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Working Memory Strategies During Rational Number
Magnitude Processing

Michelle Hurst and Sara Cordes
Boston College

Rational number understanding is a critical building block for success in more advanced mathematics;
however, how rational number magnitudes are conceptualized is not fully understood. In the current
study, we used a dual-task working memory (WM) interference paradigm to investigate the dominant
type of strategy (i.e., requiring verbal WM resources vs. requiring primarily visuospatial WM resources)
used by adults when processing rational number magnitudes presented in both decimal and fraction
notation. Analyses revealed no significant differences in involvement of verbal and visuospatial WM,
regardless of notation (fractions vs. decimals), indicating that adults rely upon a mix of strategies and
WM resources when processing rational number magnitudes. However, this pattern interacted with
algebra ability such that those performing better on the algebra assessment relied upon both verbal and
visuospatial WM when engaging in rational number comparisons, whereas rational number performance
by adults with low algebra fluency was affected only by a simultaneous verbal WM task. Together,
results support previous work implicating the involvement of WM resources in rational number pro-
cessing and is the first study to indicate that the involvement of both verbal and visuospatial WM, as
opposed to relying primarily on verbal WM, when processing rational number magnitudes may be
indicative of higher mathematical proficiency in the domain of algebra.
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An understanding of rational number concepts has been shown
to be critical for further math learning. For example, early fraction
and decimal knowledge is a unique predictor of arithmetic ability
and general math achievement in elementary and middle school
(e.g., Bailey, Hoard, Nugent, & Geary, 2012; Schneider, Grabner,
& Paetsch, 2009), as well as algebra ability in older children and
adults (e.g., Booth, Newton, & Twiss-Garrity, 2014; Hurst &
Cordes, 2016b; Siegler et al., 2012). Although substantial evidence
suggests that there is some relationship between algebra and ra-
tional number ability, what aspect of rational number knowledge is
most critical and the mechanisms through which this relationship
develops are only just beginning to be explored. Recent evidence
has suggested that one of the critical aspects of fraction knowledge
is an understanding of rational number magnitudes (Booth &
Newton, 2012; Booth et al., 2014). For example, Booth et al.
(2014) found that eighth graders’ ability to map fractions onto
number lines was predictive of improvement in their equation
solving after an algebra course. However, processing rational
number magnitudes is not a straightforward task, as it potentially
involves distinct strategies, ranging from holistic processing (i.e.,
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getting a feel for the numerical size of a value) to computational
processing (i.e., transforming fractions into decimal values to get
a sense for the size of the value). Yet no work has investigated
whether specific rational number magnitude processing strategies
may be stronger predictors of algebraic processing. Thus, in order
to better understand the relationship between rational number
magnitude understanding and algebra ability, we must also inves-
tigate how people go about processing rational number magnitude
information and whether there are differences in how these mag-
nitudes are understood across individuals with differing algebra
abilities.

Rational Number Magnitudes

To investigate how people think about the magnitudes associ-
ated with symbolic numbers, researchers often use number com-
parison tasks. In these tasks, participants are asked to rapidly judge
which of two numbers is greater. Work with whole numbers has
revealed that performance on these tasks is predictive of more
general math fluency (e.g., Holloway & Ansari, 2009) and corre-
lated with math anxiety (e.g., Maloney, Ansari, & Fugelsang,
2011), suggesting that performance on these tasks can provide
insight into how these values are processed. More recently, re-
searchers have begun to use these tasks with other types of num-
bers like fractions and decimals, with results similarly revealing
performance on these rational number magnitude comparisons
predicting math ability in other domains (e.g., Hurst & Cordes,
2016b; Schneider et al., 2009; Siegler, Thompson, & Schneider,
2011).

However, little is known about the specific strategies children
and adults may invoke to access the magnitudes associated with
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2 HURST AND CORDES

rational number notation. Some evidence suggests that in a rational
number comparison task (e.g., “Which is larger [1/2] vs. [3/4]?”),
adults are able to access magnitude information from both frac-
tions and decimals (e.g., DeWolf, Grounds, Bassok, & Holyoak,
2014; Hurst & Cordes, 2016a; Schneider & Siegler, 2010), but
only when they are prevented from using other component-based
strategies (Bonato, Fabbri, Umilta, & Zorzi, 2007). When explic-
itly asked to report their strategy use, Faulkenberry and Pierce
(2011) found that adults’ strategies could be grouped into one of
five different categories (although a small percentage reported
strategies that did not fit into one of these categories): just knowing
it, cross-multiplication, benchmarking (e.g., comparing the values
with [1/2]), visualization, and converting fractions into decimals.
Although many of these strategies involve understanding magni-
tude, they may also involve other procedures—including arithme-
tic and calculation. Given that fractions and decimals are compli-
cated symbols that involve a combination of Arabic numerals and
non-numeric symbols (i.e., the vinculum, or dividing line, in
fractions and the decimal point in decimals), it may not be sur-
prising that some adults engage in calculation-based strategies
(i.e., cross-multiplication, converting fractions into decimals, and
possibly benchmarking). In addition, even the strategy of “just
knowing it” (the single strategy with the highest reported
use—30.7% of trials; Faulkenberry & Pierce, 2011) may have
encompassed more than one type of implicit strategy, including
ones the participants could not readily describe using self-report.
Thus, given that fraction and decimal magnitudes may be inter-
preted and processed in different ways, and that fraction and
decimal magnitude understanding is related to algebra ability, it is
important to explore whether differences in how rational number
magnitudes are approached may be related to algebra ability.
However, because self-report may not be the most accurate way to
assess strategies, and because the reporting of strategies on each
trial could potentially impact the future use of those strategies
within the task, it is ideal to investigate rational number magnitude
strategies using implicit measures.

Working Memory

To implicitly assess rational number processing strategies, the
current study explored how distinct components of WM (i.e., the
phonological loop [i.e., verbal WM] and the visuospatial sketch-
pad; Baddeley, 1992; Baddeley, 2012; Baddeley & Hitch, 1974)
are implicated during a rational number magnitude task. Although
studies have identified a relationship between WM capacity and
rational number processing abilities (e.g., Jordan et al., 2013;
Vukovic et al., 2014), no studies have explored how these distinct
components of WM may individually contribute to rational num-
ber magnitude processing. Importantly, understanding the involve-
ment of these distinct components of WM during mathematical
tasks can provide insight into the nature of the strategies invoked
when performing these tasks (e.g., Caviola, Mammarella, Cor-
noldi, & Lucangeli, 2012; DeStefano & LeFevre, 2004; Raghubar,
Barnes, & Hecht, 2010).

Significant research has explored how these WM components
are implicated in other numerical and math tasks, such as mental
arithmetic, revealing distinct patterns of involvement for the pho-
nological loop and the visuospatial sketchpad. Given that the
phonological loop is thought to be involved in temporarily storing

verbal information in memory (Baddeley, 1992, 2012; Baddeley &
Hitch, 1974), it is not surprising that the phonological loop is
implicated in mental arithmetic tasks in which verbal strategies are
invoked, such as when children use counting strategies and/or
perform calculations that involve maintaining operands or an in-
terim solution (DeStefano & LeFevre, 2004). Even in adults,
verbal WM has been shown to be involved in solving complex
arithmetic problems (Hitch, 1978). The visuospatial sketchpad, on
the other hand, is deemed responsible for maintaining visual in-
formation in memory, including creating mental pictures and dia-
grams (Baddeley, 1992, 2012; Baddeley & Hitch, 1974). Thus, the
visuospatial sketchpad has been found to play a role when mental
transformation of the problem may be necessary for solving the
problem (e.g., carrying in multidigit addition presented vertically;
Caviola et al., 2012). In addition, theories positing that individuals
use a “mental blackboard” to solve mathematical problems (e.g.,
Hayes, 1972) suggest that the visuospatial sketchpad may be
involved to some extent in most situations of arithmetic, although
the specific role of the visuospatial sketchpad in mental arithmetic,
and particularly complex arithmetic, is unclear (e.g., Hubber,
Gilmore, & Cragg, 2014).

