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Abstract

Based on Wardrop’s first principle, the perfectly rational dynamic user equilibrium is
widely used to study dynamic traffic assignment problems. However, due to imperfect travel
information and a certain “inertia” in decision-making, the boundedly rational dynamic user
equilibrium is more suitable to describe realistic travel behavior. In this study, we consider the
simultaneous departure time and route choice problem incorporating the concept of bounded
rationality. The continuum modeling approach is applied, in which the road network within
the modeling region is assumed to be sufficiently dense and can be viewed as a continuum.
We describe the traffic flow with the reactive dynamic continuum user equilibrium model and
formulate the boundedly rational simultaneous departure time and route choice problem as a
variational inequality problem. We prove the existence of the solution to our boundedly ra-
tional reactive dynamic continuum user equilibrium model under particular assumptions and
provide an intuitive and graphical illustration to demonstrate the non-uniqueness of the solu-
tion. Numerical examples are conducted to demonstrate the characteristics of this model and
the non-uniqueness of the solution.

Key Words: dynamic continuum user equilibrium, bounded rationality, simultaneous de-
parture time and route choice, existence, uniqueness

1 Introduction

Since the pioneering work of Merchant (1978a,b), the problem of dynamic traffic assign-

ment (DTA) has received much attention. The two fundamental components of DTA are the

traffic flow component and the travel choice principle (Szeto and Lo, 2006). The traffic flow

component describes the propagation of the traffic flow in the traffic system. The travel choice

principle describes the traveler’s propensity to travel, in which three major problems are con-

sidered: the route choice, the departure time choice and the simultaneous departure time and
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route choice (SDTRC). Based on different travel choice principles, the DTA problem can gen-

erally be classified into two categories: dynamic system optimal problems and dynamic user

equilibrium (DUE) problems. In dynamic system optimal problems, all travelers in the traffic

system cooperate and make their travel choices to minimize the total travel cost of the system.

In DUE problems, if any two travelers have the same departure time, origin and destination,

their travel costs should be equal and minimized. The Wardrop user equilibrium (Wardrop,

1952) is a commonly used travel choice principle that was originally proposed to study the

static traffic assignment (STA) problem and then extended to the DTA problem.

In classical DUE problems, travelers make their travel choices in a perfectly rational way.

However, many surveys and experiments (Nakayama, 2001; Zhu, 2010) show that people do

not usually choose the least costly route or departure time due to the lack of perfect travel

information and inability to obtain the optimal decision in a complex situation. Thus, the

perfectly rational DUE is not entirely in line with real-life driving behavior and empirical

observation, and therefore does not accurately describe realistic traffic flow.

Bounded rationality was developed to relax perfect rationality. The concept was first pro-

posed by Simon Simon (1957) to describe people when making a choice, and has subsequently

become widely used in economics and psychology. Mahmassani and Chang (1987) were the

first to use bounded rationality to describe travel behavior in the STA problem. In their study,

they defined an indifference band that consists of a range of acceptable travel costs and estab-

lished a boundedly rational user equilibrium (BR-UE) model. Since then, bounded rationality

has been gradually incorporated into various static traffic problems, and many different BR-UE

models for STA problems have been derived. For example, Sivak (2002) studied traffic safety

by incorporating the concept of bounded rationality. Han and Timmermans (2006) studied

traveler choice behavior under uncertainty and bounded rationality. Luo et al. (2010) inves-

tigated congestion pricing strategies in static networks under boundedly rational route choice

behavior. Di et al. (2013) formulated the BR-UE problem as a nonlinear complementary prob-

lem and constructed a solution set on a traffic network with fixed demand.
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The concept of bounded rationality has also been widely used in DTA problems in recent

decades. In the early studies, bounded rationality was simulated in laboratory experiments.

However, these studies were imprecise due to the lack of a complete mathematical model.

Later, Ridwan (2004) tried to apply the theory of fuzzy systems to the study of bounded ra-

tionality. Szeto and Lo (2006) proposed a mathematical model for route-choice boundedly ra-

tional dynamic user equilibrium (BR-DUE). Ge and Zhou (2012) considered the route-choice

BR-DUE model with endogenously determined tolerances by allowing the width of the indif-

ference band to depend on time and the actual path departure rates. Han et al. (2015) analyzed

the simultaneous route-and-departure-time BR-DUE, and made significant contributions to

the model formulation, analysis of existence, solution characterization and heuristic numer-

ical computation of such problems. Di and Liu (2016) provided a comprehensive survey of

the models of boundedly rational route choice behavior. They divided these models into two

categories: substantive boundedly rational models (Di et al., 2013; Han et al., 2015) and pro-

cedural boundedly rational models (Zhu, 2010; Gao et al., 2011). Guo et al. (2018) considered

the day-to-day departure time choice under bounded rationality in a bottleneck model. Yu et

al. (2020) presented a double day-to-day DTA model with simultaneous route-and-departure-

time choices while incorporating incomplete and imperfect information as well as bounded

rationality.

