polynomials and Sobolev Orthogonality

Andrea Bruder
Department of Mathematics and Computer Science
Tutt Science Center
Colorado College
14 E. Cache la Poudre Street
Colorado Springs, CO 80903
USA
e-mail: andrea.bruder@coloradocollege.edu

L. L. Littlejohn
Department of Mathematics
Baylor University
One Bear Place #97328
Waco, TX 76798-7328
USA

Received: November 15, 2010.
Revised: January 18, 2011.
Accepted: January 25, 2011.