Other work reveals that numerical magnitudes themselves, spe-
cifically for whole numbers, are visuospatially encoded in both
adults and children (Simmons, Willis, & Adams, 2012; van Dijck,
Gevers, & Fias, 2009). This is consistent with findings from other
tasks suggesting that both children and adults represent whole
numbers along a spatially encoded mental number line (e.g., De-
haene, Bossini, & Giraux, 1993; Moyer & Landauer, 1967, 1973),
which may suggest that magnitude processing—distinct from
mental arithmetic—may rely primarily on visuospatial WM and
only minimally involve verbal WM. Whether this is also the case
for rational numbers—whose magnitudes can be accessed through
visualization (i.e., envisioning a pie chart), through verbally based
strategies (e.g., direct computation, such as converting a fraction to
a decimal or step-by-step digit comparisons in decimals), or a mix
of strategies (e.g., estimating on a number line using place value or
spatially demanding computations, such as cross-multiplica-
tion)—is an open question.

To investigate how distinct WM components may be implicated
in rational number processing, in the current study, we employed
a dual-task WM paradigm, which involves performing a primary
task of interest (e.g., number comparison) while performing a
secondary task that intentionally taxes WM resources (e.g., re-
membering four letters). The dual-task WM paradigm has been
used to investigate how these various components of WM may be
implicated during the primary task in order to identify implicit
strategies involved (e.g., DeStefano & LeFevre, 2004; Raghubar et
al., 2010). Importantly, the assumption of dual-task paradigms is
that if processing in both the primary and the secondary tasks rely
upon the same cognitive resources (e.g., verbal WM), then perfor-
mance on the primary task will be impaired in the dual-task
paradigm relative to that of a single-task control. On the other
hand, if both tasks can be performed simultaneously without any
interference, then they must not rely upon the same cognitive
resources.

Given that symbolic notation for both fraction and decimal
magnitudes involve both numeric (i.e., Arabic numerals) and non-
numeric (i.e., decimal point, vinculum/division bar) symbols, there
is reason to expect the involvement of both visuospatial and verbal
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resources when adults conceive of rational number magnitudes. On
the one hand, given the rampant use of visual representations in the
classroom when teaching rational numbers, coupled with evidence
suggesting that fractions and decimals are spatially encoded
(Faulkenberry & Pierce, 2011; Hurst & Cordes, 2016a; Schneider
& Siegler, 2010), values in fraction and decimal notation may be
processed holistically as magnitudes, without engaging explicit
computations (e.g., envisioning a pie chart and/or as values falling
along a line). If so, then rational number magnitudes should be
primarily visuospatially encoded, only minimally requiring the use of
the phonological loop. Alternatively, fraction notation implies the
division of two whole numbers and decimals involve multiple com-
ponents (i.e., values before and after the decimal point), making
interpretation of the magnitudes associated with these symbols less
transparent. In turn, this might suggest that both fraction and decimal
magnitudes may be only accessible via direct computation and/or
component-to-component comparisons (e.g., cross-multiplication,
comparing values in the tenths digit, then in the hundredths, and so
on). If this is the case, then processing of these values should require
a greater reliance upon the phonological loop to maintain interim
solutions in the calculation for each comparison.

Notation Differences

Furthermore, although fraction and decimal notation are used to
represent the same numerical magnitudes, processing of values in
these distinct notations may not rely on the same WM resources.
It has been argued that decimal notation is more similar to whole
numbers (e.g., Johnson, 1956), and recent evidence suggests that
magnitudes are more easily accessed in decimal notation relative
to fraction notation (e.g., DeWolf et al., 2014; Hurst & Cordes,
2016a). If so, then judgments of decimal magnitudes (as opposed
to fraction magnitudes) may be more likely to be spatially encoded
(similar to whole-number magnitudes), and thus rely primarily
upon visuospatial WM, whereas fraction magnitudes may reveal a
greater reliance upon verbal resources (reflecting increased com-
putations, i.e., translating into decimal notation). Alternatively,
evidence suggests that adults conceive of fraction and decimal
magnitudes as falling along a single integrated mental continuum
(Hurst & Cordes, 2016a), suggesting that underlying similarities in
the numerical concepts these distinct notations represent may be
salient to adults. If so, then these symbolic systems may receive
similar treatment, resulting in consistent strategies employed
across notations.

In addition, if distinct strategies are employed when comparing
magnitudes exclusively in decimal notation (by comparing two
decimals; e.g., 0.5 vs. 0.75) and exclusively in fraction notation
(by comparing two fractions; e.g., [1/2] vs. [3/4]), then investigat-
ing the strategies used when comparing two values presented in
different notation (by comparing a fraction with a decimal; e.g.,
[1/2] vs. 0.75) can provide important insight. For example, if the
level of verbal WM recruitment increases as a function of the
number of fractions involved in the comparison (with the lowest
level of recruitment involved in comparisons between two deci-
mals [zero fractions], with slightly more for comparisons between
a decimal and a fraction [one fraction], and the highest level for
those between two fractions), then this would suggest that each
fraction requires additional computational processing. Alterna-
tively, if comparisons involving two fractions yield the same

pattern as comparisons involving a decimal and a fraction, then it
may be that merely the presence of a fraction invokes a distinct set
of strategies not employed when there are only decimals.

Relationship to Algebra Ability

Most critically, however, is investigating whether the involve-
ment of visuospatial and verbal WM resources may differ as a
function of algebra ability. The relationship between algebra abil-
ity and rational number understanding has been explained through
a number of mechanisms, including having a strong understanding
of the rational number system, being proficient with both algebraic
and arithmetic procedures, understanding the conceptual aspects of
fraction units (e.g., the denominator), and so on (e.g., Booth &
Newton, 2012; Hurst & Cordes, 2016b; Kilpatrick & Izsak, 2008;
Wu, 2001). Although studies have investigated algebra (e.g.,
Booth & Davenport, 2013; Koedinger, Alibali, & Nathan, 2008;
Landy, Brookes, & Smout, 2014) and fraction problem solving
(e.g., Faulkenberry & Pierce, 2011) separately, how specific strat-
egies for approaching fraction problems may be related to algebra
proficiency is an unexplored area. Given that understanding frac-
tion magnitudes may be critical for algebra understanding (e.g.,
Booth & Newton, 2012; Kilpatrick & Izsak, 2008), we might
expect those proficient in algebra to engage in fewer computa-
tional strategies when processing fraction and decimal magnitudes
(having a more intuitive understanding of the magnitudes associ-
ated with those symbols) and those less proficient in algebra to rely
more upon calculation-based strategies. If this is the case, then we
would expect to see individuals with lower algebra fluency to rely
more upon verbal WM resources and less so upon visuospatial
WM resources. On the other hand, other evidence suggests that
performance on rational number arithmetic assessments is also
predictive of algebra ability and may be an essential part of the
relationship (Hurst & Cordes, 2016b; Kilpatrick & Izsak, 2008).
Thus, it may be that those who are more fluent with algebraic
processing are more likely to process fraction and decimal mag-
nitudes arithmetically, executing calculations in order to make the
comparison, for example, cross-multiplying two fractions or con-
verting values into a common notation for purposes of comparison.
In this case, we might expect that those individuals with higher
algebra ability to have greater reliance upon verbal WM resources
(evidence of engaging a calculation based strategy), whereas those
with lower algebra ability may not.