The two main modeling approaches for solving DUE problems are discrete and continuum

modeling. Both approaches have been extensively explored in the literature and applied to

various types of problems. The conventional discrete modeling approach is more suitable for

detailed transportation network management and analysis problems. In this approach, travel

demands are concentrated at zone centroids and connected to road links, which are modeled

separately (Sheffi, 1985). In contrast, the continuum approach assumes that the transportation

system is very dense. Thus, the characteristics or transportation variables, such as traffic den-

sity, travel demand and local travel costs, are assumed to be continuous and can be described

using smooth mathematical functions (Vaughan, 1987). The continuum modeling approach
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has several benefits over the discrete modeling approach (Blumenfeld, 1977; Du et al., 2013;

Ho and Wong, 2007). First, it reduces the problem size when modeling a dense transportation

network because it approximates the region as a continuum instead of modeling each link or

node. Second, because it is not necessary to define each link/node in the modeled region, less

data is required for model building, so the continuum approach is more suitable for initial-

stage planning when data availability is typically limited. Third, because no links or nodes are

considered, the continuum modeling approach is more focused on the trends and patterns that

lead to a better understanding of various global characteristics of the modeling region, such as

travel demand, land development intensity and travel cost.

For perfectly rational DUE problems, many models have been formulated based on the con-

tinuum approach. These models can be divided in to two main types. The reactive dynamic

continuum user equilibrium (RDUE) model assumes that travelers always choose routes to

minimize their instantaneous travel cost according to instantaneous traffic information (Hughes,

2002; Huang et al., 2009; Yang et al., 2019). In contrast, the predictive dynamic continuum

user equilibrium (PDUE) model assumes that travelers have perfect information about the

modeled domain and can predict future traffic information, and thus they choose the route that

minimizes the actual travel cost (Hoogendoorn and Bovy, 2004; Du et al., 2013; Yang et al.,

2022).

To date, the continuum modeling approach has not been used to study the BR-DUE prob-

lem. In this study, we use the continuum modeling approach to study the boundedly rational

simultaneous departure time and route choice reactive dynamic continuum user equilibrium

(BR-SDTRC-RDUE-C) problem and formulate the related BR-SDTRC-RDUE-C model. We

consider bounded rationality in the departure time choice and incorporate the reactive dynamic

continuum user equilibrium (RDUE-C) model to describe the traffic flow. The density of trav-

elers is governed by a conservation law, and the travel direction (route choice) is computed by

solving an eikonal equation. We first give the mathematical definition of the BR-DUE principle

and formulate an equivalent variational inequality. We then provide a mathematical analysis
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of the existence and uniqueness of the solution to our model. The existence of the solution

can be proved under particular conditions, although the uniqueness does not always hold. Fi-

nally, numerical examples are presented to demonstrate the characteristics of this model and

the non-uniqueness of the solution.

This study makes two contributions. First, as far as we know, this is the first attempt in the

literature to use the continuum modeling approach to study the BR-DUE problem and establish

a related BR-DUE model. Second, we theoretically analyze the existence and uniqueness of

the solution to the BR-SDTRC-RDUE-C model. We show that the solution depends on the

distribution of the “indifference band.”

The rest of this paper is organized as follows. Section 2 gives the formulation of the BR-

SDTRC-DUE-C model. Section 3 considers the existence and uniqueness of the solution to

the model. The solution algorithms are introduced in Section 4. Section 5 presents numerical

examples to demonstrate the characteristics of the model and the solution. Finally, Section 6

presents our conclusions.

2 Model formulations

In this section, we describe the formulation of our model. Recall that there are two fun-

damental components of DTA, the traffic flow component and the travel choice principle. We

introduce the formulation of the first component in Section 2.1. For travel choices, we first

fix the departure time temporarily and consider the travel route choice in Section 2.2. Then,

the concept of bounded rationality is considered in the departure time choice, and the BR-

SDTRC-DUE-C problem is discussed and proved in Sections 2.3 and 2.4. The complete DTA

model is concluded in Section 2.5.

For the convenience of readers, Table 1 lists the notations frequently used in the paper.
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Table 1: List of notations
Notations
Ω modeling region O origin area
D destination area Γc boundary of D
Γi boundary of Ω [0,T ] modeling time interval
ρ density of travelers f flow vector
v velocity vector U speed
q travel demand Q total travel demand
ϕ the instantaneous travel cost c local travel cost
I travel time p schedule delay cost
l instantaneous total cost ϵ tolerance
ϕa actual travel cost la actual total cost
Φ accumulated instantaneous

travel cost
Ψ accumulated instantaneous

total cost
Φa accumulated actual travel

cost
Ψa accumulated actual total cost

2.1 Traffic flow models

We consider a two-dimensional modeling region with a highly dense road network, such as

an urban city. Using the continuum modeling approach, we approximate the modeling region

as a continuum Ω ⊂ R2 and assume that travelers can move freely within it. Let O ⊂ Ω be the

origin area and D ⊂ Ω be the destination area. Both O and D are assumed to be closed sets,

and travelers can use any point in O/D to enter/exit the modeling region Ω. Let Γi be the outer

boundary of Ω and Γc be the boundary of D.

We denote the density of travelers at the location (x, y) ∈ Ω and at time t ∈ [0,T ] as

ρ(x, y, t), where [0,T ] is the modeling time interval. Similar to the mass conservation law

in fluid dynamics, the density can be governed dynamically by the following conservation

equation:

ρt(x, y, t) + ∇ · f (x, y, t) = q(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0,T ]. (1)

Here f (x, y, t) =
(
f1(x, y, t), f2(x, y, t)

)
is the flow vector at location (x, y) at time t where

f1(x, y, t) and f2(x, y, t) are the flow fluxes in x and y directions, respectively. This flow vector

is defined:

f (x, y, t) = ρ(x, y, t)v(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0,T ]. (2)
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where v =
(
u1(x, y, t), u2(x, y, t)

)
is the velocity vector at location (x, y) at time t and u1(x, y, t)

and u2(x, y, t) are the speeds in the x and y directions, respectively. We denote the speed along

v at location (x, y) at time t as U(x, y, t), which is the norm of the velocity vector, i.e.,

U(x, y, t) = |v(x, y, t)|.

Thus, the corresponding flow intensity is defined as |f | = ρU. In this paper, we assume that the

speed U depends on the density ρ and can be computed by a given speed-density relationship.

On the right-hand side of (1), q(x, y, t) is the travel demand at location (x, y) and at time t,

which is a time-varying non-negative square-integrable function of Ω × [0,T ]. We denote the

total travel demand at any location (x, y) as Q(x, y), and thus∫ T

0
q(x, y, t)dt = Q(x, y). (3)

In this study, we assume that the total travel demand Q(x, y) at any location (x, y) is fixed and

given. However, as travelers may have different departure time choices, the corresponding

function q(x, y, t) is variable. We denote q = {q(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0,T ]}. Because the

basics assumption (3) should be satisfied, we denote the feasible set of the travel demand q as

Λ =

{
q ∈ L2(Ω × [0,T ]) : q(x, y, t) ≥ 0,

∫ T

0
q(x, y, t)dt = Q(x, y), ∀(x, y) ∈ Ω

}
. (4)

To update the density dynamically according to equation (1), the following two travel

choices need to be specified:

1. Construct a suitable route-choice strategy to choose the moving direction of v(x, y, t).

Then the flux f (x, y, t) can be determined.

2. Choose the departure time and thus determine q ∈ Λ.

It is obvious that these two travel choices influence each other. In the next sections, we intro-

duce the simultaneous departure time and route choice step by step.
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2.2 Travel route choices

In this subsection, we assume for the moment that the traveler’s departure time is deter-

ministic, i.e., the traffic demand q is given, and consider the route-choice strategies. When the

given q changes, the route choice changes accordingly. We briefly review the formulation of

the RDUE-C model (Huang et al., 2009; Yang et al., 2019).

When making route choices, travelers consider the travel cost and try to minimize it. We

denote the travel cost potential incurred by a traveler who departs from (x, y) at time t to travel

to destination D using the constructed path-choice strategy ϕ(x, y, t). In RDUE-C models,

travelers always choose routes to minimize their instantaneous travel cost and change moving

directions in a reactive manner. Here the travel cost ϕ is defined as the instantaneous travel

cost and can be computed by the following eikonal equation:

|∇ϕ(x, y, t)| = c(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0,T ], (5)

where c(x, y, t) is the local travel cost per unit distance of travel at location (x, y) at time t,

which may depend on the traffic conditions ρ or the preferences of travelers. According to Du

et al. (2013), the related actual travel cost, denoted as ψ, can be computed by the following

time-dependent Hamilton-Jacobi (HJ) equation:

1
U(x, y, t)

(ϕa)t(x, y, t) − (ϕa)xu1 + (ϕa)yu2 = −c(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0,T ]. (6)

Notice that both U and c may depend on the density ρ, and equations (5)/(6) should be solved

together with equation (1). Hence, the travel cost ϕ also depends on the departure time choice

q, and the rigorous formula should be ϕ = ϕ(x, y, t, q). However, to simplify the notations, we

omit the term q in ϕ(x, y, t, q). The same rule applies to other variables, such as v, ϕa and f .