The Current Study

In summary, there is a growing literature investigating how
people think about rational number magnitudes and how rational
number understanding may be related to algebra ability. However,
there are several open questions about the strategies invoked when
processing rational number magnitudes presented in both fraction
and decimal notation. In the current study, we used a dual-task
WM paradigm to assess how visuospatial and verbal WM are
implicated during a rational number magnitude comparison task.
We then assessed whether individual differences in WM involve-
ment (indicative of distinct processing strategies) were associated
with performance on an algebraic assessment. We explored these
relationships in a group of educated young adults who have had
several years of schooling beyond the introduction of basic rational
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number and algebra concepts. Given that rational number and
algebra concepts are introduced in different school grades and
taught throughout a large range of grades (Common Core State
Standards: National Governors Association Center for Best Prac-
tices & Council of Chief of State School Officers, 2010), adult
participants allow us to investigate these relationships once they
have already received basic educational instruction on these topics.
By doing so, we are able to take a first look at the pattern of these
relationships, providing insight into individual differences in ra-
tional number and algebra understanding and opening up new
avenues for further investigation into children who are in the
process of learning these concepts.

Specifically, this study addresses three research questions

(RQs):

1. Is WM differentially implicated in rational number mag-
nitude understanding based on WM type (visuospatial vs.
verbal WM)?

RQ #1 will be investigated by looking at whether performance
on the rational number task differs depending on WM load type. If
rational number magnitudes are processed in terms of visuospatial
representations (i.e., visualizing the quantities), then we would
expect visuospatial WM to show more interference than verbal
WM. On the other hand, if rational number magnitudes are pri-
marily processed in terms of their computational features (i.e.,
arithmetic manipulation of the symbols), then we would expect
primarily verbal WM interference.

2. Is WM differentially implicated in rational number mag-
nitude understanding based on rational number notation
(fractions vs. decimals)?

RQ #2 will be investigated by looking at whether the level of
verbal and/or visuospatial WM interference depends upon the
notation being used. If fractions and decimals are processed sim-
ilarly, we would expect no differences across notation. Alterna-
tively, given substantial literature suggesting adults consider these
notations to be qualitatively different (e.g., DeWolf et al., 2014;
Hurst & Cordes, 2016a), we might expect WM interference to
differentially impact decimals and fractions.

3. Do individuals with different levels of algebra ability
show distinct patterns of WM resource use in a rational
number magnitude task? That is, does the pattern of
findings in RQ #1 depend on the algebra ability of the
individual?

RQ #3 will be investigated by looking at how the pattern of
results discussed in RQ #1 may differ across those with high and
low algebra ability. If the often-reported relationship between
algebra ability and rational number understanding (e.g., Booth et
al., 2014; Hurst & Cordes, 2016b; Siegler et al., 2012) is dependent
upon the type of resource-based strategies used by the individual,
then we would expect to see different levels of verbal and visu-
ospatial WM involvement between those with high and low alge-
bra ability. Furthermore, in order to isolate algebra ability in
particular, we will include performance on a rational number
arithmetic assessment as a covariate in our analyses in order to

control for individual differences in procedural ability with ratio-
nal number notation more generally.

By investigating individual differences in WM recruitment, we
may be able to look at differences in how those with varying
algebra abilities approach rational number magnitudes. By relying
on previous research with WM recruitment during mental arith-
metic, we may be able to shed some light on the kinds of strategies
adults may employ based on their patterns of WM recruitment.

Method

Participants

Seventy-nine adults participated for course credit or $10.00.
Adults were recruited from a university campus through introduc-
tory psychology courses and flyers, resulting in a sample primarily
made up of undergraduate and graduate college students. Nineteen
adults were not included in the analyses because of computer error
resulting in the loss of all data (n = 13) or because their data
exceeded our exclusion criteria (n = 6; see the Exclusion Criteria
section for details). Thus, data from a final sample of 60 adults
(M, = 20.9 years; age range = 18 to 33 years old; 35% males)
were included in the WM analyses. Additionally, data from three
adults were excluded from analyses involving the math assess-
ments (see Exclusion Criteria), resulting in data from 57 adults
(M, = 21.0 years; age range = 18 to 33 years old; 37% males)
used for analyses relating WM involvement to algebra perfor-
mance.

Procedure

All adults completed the number comparison task, participating
in four within-subject blocks (visuospatial dual-task, visuospatial
control, verbal dual-task, verbal control), with the order of the
blocks counterbalanced across subjects. Each individual block of
the WM dual-task took approximately 5 min. Following the num-
ber comparison task, adults completed two math assessments: a
rational number arithmetic assessment and an algebraic assess-
ment. The entire session took no longer than 60 min.

Each block of the WM dual-task began with three practice
problems (one of each number comparison type), during which the
experimenter sat next to the participant to ensure that the partici-
pant understood and followed the instructions. During the task, the
experimenter left the room and only reentered to provide instruc-
tions for the next condition. All tasks (number comparison task and
math assessments) were presented on a 22-in. monitor connected
to an Apple computer.

Measures

WM dual-task. The WM dual-task procedure (modeled after
Caviola et al., 2012) contained four within-subject blocks: two
dual-task blocks (visuospatial and verbal) and two control blocks
(visuospatial and verbal). On the dual-task blocks, participants
were asked to remember visuospatial or verbal information (sec-
ondary task) while performing a numerical comparison (primary
task). The control blocks were designed to be perceptually and
temporally identical to the dual-task blocks (i.e., to have the same
temporal spacing between trials and the same perceptual distrac-
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tors)—the only difference was that participants were instructed not
to remember the information from the secondary task, and they
were never asked to recall that information. Trials in each block
followed the same basic procedure: (a) center fixation cross (1,000
ms; 1.5 cm X 1.5 cm); (b) secondary task memory stimulus (2,500
ms); (c) blank screen (1,000 ms); (d) number comparison stimuli
(until response); (e) blank screen (1,000 ms); and (f) memory
recall (in dual blocks) or memory stimulus reappearance (in con-
trol blocks; until the participant responded to move on to next trial;
see Figure 1).

Primary task. The primary task of interest was the number
comparison task (similar to tasks used in DeWolf et al., 2014;
Hurst & Cordes, 2016a). Across all four blocks, participants were
presented two rational numbers and were instructed to indicate
which of the two numbers was larger in numerical value. There
were three different types of numerical comparison trials in which
participants were asked to judge the relative magnitude of: (a) two
fractions (FvF; e.g., [1/2] vs. [3/4]); (b) two decimals (DvD; e.g.,
0.5 vs. 0.75); or (¢) one decimal and one fraction (DVF; e.g., 0.5 vs.
[3/4]). Participants indicated their response by selecting the cor-
responding key (right arrow for right stimulus and left arrow for
left stimulus) on the keyboard as quickly as possible.

In each of the four blocks, eight trials of each number compar-
ison type (FvF, DvD, and DvF; all intermixed) were randomly
presented, for a total of 96 trials (8 trials X 3 comparison types X
4 blocks).

On the FVF and DVF trials, the two numerical values presented
differed, on average, by a ratio of 2.4 (range = 2.1 to 2.8), and the
numerical values presented in DvD comparisons differed by an
average ratio of 1.12 (range = 1.07 to 1.15). The ratio of the DvD
comparisons was set lower than the DvF and FvF comparisons,
because previous work (Hurst & Cordes, 2016a) suggested that a
ratio around 1.12 in DvD comparisons would result in a compa-
rable level of performance as DVF and FVF trials at a 2.4 ratio.