Yang et al. (2019) proved that the instantaneous travel cost is minimized and the RDUE

principle can be achieved if the route-choice strategy satisfies the following requirement:

v(x, y, t)// − ∇ϕ(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0,T ]. (7)
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where ”//” indicates that the two vectors are parallel. Based on this route-choice strategy, the

flow flux in the RDUE-C model can be computed by the following equation:

f (x, y, t) = −ρ(x, y, t)U(x, y, t)
∇ϕ(x, y, t)
|∇ϕ(x, y, t)|

, ∀(x, y) ∈ Ω, t ∈ [0,T ]. (8)

2.3 Schedule delay cost

Once the route-choice strategy and the velocity vectors v(x, y, t) at each point are given by

(7), the total travel time of a traveler who departs from any point (x, y) at any time t to reach

the destination can be computed. In the RDUE-C model, we consider the instantaneous travel

time, denoted as I(x, y, t), which can be computed by

Ixu1 + Iyu2 = −1. (9)

For any traveler who departs from point (x, y) at time t, the arrival time to the destination

becomes

ta(x, y, t) := t + I(x, y, t).

Let the time interval [t∗− △, t∗+ △] be the desired arrival time interval for all travelers, where

t∗ is the center of the period and △≥ 0 is a measure of work start time flexibility. We introduce

the following schedule delay cost p(x, y, t), which describes the penalty for early or late arrival:

p(x, y, t) =


γ1
(
t∗ − ∆ − ta(x, y, t)

)
, ta(x, y, t) < t∗ − ∆,

0, t∗ − ∆ ≤ ta(x, y, t) ≤ t∗ + ∆,

γ2
(
ta(x, y, t) − (t∗ + ∆)

)
, ta(x, y, t) > t∗ + ∆,

(10)

where γ1, γ2 > 0 are two given parameters in accordance with previous empirical results.

2.4 Boundedly rational simultaneous departure time and the route choice
dynamic user equilibrium principle

In this subsection, we consider the simultaneous departure time and route choice problem.

Recall that the choice of q affects the route choice. For each given q, we apply the route-choice

strategy discussed in Section 2.2. We further denote the total cost of a traveler who departs
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from (x, y) at time t to travel to a destination using the corresponding route-choice strategy as

l(x, y, t, q), which is defined as the summation of the travel cost incurred during travel and the

penalty based on the arrival time:

l(x, y, t, q) := ϕ(x, y, t) + p(x, y, t). (11)

In turn, the total cost function l affects the choice of q. In general, we seek a good choice for

q∗ ∈ Λ and the corresponding route-choice strategy such that the total cost l(x, y, t, q∗) is small.

More rigorous definitions and formulations are given as follows.

For any q ∈ Λ and (x, y) ∈ Ω, let l̂(x, y, q) be the minimum total cost for travelers at

location (x, y) in the modeling period, as defined by the following equation:

l̂ (x, y, q) = essinf
t∈[0,T ]

{
l (x, y, t, q)

}
. (12)

where essinf is the essential infimum, and for any measurable function g : [0,T ] → R, the

essential infimum of g(·) on [0,T ] is defined by

essinf
t∈[0,T ]

{
g(t)
}
= sup

{
z ∈ R : ν({t ∈ [0,T ] : g(t) < z}) = 0

}
,

where ν(A) is the measure of set A. Before introducing the BR-SDTRC-RDUE-C model, we

first give the definition of SDTRC-RDUE-C:

Definition 2.1. The simultaneous departure time and route choice dynamic user equilibrium

is satisfied if for any (x, y) ∈ Ω, t ∈ [0,T ] we have:

l (x, y, t, q∗) = l̂ (x, y, q∗) , if q∗(x, y, t) > 0, (13)

i.e., for any location (x, y) ∈ Ω, if the travel demand (departure rate) is positive at time t, the

total cost is minimized.

The above definition is established based on Wardrop’s first principle in which travelers

choose the departure time and route in a perfectly rational way. The concept of bounded

rationality is a relaxation of perfect rationality. For BR-RDUE problems, we establish the

following new definition.
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Definition 2.2. The boundedly rational simultaneous departure time and route choice dynamic

user equilibrium principle is satisfied if for any (x, y) ∈ Ω, t ∈ [0, T ], we have:

l (x, y, t, q∗) ∈
[
l̂ (x, y, q∗) , l̂ (x, y, q∗) + ϵ(x, y, t)

]
, if q∗(x, y, t) > 0, (14)

where ϵ(x, y, t) is the tolerance function that represents the range of acceptable difference in

the total cost to the traveler who departs from location (x, y) at time t.

The BR-SDTRC-RDUE condition in equation (14) is defined to ensure that the total costs

incurred by travelers who depart from the same place but at different times belong to an ”in-

difference band.” As with the SDTRC-RDUE problem, we try to find an equivalent solvable

variational inequality (VI) for the BR-SDTRC-RDUE problem. We first define a new operator:

lϵ(x, y, t, q) = max
{
l(x, y, t, q), l̂ (x, y, q) + ϵ(x, y, t)

}
− ϵ(x, y, t) + essinf

t∈[0,T ]

{
ϵ(x, y, t)

}
. (15)

Then, for the BR-SDTRC-RDUE problem defined above, an equivalent VI formulation can be

proved as in the following theorem.

Theorem 2.1. The boundedly rational dynamic user equilibrium condition in Definition 2.2

is equivalent to the following VI problem: Find q∗ ∈ Λ, such that for all q ∈ Λ, we have"
Ω

∫ T

0
lϵ (x, y, t, q∗) (q(x, y, t) − q∗(x, y, t)) dν(t)dΩ ≥ 0. (16)

Proof. (Necessity.) Suppose that q∗ ∈ Λ is the travel demand that satisfies the boundedly

rational dynamic user equilibrium condition (14). We define

µϵ(x, y, q∗) = essinf
t∈[0,T ]

{
lϵ(x, y, t, q∗)

}
. (17)
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According to the definition of lϵ(x, y, t, q∗), it is obvious that

µϵ(x, y, q∗) = essinf
t∈[0,T ]

{
max{ l(x, y, t, q∗), l̂ (x, y, q∗) + ϵ(x, y, t)} − ϵ(x, y, t) + essinf

t∈[0,T ]

{
ϵ(x, y, t)

}}
,

≥ essinf
t∈[0,T ]

{
l̂ (x, y, q∗) + ϵ(x, y, t) − ϵ(x, y, t) + essinf

t∈[0,T ]

{
ϵ(x, y, t)

}}
,

= essinf
t∈[0,T ]

{
l̂ (x, y, q∗) + essinf

t∈[0,T ]

{
ϵ(x, y, t)

}}
,

= l̂ (x, y, q∗) + essinf
t∈[0,T ]

{
ϵ(x, y, t)

}
.

(18)

However, according to the definition of l̂ (x, y, q) and the fact that the set [0,T ] is closed, there

exists t1 ∈ T such that l(x, y, t1, q
∗) = l̂ (x, y, q∗). Then we have

lϵ(x, y, t1, q
∗) = l̂ (x, y, q∗) + essinf

t∈[0,T ]

{
ϵ(x, y, t)

}
. (19)

Combining equations (18) and (19), we conclude that

µϵ(x, y, q∗) = l̂(x, y, q∗) + essinf
t∈[0,T ]

{
ϵ(x, y, t)

}
. (20)

For any feasible travel demand q ∈ Λ, for any location (x, y) ∈ Ω and time t ∈ [0,T ] such

that q(x, y, t) − q∗(x, y, t) < 0, we have

0 ≤ q(x, y, t) < q∗(x, y, t) ⇒ l(x, y, t, q∗) ≤ l̂(x, y, q∗) + ϵ(x, y, t)

⇒ lϵ(x, y, t, q∗) = µϵ(x, y, q∗).
(21)

With the above equation and the fact that lϵ(x, y, t, q∗)−µϵ(x, y, q∗) ≥ 0, the following equation

is satisfied:

[
lϵ(x, y, t, q∗) − µϵ(x, y, q∗)

] [
q(x, y, t) − q∗(x, y, t)

]
≥ 0. (22)

Integrating the above equation over space and time, we get"
Ω

∫ T

0
(lϵ (x, y, t, q∗) − µϵ (x, y, q∗)) (q(x, y, t) − q∗(x, y, t)) dν(t)dΩ ≥ 0. (23)

As µϵ (x, y, q∗) is independent of time, and the travel demand satisfies∫ T

0
(q(x, y, t) − q∗(x, y, t)) dν(t) = 0,
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we have "
Ω

∫ T

0
µϵ (x, y, q∗) (q(x, y, t) − q∗(x, y, t)) dν(t)dΩ = 0.

Thus, equation (23) reduces to"
Ω

∫ T

0
lϵ (x, y, t, q∗) (q(x, y, t) − q∗(x, y, t)) dν(t)dΩ ≥ 0,

and thus the VI is as follows.

(Sufficiency.) Let q∗ be a solution for the VI problem. For the case q∗(x, y, t) > 0, we first

claim that

∀ q∗(x, y, t) > 0, lϵ(x, y, t, q∗) = µϵ(x, y, q∗). (24)

We can prove the above claim by contradiction. Assume that this claim is not satisfied for the

following set,

S 1 =
{
(x, y, t) ∈ Ω × [0,T ] : q∗ (x, y, t) > 0, lϵ(x, y, t, q∗) − µϵ(x, y, q∗) > 0