Numerators and denominators of the fraction stimuli only in-
volved single-digit values ranging from 1 to 9 and had magnitudes

1000ms

2500ms

SLVZ

1000ms

Until Response Selected

1000ms

/ \

In control condition / \I.u dual memory condition

SLvVZ s il €

between 0 and 2 (exact range = 1/7 to 9/5), resulting in a mix of
proper unit fractions, proper nonunit fractions, and improper frac-
tions. In FVF trials, the two numerators and two denominators used
to make up the two fractions were always four distinct integers to
prevent adults from using an exclusively numerator or denomina-
tor comparison strategy (as in Schneider & Siegler, 2010).

Decimal values ranged from 0.15 to 1.69 (approximately the
same range as the fractions), making the unit value in the decimal
notation (i.e., value to the left of the decimal point) either a O or a
1. Every DvD trial included one numerical stimulus with digits to
the thousandths place (i.e., had three digits after the decimal; e.g.,
0.714) and the other included digits only to the hundredths place
(i.e., two digits after the decimal; e.g., 1.75). On half the trials, the
correct (larger value) decimal was the longer decimal (decimal
with three digits), and on the other half, the correct decimal value
was the shorter decimal (decimal with two digits), in order to make
decimal length (i.e., number of digits after the decimal point) not
a reliable indicator of which magnitude was larger. The Appendix
provides the full set of numerical stimuli.

All stimuli were made in 100-point Myriad Pro font (in Adobe
[lustrator) and were approximately 5 cm apart (from right edge of
the left stimulus to the left edge of the right stimulus), centered on
the screen. Fraction stimuli were approximately 3.5 cm wide X 5
cm high; decimal stimuli to the thousandths place were approxi-
mately 5.5 cm wide X 2 cm high; and decimal stimuli to the
hundredths place were approximately 4.25 cm wide X 2 cm high.

Reaction time (RT) was used as the primary dependent variable.
Only RTs from correct trials and those within three standard
deviations of the individual participant’s average RT on that no-
tation and WM condition were included.

Secondary tasks. During the dual-task blocks, participants
engaged in a secondary task at the same time as performing the
primary task.

Secondary visuospatial task. In the visuospatial dual-task
block, participants performed a secondary visuospatial task (while
performing the primary task) in order to tax visuospatial memory

+ 1000ms
L 2500ms
-
O 1000ms
1 l Until Response Selected
2
1000ms
In control condition l \In dual memory condition
[ [ L
e I
® |1 l
o | [ ]

Figure 1. The procedure for the verbal working memory (WM) conditions (left) and the visuospatial WM

conditions (right).
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resources. The secondary visuospatial task required participants to
remember visuospatial information on every trial. Participants
were presented with a 240.25-cm? 4 X 4 grid (made up of 16 3.75
cm X 3.75 cm squares). The grid was centered on the screen and
four of the locations on the grid contained a black circle (2.75 cm
in diameter, centered within the square on the grid).

In the dual-task block, on every trial, participants were in-
structed to remember the location of the four circles shown on the
grid while performing a numerical comparison. Although partici-
pants were told to remember the information on every trial, they
were only asked to recall this information on a random half of the
trials (in order to shorten the experiment length; as in Caviola et
al., 2012). On trials in which participants were asked to recall the
visuospatial information, after selecting their response to the nu-
merical comparison, participants were shown an empty 4 X 4 grid
and were instructed to click on the four locations in the grid (using
the computer mouse) in which they recalled there being a black
circle. After selecting the four locations, they pressed the up-arrow
key on the keyboard to submit their response and move on to the
next trial. On those trials in which they were not asked to recall the
location of the circles, participants were shown the same 4 X 4
grid (including the four circles) they had seen prior to the number
comparison. On these trials, they simply had to press the up-arrow
to move on to the next trial. Whether the participant had to recall
the grid stimulus or not was randomly determined on a trial-to-trial
basis, such that participants could not reliably pick and choose
when to remember the information and when not to remember.
Thus, in order to succeed in the task, they were required to
remember the grid on every trial. Accuracy on those trials in which
subjects were asked to recall the visuospatial information (in dual
blocks) was scored to ensure that participants actually remembered
the information during the dual-task conditions. Visuospatial WM
accuracy was measured as the number of trials in which the
participant indicated the correct location of at least three of the
four dots in the grid.

In the visuospatial control block, trials were identical to the
visuospatial dual-task block, except that participants were never
asked to recall the locations of the circles. That is, on every trial,
participants were shown a 4 X 4 grid with four circles before the
number comparison task, and were reshown the same 4 X 4 grid
after the number comparison task, and had to push the up-arrow to
move on to the next trial. Importantly, participants were told that
they did not need to remember the location of the circles on the
grid, thus making it irrelevant to the task (though identical to the
dual-task block in every other way).

None of the visuospatial memory stimuli were presented more
than once to each person, resulting in 48 (plus six practice)
different visuospatial stimuli. However, the same 24 numerical
comparison stimuli were used for both of the visuospatial blocks
(but were different than the verbal block numerical stimuli), and all
the visuospatial stimuli were randomly paired with their accom-
panying number comparison stimuli for each participant.

Secondary verbal task. In the verbal dual-task block, partici-
pants performed a secondary verbal task (while performing the
primary numerical comparison task) in order to tax verbal memory
resources. The secondary verbal task involved remembering verbal
information (as in Caviola et al., 2012). Participants were pre-
sented with four consonant letters from the English alphabet in a

random order centered on the screen (e.g., XQRT). The total
length of the four letters was approximately 12 cm X 3 cm.

The verbal dual-task block was identical to the visuospatial
dual-task block, except that on every trial, instead of a grid,
participants were shown four consonant letters (presented horizon-
tally) and were instructed to read them out loud and remember
them. Following the number comparison task, on half the trials,
participants were provided with an empty text box and instructed
to type in the four letters they saw previously, then press the
up-arrow to submit their response and move on to the next trial. On
the other half of the trials, participants were not asked to recall the
verbal information, but instead were reshown the same four letters
and just had to press the up-arrow to move on to the next trial.
Accuracy on those trials in which subjects were asked to recall the
verbal information was scored to ensure that participants remem-
bered the required information during the dual-task blocks. Verbal
WM accuracy was scored as the number of trials in which the
participant correctly recalled all four letters."

The verbal control block was perceptually and temporally iden-
tical to the half of the trials in the verbal dual-task block that did
not require the participant to recall the letters they had seen
previously. Thus, participants were instructed to read the four
letters aloud but not to remember them. After the number com-
parison task, participants were reshown the same four letters and
simply had to press the up-arrow to move on to the next trial.

None of the verbal memory stimuli were presented more than
once to each person, resulting in 48 (plus six practice) different
verbal stimuli. However, the same 24 numerical comparison stim-
uli were used for both of the verbal blocks (but were different than
the visuospatial block numerical stimuli), and all of the verbal
stimuli were randomly paired with the accompanying number
comparison stimuli for each participant.

Math assessments. Following the dual-task procedure, par-
ticipants completed math assessments given in two parts: rational
number arithmetic (involving both fractions and decimals) and
algebra, in that order. For all assessments, questions were pre-
sented one at a time on a computer screen, and participants were
given a paper workbook to do as much work as they needed and to
record their answers. The use of aid devices (e.g., calculators) was
not allowed. Participants were told they had as much time as they
needed, but to work as quickly as they could because they were
being timed (by the computer).