}
. (25)

and this set has a positive measure. AS lϵ(x, y, t, q∗) − µϵ(x, y, q∗) is a measurable function,

there exists a sufficiently small value ε > 0 such that the subset

S 1(ε) =
{
(x, y, t) ∈ S 1 : lϵ(x, y, t, q∗) − µϵ(x, y, q∗) > 2ε

}
(26)

has a positive measure. Again, as q∗ (x, y, t) is a measurable function, there exists a sufficiently

small value δ > 0 such that the subset

S 1(ε, δ) =
{
(x, y, t) ∈ S 1(ε) : q∗ (x, y, t) > δ

}
(27)

has a positive measure. Then, we can find a subset Ωa × Ta ⊂ S 1(ε, δ) with ν(Ωa) , 0 and

ν(Ta) , 0. According to the definition of µϵ(x, y, q∗), the subset

S 2(ε) =
{
(x, y, t) : (x, y) ∈ Ωa, lϵ(x, y, t, q∗) < µϵ(x, y, q∗) + ε

}
(28)
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also has a positive measure. Similarly, we also can find subset Ωb ×Tb ⊂ S 2(ε) with ν(Ωb) , 0

and ν(Tb) , 0, and note that Ωb ⊂ Ωa and Ta ∩ Tb = ∅. Letting

α0 = min
{
ν(Ta)), ν(Tb)

}
, (29)

for any α ∈ (0, α0), we can find the subsets Ta(α) ⊂ Ta and Tb(α) ⊂ Tb with ν(Ta(α)) =

ν(Tb(α)) = α.

A special q ∈ Λ that contradicts equation (16) can be constructed as follows:

q(x, y, t) =


q∗(x, y, t) − δ, ∀(x, y) ∈ Ωb, t ∈ Ta(α),

q∗(x, y, t) + δ, ∀(x, y) ∈ Ωb, t ∈ Tb(α),

q∗(x, y, t), otherwise .

(30)

If (x, y) ∈ Ωb and t ∈ Ta(α), from equations (27) and (30) it can be shown that

q∗(x, y, t) > δ⇒ q(x, y, t) = q∗(x, y, t) − δ > 0. (31)

If (x, y) ∈ Ωb and t ∈ Tb(α) , from equations (28) and (30) it can be shown that

q∗(x, y, t) > 0⇒ q(x, y, t) = q∗(x, y, t) + δ > 0. (32)

Otherwise, from equation (30), we have

q(x, y, t) = q∗(x, y, t) ≥ 0. (33)

Moreover, for any (x, y) ∈ Ω,∫ T

0
q(x, y, t)dt =

∫
[0,T ]\Ta(α)\Tb(α)

q(x, y, t)dt +
∫

Ta(α)
q(x, y, t)dt +

∫
Tb(α)

q(x, y, t)dt

=

∫
[0,T ]\Ta(α)\Tb(α)

q∗(x, y, t)dt +
∫

Ta(α)

[
q∗(x, y, t) − δ

]
dt +
∫

Tb(α)

[
q∗(x, y, t) + δ

]
dt

= Q(x, y).

(34)

Thus, q(x, y, t) constructed in equation (30) is within the feasible set Λ. Then, with the con-

structed q(x, y, t) in equation (30), we obtain:"
Ω

∫ T

0
lϵ(x, y, t, q∗)(q(x, y, t) − q∗(x, y, t))dtdΩ
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=

"
Ωb

∫
Ta(α)∪Tb(α)

lϵ(x, y, t, q∗)(q(x, y, t) − q∗(x, y, t))dtdΩ

=

"
Ωb

[∫
Ta(α)
−δlϵ(x, y, t, q∗)dt +

∫
Tb(α)

δlϵ(x, y, t, q∗)dt
]

dΩ

≤

"
Ωb

[∫
Ta(α)
−δ(µϵ(x, y, q∗) + 2ε))dt +

∫
Tb(α)

δ(µϵ(x, y, q∗) + ε))dt
]

dΩ

=

"
Ωb

(−δα(µϵ(x, y, q∗) + 2ε)) + δα(µϵ(x, y, q∗) + ε))dΩ

=

"
Ωa

(−δα)ε)dΩ

= −δα|Ωb|ε < 0. (35)

This contradicts (16) and thus the q(x, y, t) > 0 case in equation (24) is proved by contradiction.

Now from equation (24), we have

q∗(x, y, t) > 0⇒ lϵ(x, y, t, q∗) = µϵ(x, y, q∗)

⇒ max
{

l(x, y, t, q∗), l̂ (x, y, q∗) + ϵ(x, y, t)
}
− ϵ(x, y, t) + min

s∈[0,T ]

{
ϵ(x, y, s)

}
= µϵ(x, y, q∗)

⇒ max
{

l(x, y, t, q∗), l̂ (x, y, q∗) + ϵ(x, y, t)
}
− ϵ(x, y, t) + min

s∈[0,T ]

{
ϵ(x, y, s)

}
= l̂(x, y, q∗) + essinf

t∈[0,T ]

{
ϵ(x, y, t)

}
⇒ max

{
l(x, y, t, q∗), l̂ (x, y, q∗) + ϵ(x, y, t)

}
− ϵ(x, y, t) = l̂(x, y, q∗)

⇒ l̂ (x, y, q∗) ≤ l(x, y, t, q∗) ≤ l̂ (x, y, q∗) + ϵ(x, y, t).