The fraction and decimal assessment consisted of eight decimal
arithmetic problems and eight fraction arithmetic problems, pre-
sented in two blocks with order counterbalanced (see the Appendix
for a full list of problems). There were two each of addition,
subtraction, division, and multiplication problems for each nota-
tion type. The fraction problems always contained four distinct
integers, meaning none of the problems contained a common
denominator or a common numerator. For the decimal problems,
one problem of each arithmetic type involved two decimal values
with the same number of digits (i.e., to the hundredths digit, e.g.,
0.48 + 0.56). The other problem within each arithmetic type

! Slightly different criteria were used for the visuospatial and verbal
blocks in order to approximately match accuracy between visuospatial
(average 91% correct as opposed to 79% when the same criteria were used)
and verbal (average 94% correct) working memory.
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involved two decimal values with a different number of digits
(e.g., 0.67 + 0.843).

The algebra assessment consisted of 12 problems adapted from
the Trends in International Mathematics and Science Study
(TIMSS) Grade Eight assessment (International Association for
the Evaluation of Educational Achievement [IEA], 2005, 2013).
The assessment involved a variety of problems involving solving
expressions, using values in an expression, and finding the relation
between values in a table or expressed in a word problem (see the
Appendix for a full list of problems). Importantly, correctly solv-
ing the algebra problems only required manipulation of whole
numbers (noninteger values were not included in this assessment).
Thus, although whole-number division was occasionally required
(e.g., 24/8 = 3), no knowledge of arithmetic or procedures asso-
ciated with fractions and decimals was required.

Two independent coders scored each of the math assessments to
determine accuracy (99% agreement on both assessments, with a
third coder resolving the disagreements), and the computer re-
corded completion time. Accuracy was fairly high on both the
algebra (M = 9.8 of 12) and rational number arithmetic assessment
(M = 12.6 of 16), with relatively low variability (e.g., 50% of
adults scored 10, 11, or 12 out of 12 on the algebra measure). Thus,
as our dependent measure, we used completion time as a measure
of fluency for both the rational number arithmetic and the algebra
measures. The internal reliability of the algebra assessment was
fairly good, with Cronbach’s alpha of 0.744 for this sample (based
on completion times).

Exclusion Criteria

WM dual task. As per Caviola et al. (2012; also see Conway
et al., 2005), participants were required to score above 60% on
both WM types to be included in the analyses in order to ensure
they had actually invoked WM during the task. Two participants
did not meet this criterion, and so their data were excluded from
analyses.

Magnitude comparison task. At the group level, participants
who scored below chance on the comparison task (n = 2) or who
had RTs greater than three standard deviations away from the
group RT performance (n = 2) were excluded. Only RTs from
trials in which participants provided the correct response to the
numerical comparison were included in analyses. Thus, data from
60 participants were included in analyses of the WM dual-task.

Math assessments. In order to make differences in comple-
tion time comparable across individuals (and to avoid issues of
speed/accuracy trade-offs), participants who performed worse than
50% correct on the math assessments were excluded from analyses
involving the math assessments (n = 3). Thus, data from 57
participants were included in analyses involving the assessments.

Results

Descriptive statistics for each task are presented in Table 1. On
all tasks, speed (response time [comparison task] or completion
time [assessments]) was used as the primary dependent variable as
a measure of fluency. Preliminary analyses suggest no significant
main or interaction effects involving gender, and therefore gender
was not included in any of the analyses.

Table 1

Means (SDs) for Time and Accuracy for Each Measure

Math assessments

Visuospatial WM

Verbal WM

Dual task Rational number

Control task

Dual task

Control task

arithmetic
fluency

Algebra

DvD DvF FvF DvD DvF FvF DvD DvF FvF DvD DvF fluency

FvF

693 (289)
80.3 (12.4)

1,029 (142) 1,263 (275) 1,491 (525) 1,156 (197) 1,433(505) 1,252(473) 1,080(194) 1,221(340) 1,333 (387) 1,164 (207) 1,364 (358) 571 (243)
95.6 (8.2) 96.0 (6.7) 98.3 (5.3) 92.7 (9.8) 98.1 (6.0) 82.5(12.5)

92.2(9.5)

1,277 (295)

Time

97.5 (5.0)

97.5 (6.4)

95.8 (8.2)

94.1 (8.4)

91.7 (8.5)

91.7 (8.9)

Accuracy

Times reported are response times (ms) for the working memory task and completion times (s) for the math assessments. Accuracy is reported as percent correct. WM = working memory;

Note.

Decimal vs. Decimal; FvF = Fraction vs. Fraction; DvF = Decimal vs. Fraction.

DvD
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RQ #1 and RQ #2: Interference Across Notation and
WM Type

In order to investigate RQ #1 and RQ #2, we were interested in
performance on the dual task to determine whether there were
differences in how the secondary WM tasks may have interfered
with performance on the primary task depending on the type of
WM (RQ #1: visuospatial or verbal) or the notation of the com-
parison (RQ #2: fractions, decimals, or both). Thus, we used a 2
(task: control vs. dual) X 2 (WM type: visuospatial vs. verbal) X
3 (notation: fraction, decimal, mixed) repeated measures ANOVA
on RT.

Consistent with previous research, there was a main effect of
task, F(1, 59) = 38.959, p < .001, n3 = 0.398, with the dual-tasks
(M 4y = 1,324 ms) taking longer than the control tasks (M, =
1,187 ms). However, task did not interact with WM type (p = .3,
M = 0.02), suggesting that, in general, there was no evidence of
a statistically significant difference in how much the secondary
task interfered with RT performance on the primary task across the
verbal and visuospatial conditions. Thus, in reference to RQ #1,
neither verbal nor visuospatial strategies appeared to dominate
over the other. In addition, there was a main effect of notation,
F(1.5,30.6) = 46.14, p < .001, ng = (.44, with average RT on the
DvD trials (1,107 ms) being significantly faster than performance
on the FVF (1,338 ms) or DvF (1,320 ms; follow-up f tests, ps <
0.001) trials, which did not significantly differ from each other.
However, analyses did not reveal a statistically significant three-
way interaction (Type X Notation X WM, p = .23, m; = 0.02).
Thus, in response to RQ #2, there is not statistically significant
evidence to suggest that the use of verbal or visuospatial memory
differed across the notations.?

There was a very small, marginal main effect of WM type, F(1,
59) = 3.44, p = .07, n} = 0.06, with responses in the verbal
conditions taking slightly more time (M, = 1,275 ms) than in
the visuospatial conditions (M,;,,, = 1,236 ms). WM also inter-
acted with notation, F(1.8, 107.3) = 11.5, p < .001, m; = 0.16,
such that the difference in response speed between DvD trials and
those trials involving fractions was greater in the verbal condition
Mpyp = 1,092 ms, Mg = 1,384 ms, M, = 1,348 ms) than in
the visuospatial condition (Mp,p, = 1,122 ms, Mg = 1,292 ms,
Mp.: = 1,293 ms). However, none of these variables interacted
with task type (Task X Notation, p = .14, ng = 0.03; Task X
Notation X WM, p = .23, n3 = 0.02). Although this pattern may
suggest some differences in performance when adults were pre-
sented with verbal or visuospatial information during the magni-
tude comparison task, the critical comparison in our design in-
volved differences between the control and dual-task blocks (i.e.,
when the verbal/visuospatial information is relevant to the task or
not). Therefore, any differences between verbal and visuospatial
tasks overall (collapsing across control and dual-task tasks) may be
because of perceptual distractions that are not likely related to
direct memory effects, making it difficult to interpret these per-
formance differences as meaningful within the current study.

RQ #3: Differences Across Individual Differences in
Algebra Fluency

In addition to looking at overall performance on the dual task,
we were interested in whether strategy use with rational number

magnitudes differed between individuals who were highly profi-
cient in algebra and those who were less proficient, controlling for
general math ability. Thus, we divided participants into two groups
based on a median split of completion times on the algebra
assessment (median completion time = 539 s, range = 252 s to
1,525 s) to create groups that differed in their algebra fluency. We
then conducted a 2 (task: control vs. dual) X 2 (WM: visuospatial
vs. verbal) X 2 (algebra fluency: high fluency [N = 28] vs. low
fluency [N = 29]) mixed measures ANCOVA on RT on the
rational number comparison task, including rational number arith-
metic completion time as a covariate (see Figure 2). Because
notation did not interact with WM interference in the previous
analysis, it was not included as a factor in these analyses. Because
completion time on the algebra assessment could assess both
general mathematical skills as well as skills specific to algebraic
reasoning, completion times on the rational number arithmetic
assessment were included as a covariate to allow us to investigate
the relationship to algebra ability specifically and not more general
math or rational number ability.

In this secondary ANCOVA, which included algebra ability as
a factor (and controlled for rational number arithmetic ability), we
did not find an overall effect of task (p = .7, m3 = 0.003), WM
(p = .19, m3 = 0.03) or an overall Task X WM interaction (p =
.6, 3 = 0.004). The rational number arithmetic fluency covariate
was related to task type (p = .04, 3 = 0.08), with follow-up
analyses suggesting that slower arithmetic performance was pos-
itively correlated with overall levels of WM interference (i.e.,
difference between control and dual-tasks, r[57] = 0.3, p = .03),
indicating that people with higher rational number arithmetic abil-
ity were less impacted by the secondary WM task when engaging
in rational number comparisons. The rational number arithmetic
covariate did not interact with algebra fluency (ps > 0.1).

Critically, however, addressing RQ #3, the pattern of WM
interference did interact with algebra fluency, suggesting distinct
strategy use across those with relatively high versus low algebra
fluency. Specifically, there was a WM X Task X Algebra Fluency
interaction, F(1, 54) = 4.76, p = .03, ng = 0.08).

A follow up WM X Task ANOVA on higher algebra fluency
(N = 28) individuals revealed that those with high algebra fluency
showed a statistically significant task effect (p < .001, m3 = 0.3,
with longer RTs on the dual conditions (M = 1,233 ms) than on the
control conditions (M = 1,109 ms). However, the task type did not
interact with WM type (p = .16, m3 = 0.07), suggesting that data
from people with higher algebra fluency showed no evidence of
differential involvement of verbal and visuospatial resources, and
thus these individuals may have used both verbal and visuospatial
strategies approximately equally. On the other hand, when looking
at the data from those with lower algebra fluency (2 X 2 ANOVA;
N = 29), there was a main effect of task (p < .001, n,% = 0.43) as
well as a statistically significant Task X WM interaction (p < .05,
M; = 0.14). Specifically, data from participants in the low algebra
fluency group only revealed a statistically significant interference
effect in the verbal WM condition (M = 1,257 ms, Mp,, =

ontrol

2 Analyses involving the notation factor showed evidence of heteroge-
neity among the variances of the differences between possible pairs of
levels of notation, and thus required a correction for sphericity. Thus, the
Huynh-Feldt correction was used (although the correction did not change
the statistical significance of any of the results).
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Figure 2. Reaction times on the magnitude comparison task across all
notations (Fraction vs. Fraction [FvF], Decimal vs. Decimal [DvD], Dec-
imal vs. Fraction [DvF], separated by working memory type (verbal vs.
visuospatial) and interference (dual memory vs. no memory control).
Individuals with high algebra fluency showed significant interference by
both verbal and visuospatial working memory (WM; slower Reaction time
[RT] in the dual relative to the control), whereas individuals with low
algebra fluency showed interference only by verbal WM and not visuospa-
tial WM.

1,501 ms; paired ¢ test, p < .001) and not in the visuospatial
condition (M, = 1,266ms, Mp,,; = 1,293 ms; paired ¢ test,
p = .0).

ontrol ual

Discussion

The current study used a dual-task paradigm to address adults’
dominant strategy use during a rational number magnitude com-
parison task. We then explored the relationship between algebra
ability and the differential engagement of distinct WM resources.
Data revealed that, on average, adults tended to engage both verbal
and visuospatial WM for both fraction and decimal comparison
tasks. However, this pattern differed between individuals with
higher and lower levels of algebra fluency.

Rational Number Notation

Although differences in the speed of processing distinct notation
were found—such that decimal magnitudes were accessed signif-
icantly faster than those presented in fraction notation (as found in
DeWolf et al., 2014; Hurst & Cordes, 2016a)—the use of visu-

ospatial and verbal WM strategies did not vary as a function of
notation type. Thus, we did not find evidence that the type of WM
resources required to perform the task differed, on average, be-
tween fraction and decimal notation. Rather, adults seemed to use
strategies that similarly relied upon verbal and visuospatial WM
resources for both decimal and fraction notation and/or there was
substantial individual variability in preferred strategy choice such
that a dominant preference did not emerge. This is particularly
striking given notable differences in structure between the two
notations, claims that decimal notation is much more similar to
whole number notation compared with fraction notation (e.g.,
Johnson, 1956), and findings that decimal magnitudes are more
easily accessed than fraction magnitudes (the current study; De-
Wolf et al., 2014; Hurst & Cordes, 2016a). Despite these noted
differences, results of our task did not reveal a distinction in the
kinds of resources (visuospatial and verbal WM) recruited for
fraction and decimal notation, suggesting that individuals may use
similar types of strategies for both notations.

Although WM involvement differences across fractions and
decimals were not obtained, the patterns of WM involvement when
processing rational numbers found in the current study point to a
potential distinction between whole numbers and non-whole-
number rational numbers. Whereas both visuospatial and verbal
WM were equally implicated when decimal and fraction magni-
tudes were judged, previous research suggests that magnitude
judgments of whole numbers rely primarily on visuospatial re-
sources suggesting that whole number magnitudes are spatially
encoded (e.g., Simmons et al., 2011; van Dijck, Gevers, & Fias,
2009). Thus, despite parallels between decimal notation and whole
number notation (Johnson, 1956), and despite evidence suggesting
that all rational numbers (fractions, decimals, and whole numbers)
are represented as falling along an integrated mental continuum in
adults (Hurst & Cordes, 2016a), our data indicate that rational
number magnitude processing may not perfectly parallel that of
whole numbers. Instead, the involvement of verbal WM when
processing decimal and fraction magnitudes indicates a role for
symbolic calculation when adults process (nonwhole number) ra-
tional number magnitudes.