(36)

Thus, q∗ ∈ Λ that satisfies the VI problem, i.e., equation (16), also satisfies the dynamic user

equilibrium condition with the simultaneous departure time and route choice consideration

defined in equation (14). □

2.5 The complete model

Combining the traffic flow equations and travel choices strategies discussed in the previous

sections, the complete BR-SDTRC-RDUE model becomes: find q∗ ∈ Λ, such that for all

q ∈ Λ, we have "
Ω

∫ T

0
lϵ (x, y, t, q∗) (q(x, y, t) − q∗(x, y, t)) dν(t)dΩ ≥ 0, (37)
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where the operator lϵ (x, y, t, q∗) is defined in (15) and can be obtained by solving the following

RDUE-C problem:
ρt(x, y, t) + ∇ · f (x, y, t) = q∗(x, y, t) ∀(x, y) ∈ Ω, t ∈ [0,T ],

f (x, y, t) = −ρ(x, y, t)U(x, y, t)
∇ϕ(x, y, t)
|∇ϕ(x, y, t)|

∀(x, y) ∈ Ω, t ∈ [0,T ],

ρ (x, y, 0) = ρ0(x, y) ∀(x, y) ∈ Ω.

(38)

where ϕ is the travel cost. In RDUE problems, ϕ can be computed by solving the following

static eikonal equation at each fixed time level of (38){
|∇ϕ(x, y, t)| = c(x, y, t), ∀(x, y) ∈ Ω, t ∈ [0,T ],
ϕ(x, y, t) = ϕc, ∀(x, y) ∈ Γc.

(39)

where ϕc is the value of ϕ on the boundary of the destination, and represents the cost for the

traveler of reaching the destination.

3 The existence and uniqueness of the solution to the BR-
SDTRC-RDUE-C problem

In this section, we consider the existence and uniqueness of the solution to the BR-SDTRC-

RDUE-C problem, which has two parts: the existence and uniqueness of the solution to the

RDUE-C model, and the existence and uniqueness of the solution to the VI problem. Section

3.1 studies the existence of the solution of the RDUE-C model under certain conditions of

travel demand and the initial condition. In Section 3.2, we show that the operator lϵ is well-

defined and continuous about travel demand, and then prove the existence of the solution to

the VI problem. Finally, Section 3.3 provides an example to show that the uniqueness of the

BR-SDTRC-RDUE-C model does not hold.

3.1 The existence of a solution to the RDUE-C model

In this subsection we consider the RDUE-C model which consists of a conservation law

(CL) part (38) and an eikonal equation part (39). For simplicity, we define the travel cost as

the value of the travel time. In this case, the local cost c can be defined as

c(x, y, t) =
κ

U(x, y, t)
,
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where 1/U is the travel time per unit of distance and κ represents the value of a unit of time.

The eikonal equation is a special static HJ equation. In the following, we first give the def-

inition of semi-concave, the most fundamental regularity property of the HJ equation solution,

and then show the existence of a solution to the eikonal equation using a theorem.

Definition 3.1. A map w : E → R, with E being open and convex, is semi-concave if there is

a constant C, such that one of the following conditions is satisfied:

1. D2w ≤ CId in the sense of distribution,

2. ⟨p − q,x − y⟩ ≤ C|x − y|2 for any x,y ∈ E,p ∈ D+xw(x) and q ∈ D+xw(y), where D+x

denotes the super-differential of w with respect to the variable x, defined by

D+xw(x) =
{
p ∈ R2 : lim sup

y→x

w(y) − w(x) − ⟨p,y − x⟩
|y − x|

≤ 0
}
. (40)

where D2w is the second-order derivative of w and ⟨·, ·⟩ is the inner product.

Theorem 3.1. If c ∈ W1,∞(Ω) is semi-concave and ϕc ∈ C(Ω), then there exists a viscosity

solution ϕ to eikonal equation (39), and ϕ ∈ W1,∞(Ω) is semi-concave.

Proof. See Lions (1982). □

Next, we consider the existence of the solution to the following linear CL:
∂ρ

∂t
+ ∇ · (Aρ) = B(x, t), ∀x ∈ Ω, ∀t ∈ [0,T ]

ρ(x, 0) = ρ0(x), ∀x ∈ Ω

(41)

where x = (x1, x2) and A(x, t) = (A1(x, t), A2(x, t)). We assume that A1(·, t) and A2(·, t) satisfy

the following assumptions:

1. Ai(·, t), i = 1, 2 is bounded for almost every t, i.e., for almost every t, there is a constant

C, such that

|Ai(x, t)| ≤ C, ∀x ∈ Ω, i = 1, 2. (42)
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2. A(x, t) satisfies the one-sided Lipschitz condition

⟨A(x, t) −A(y, t),x − y⟩ ≥ −m(t)|x − y|2, ∀x,y ∈ Ω, (43)

where m ∈ L1[0,T ], m(t) ≥ 0 a.e. in [0,T ], and ⟨x,y⟩ = x1y1 + x2y2 and |x|2 = ⟨x,x⟩.