These findings shed light on cognitive models of rational num-
ber magnitude processing, suggesting that adults process rational
number magnitudes more similarly to mental arithmetic (requiring
both verbal and visuospatial WM resources) than to whole-number
magnitudes (which likely require visuospatial resources and lim-
ited verbal resources). However, an interesting open question is
how this pattern may change across development as a function of
education. Research on WM recruitment during mental arithmetic
tasks indicate a developmental trend such that children first rely
primarily on visuospatial strategies, and then with greater experi-
ence, they use a mix of both visuospatial and verbal resources
(e.g., McKenzie, Bull, & Gray, 2003; Raghubar et al., 2010). A
similar developmental pattern may be found for fraction and
decimal magnitude judgments as well. On the other hand, given
how notoriously difficult rational number concepts are for children
to acquire, coupled with the common whole number bias errors
children show (e.g., treating fractions as two whole numbers as
opposed to a coherent unit; Ni & Zhou, 2005), we may expect to
see a reverse pattern of development in which children first learn-
ing rational numbers may initially show a greater reliance upon
computational (verbal based) strategies when accessing rational
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number magnitudes, with a later emerging reliance upon a mix of
strategies. In fact, our finding that low algebra fluency adults relied
primarily upon verbal strategies indicates that verbal strategies
may be associated with low expertise in rational numbers and/or
math ability more generally, consistent with the idea that children
might initially have a primary reliance on verbal strategies.

Individual Differences in the Use of WM Resources

Results revealed that it was those adults with higher algebra
fluency that were impacted by both verbal and visuospatial WM
interference, but those with lower algebra fluency were only im-
pacted by verbal WM interference. Although we did not directly
measure the strategies employed by individual participants, assess-
ing adults’ reliance upon distinct WM resources allowed us to
address the general kinds of strategies that may have been engaged
during the rational number comparison task. In particular, the
current findings suggest that those individuals who were relatively
more fluent in algebra engaged both visuospatial-based strategies
(i.e., reliance on the visuospatial sketchpad) and verbal strategies.
However, lower algebra fluency was associated with the engage-
ment of primarily verbal-based strategies (i.e., reliance on the
phonological loop, but not the visuospatial sketchpad).

Given previous work looking at WM resource use during mental
arithmetic, verbal WM interference in the current study is thought
to be indicative of computational strategies requiring the memory
of operands and/or interim solutions (see DeStefano & LeFevre,
2004). The use of verbal strategies, without also engaging visual-
ization strategies (as was the case with low algebra individuals),
may be particularly indicative of calculation or verbal rule-based
strategies that do not also involve visualizing the magnitude or
using complex calculations that involve mentally manipulating
digits/components (which would involve both visuospatial and
verbal WM). For example, these adults may have made compari-
sons based on component parts (i.e., numerators and denominators;
tenths and thousandths place), converted fractions into decimals,
or executed other verbal, calculation-based strategies. Importantly,
however, our findings suggest that it is not simply the use of verbal
WM during a rational number task that is associated with poor
algebra fluency (because those with higher algebra fluency also
engaged verbal resources), but rather a higher reliance on verbal
WM with little reliance on visuospatial WM. This suggests that the
engagement of particular kinds of strategies that rely primarily on
verbal WM and not on visuospatial WM may be a critical predictor
of poorer understanding of algebra. Those individuals, in the
current study, who opted to use such computational strategies
without also engaging visualization strategies likely have a poor
understanding of how rational number symbols (in either decimal
or fraction notation) translate to analog numerical magnitudes—a
skill that may be important for success in algebra.

Individuals with high fluency, on the other hand, may have
relied upon both visuospatial resources and verbal resources to
process rational number magnitudes. The specific role of visuospa-
tial WM is less clearly understood (relative to verbal WM) in the
domain of mathematics. However, visuospatial WM has been
implicated in visualization, such as in complex mental arithmetic
that requires spatial movement (e.g., “carrying” in arithmetic;
Raghubar et al., 2010). Thus, in the context of rational number
processing, visuospatial and verbal WM engagement may be found

when visualizing a proportional model (such as a pie chart or
number line) or complex visual arithmetic (e.g., cross-multiplying,
a strategy that presumably requires retaining verbal and spatial
information).

Regardless, our data suggest that relying on both verbal and
visuospatial strategies may be indicative of higher level conceptual
processing. As such, this finding provides support for current
policy recommendations that rational number instruction should
highlight visuospatial representations of rational numbers as mag-
nitudes (National Governors Association for Best Practices &
Council of Chief of State School Officers, 2010; National Math-
ematics Advisory Panel, 2008). For example, one common recom-
mendation is to emphasize the spatial organization of rational
numbers along a number line, a recommendation drawn from other
studies revealing training with number lines can be a successful
intervention for understanding whole number magnitudes (Siegler
& Ramani, 2009). Extending these recommendations, our results
emphasize the importance of encouraging people to use strategies
that incorporate both symbolic representations (requiring verbal
resources) and visuospatial representations for thinking about ra-
tional number magnitudes. Although our findings cannot pinpoint
exactly which strategies or representations adults in the high
algebra fluency group engaged (e.g., pie charts, part—whole repre-
sentations, number lines, discrete objects, complex visual arithme-
tic), they highlight the importance of engaging both visuospatial
and verbal representations when thinking about rational numbers,
rather than relying on exclusively verbal, calculation-based strat-
egies and representations. As such, it may be that including many
representations in the classroom may lead to a greater chance of
the individual incorporating both visuospatial and verbal strate-
gies. Future research should investigate which representations are
most likely to be employed by mathematically fluent adults during
rational number processing and, in addition, whether promoting
particular visual representations in the classroom can lead to more
efficient processing of rational numbers. Results of these studies
will have implications both for understanding the cognitive pro-
cesses underlying rational number processing, while also having
important implications for educational practices.

Specificity to Algebra Fluency

Importantly, because rational number arithmetic fluency was
entered as a covariate in our analysis, this pattern of WM resource
use is not simply indicative of the speed of mathematical process-
ing more generally. Rational number arithmetic fluency did predict
the overall level of interference, suggesting that math fluency may
be related to overall WM use. This is consistent with work sug-
gesting that WM is involved in many areas of mathematics, in-
cluding fraction conceptual knowledge and procedural ability (e.g.,
De Smedt, Verschaffel, & Conway et al., 2009; Geary, 2011;
Jordan et al., 2013; Vukovic et al., 2014). Moreover, evidence
suggests that as people gain practice with an activity, they require
fewer WM resources to complete the activity (Gevins, Smith,
McEvoy, & Yu, 1997; Jonides, 2004). Thus, those individuals who
were most impacted in our dual-task (revealing the greatest
amount of interference) were likely less practiced or fluent in
rational number magnitude processing, suggesting that some as-
pect of our results may stem from overall differences in expertise.
However, differences in the pattern of resource use (across verbal
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and visuospatial WM) for those with differing levels of algebra
fluency emerged even when controlling for performance on our
rational number arithmetic assessment, indicating a specific rela-
tionship between rational number magnitude processing and alge-
bra proficiency. That is, findings involving differences between
individuals with relatively high and low algebra fluency do not
reflect overall differences in cognitive or mathematical ability
(which should be implicated about equally for Grade 8 algebra and
rational number arithmetic), but rather are indicative of specific
links between the processing of rational number magnitudes and
algebra performance.

Limitations

There are some aspects of the current design that are worth
noting. First, contrary to predictions, we did not find differ-
ences across rational number notation. One possibility is that
the differences across notation are very small and that the
current study did not have sufficient power to evaluate the
three-way interaction required to see differences across notation
within the current design. Alternatively, it may be that notation
differences were not obtained due to our experimental design.
The different notation trial types (FvF, DvD, and DvF) were
intermixed within the same block, which may have impacted
the types of strategies adults engaged in between notations. It is
possible that if these distinct trial types were presented in
separate blocks (i.e., all FvF trials were presented in a single
block), then participants may have been more likely to settle
upon a single strategy for working with the notation presented
within that block of trials. If so, then notational differences may
arise in contexts in which specific notations are consistent.
Regardless, investigating differences across notation remains an
open question for future research.

Additionally, although the current study used a variety of stimuli
to investigate general processing of fraction and decimal magni-
tudes, it may be that the same strategies are not consistently used
even within the same notation. For example, values on opposite
sides of common bench marks, like 0.5 (or [1/2]) or 1, may lead to
different strategies than comparing values on the same side of a
common bench mark. In addition, there are several other
component-based strategies (e.g., serially comparing decimals
based on place value or comparing fractions based on numerators
alone), heuristic-based strategies (e.g., choosing the longest deci-
mal as the largest3), and format differences (e.g., vertical vs.
horizontal alignment; presenting numbers one at a time instead of
simultaneously) that may impact the kinds of strategies and re-
sources that adults tend to engage. Because our study was not
designed to specifically explore these issues, it was not possible to
isolate the effects of these manipulations in our data, though this
may be a topic for future research.

Lastly, our control task was designed in order to be perceptually
and temporally identical to the dual task, and thus included verbal
or visuospatial information between trials. Although adults were
specifically instructed not to do so, it is possible that adults
engaged some memory resources during the control task (i.e., there
may be carry over effects between blocks). Importantly, however,
our analyses do reveal significantly more interference during the
dual tasks than the control tasks, making it unlikely that this
greatly impacted our results.*

The Format of the Relationship

The current study leaves open the question of whether a causal
relationship exists between the use of visuospatial strategies and
algebra abilities. Given that children are taught rational number
concepts prior to algebra, it may be that engaging complex visu-
ospatial and verbal strategies when learning rational numbers may
promote learning in more advanced math domains such as algebra.
For example, representing rational numbers as holistic magnitudes
(which would require symbolic and visuospatial strategies and not
just verbal calculations) may be indicative of a more direct repre-
sentation of the rational number system which algebra notation and
manipulation is built (e.g., variables, unknown values, values
along a line or curve). On the other hand, however, it may be that
the learning of algebraic concepts can provide individuals with
additional tools or strategies needed to engage both verbal and
visuospatial strategies when processing rational numbers. For ex-
ample, proficiency with algebraic manipulation (across both sides
of an equation) may promote the use of visualization strategies
when processing rational numbers as well. Lastly, it may be that
visuospatial rational number strategies and high algebra ability are
both associated with a third, general variable, such as visuospatial
WM capacity or a general tendency toward abstract thinking. The
correlational design of our study does not allow for a disentangle-
ment of these accounts of mathematical learning. Therefore, future
research should investigate this issue of causal direction in the
relation between rational number processing strategies and algebra
across various educational levels in order to better understand how
these patterns may change across various stages in education and
in young children whose WM capacities may not be at an adult
level.

Conclusions

In sum, the current study used a dual-task WM paradigm to
investigate individual differences in WM recruitment (verbal and
visuospatial) during a rational number magnitude comparison task
between individuals with relatively high and low algebra fluency.
On average, adults were equally likely to engage visuospatial and
verbal strategies when assessing the relative magnitudes of both
decimals and fractions. Interestingly, however, individual variabil-
ity in these strategies was associated with algebraic performance.
Although individuals with relatively high algebra fluency relied on
both verbal and visuospatial WM, individuals with relatively low
algebra fluency relied more heavily on verbal WM to engage with
rational numbers in both fraction and decimal notation. Thus, the
use of strategies that involve both verbal and visuospatial re-
sources (i.e., complex computations; visualization involving sym-
bols) was associated with higher algebra performance, whereas
using simple calculations or verbal rule-based strategies was as-

3 In our study, 50% of trials were consistent with decimal length (mean-
ing, longer decimal was the largest decimal), whereas 50% were inconsis-
tent with length. In line with other work, there was an overall difference in
performance, with inconsistent trials taking significantly longer than con-
sistent trials (p < 0.001).

4 Moreover, when we analyze each participant’s first block only as a
between-subject design, we get the same pattern of results involving WM
interference and differences across algebra ability (although with much
smaller sample sizes per cell).
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sociated with lower algebra performance. These results add to the
growing literature investigating the relationship between algebra
ability and rational number understanding (e.g., Bailey et al., 2012;
Hurst & Cordes, 2016b; Siegler et al., 2012), and further clarify the
relationship by suggesting that individual differences in algebra
ability may be associated with the use of different kinds of
resource-based strategies in a rational number magnitude task.
Additionally, results provide strong support for current recommen-
dations to incorporate more visuospatial representations of rational
number magnitudes, alongside symbolic representations, in the
classroom (National Governors Association for Best Practices &
Council of Chief of State School Officers, 2010; National Math-
ematics Advisory Panel, 2008), as the engagement of both verbal
and visuospatial strategies was associated with advanced mathe-
matical proficiency.
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Appendix

Stimuli and Measures

Complete List of Magnitude Comparison Task Stimuli

FvF DvD DvF
3/2 vs 517 15 vs .168 3/2 vs 714
4/3 vs 5/9 196 vs .22 4/3 vs .56
75 vs 2/3 67 vs .594 75 vs .67
714 vs 5/8 835 vs .74 1.75 vs 5/8
Verbal blocks 6/5 vs 4/9 987 vs 1.12 1.201 vs 4/9
3/5 vs 2/7 1.115 vs .99 3/5 vs 286
2/5vs 1/6 1.49 vs 1.687 391 vs 1/6
213 vs 1/4 1.54 vs 1.368 67 vs 1/4
8/5 vs 2/3 24 vs 256 8/5 vs .667
9/5 vs 6/7 .33 vs .293 9/5 vs .86
716 vs 5/9 534 vs 47 1.19 vs 5/9
Visuospatial blocks 6/5 vs 3/7 639 vs .72 1.193 3/7
8/5 vs 4/7 98 vs 1.124 8/5 vs .57
5/6 vs 3/8 1.075 vs 1.21 83 vs 3/8
49 vs 1/5 1.08 vs .948 456 vs 1/5
2/5vs 117 1.493 vs 1.32 2/5 vs .143

Complete List of Rational Number Arithmetic Questions
(8 Fraction and 8 Decimal)

Decimal Arithmetic Questions

05 + 0.13 1.27+0.89 0.36 —0.12 1.74 —1.321
0.63+0.12 1.452+0.480.456 X032 1.75X0.21

Fraction Arithmetic Questions
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Complete List of the 12 Algebra Questions

Question:
There are two pipes. The first pipe is x meters long. The second pipe is y times as long as the first
one. How long is the second pipe?

Question:

In Zedland, total shipping charges to ship an item are given by the equation y = 4x + 30 where
x is the weight in grams and y is the cost in zeds. If you have 150 zeds, how many grams can you
ship?

Question:

Simplify the expression 2(x + y) — (2x — y)

Question:

Give two points on the line y = x + 2

Question:
Simplify the expression 2a*X3a

(Appendix continues)
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Question:

The table below shows a relation between x and y

What is the relation between x and y?
Appendix (follows the sentence “The table below shows a relation between x and y” and before
“What is the relation between x and y?”).

x 1 2 3 4 5
y 1 3 5 7 9

Question: 3(2x — 1) + 2x = 21 What is the value of x?

Question:
The number of jackets that Haley has is 3 more than the number Anna has. If n is the number of
jackets Haley has, how many jackets does Anna have in terms of n?

Question:
a =3 and b = —1 What is the value of 2a + 3(2 — b) ?

Question:
Joe knows that a pen costs 1 zed more than a pencil. His friend bought 2 pens and 3 pencils for
17 zeds. How many zeds will Joe need to buy 1 pen and 2 pencils?

Question:

Simplify the expression 4x — x + 7y — 2y
Question:

If % > 8 then what does x equal?
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