Next, we review the theorem on the existence of the solution to the above linear CL from

Conway (1967),Petrova and Popov (1999) and Bouchut and Crippa (2006).

Theorem 3.2. In bounded domain Ω, if A satisfies the above assumptions, ρ0(x) ∈ L2(Ω) ,

and B(x, t) ∈ L2(Ω × [0,T ]) , then there exists a solution ρ ∈ L2(Ω × [0,T ]) to equation (41).

Now, we are ready to prove the existence of a solution to CL (38).

Theorem 3.3. The conservation law (38) in our RDUE-C model has a solution ρ ∈ L2(Ω ×

[0,T ]) if the speed is bounded and smooth about variable (x, y).

Proof. To prove this theorem, we only need to show that the coefficients A1 and A2 in our

model satisfy the conditions (42) and (43). In our problem, we have

A(x, t) = −
U(x, t)
|∇ϕ(x, t)|

∇ϕ(x, t) = −U2(x, t)∇ϕ(x, t)/κ. (44)

From the analysis of the eikonal equation, we know that ϕ is Lipschitz continuous and semi-

concave. Thus, condition (42) is satisfied. From the equivalent definition of semi-concavity,

we have

⟨p − q,x − y⟩ ≤ C|x − y|2, (45)

where C > 0, p ∈ D+xϕ(x, t), and q ∈ D+x(y, t) as ∇ϕ(x, t) ∈ D+x(x, t). We then have

⟨∇ϕ(x, t) − ∇ϕ(y, t),x − y⟩ ≤ C|x − y|2. (46)
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Because A(x, t) = −U2(x, t)∇ϕ(x, t)/κ, we obtain

⟨A(x, t) −A(y, t),x − y⟩ = ⟨−U2(x, t)∇ϕ(x, t)/κ − U2(y, t)∇ϕ(y, t)/κ,x − y⟩

=
−U2(x, t)

κ
⟨∇ϕ(x, t),x − y⟩ +

U2(y, t)
κ
⟨∇ϕ(y, t),x − y⟩

=
−U2(x, t)

κ
⟨∇ϕ(x, t) − ∇ϕ(y, t),x − y⟩ − (

U2(x, t)
κ

−
U2(y, t)

κ
)⟨∇ϕ(y, t),x − y⟩

≥ −
U2(x, t)

κ
C|x − y|2 − (

U2(x, t)
κ

−
U2(y, t)

κ
)⟨∇ϕ(y, t),x − y⟩

≥ −C
′

|x − y|2,

(47)

where the last inequality holds because the speed U(x, t) is bounded and smooth and ϕ ∈

W1,∞(Ω). Thus, the one-sided Lipschitz condition holds for m(t) = C
′

. According to Theorem

3.2, the conservation law (38) has the solution ρ ∈ L2(Ω× [0,T ]); thus, the theorem holds. □

3.2 The existence of a solution to the VI problem

In this subsection, we show the existence of a solution to the VI problem. The first step is

to show that the operator lϵ is continuous about travel demand q.

From the analysis of the eikonal equation, the solution ϕ ∈ W1,∞ belongs to space L2(Ω ×

[0,T ]). Because the penalty cost is a piece-wise linear function of ϕ, it is obvious that the total

cost l(·, q) belongs to space L2(Ω × [0,T ]). We next show that operator lϵ(·, q) also belongs to

space L2(Ω × [0,T ]).

Lemma 3.1. If the tolerance ϵ(x, y, t) is uniformly bounded, i.e., there exists a constant C such

that

0 ≤ sup
{
ϵ(x, y, t : ∀(x, y) ∈ Ω, ∀t ∈ [0,T ]

}
≤ C, (48)

then the operator lϵ(·, q) belongs to space L2(Ω × [0,T ]).

Proof. According to the definition of lϵ , we have∫
Ω

∫ T

0
[lϵ(x, y, t)]2dtdΩ ≤

∫
Ω

∫ T

0
[l(x, y, t) +C]2dtdΩ

=

∫
Ω

∫ T

0
([l(x, y, t)]2 + 2Cl(x, y, t) +C2)dtdΩ

≤ +∞.

(49)

Therefore, lϵ(x, y, t) ∈ L2(Ω × [0,T ]) □

19



Theorem 3.4. If the tolerance ϵ is continuous on Ω × [0,T ], then the operator lϵ

lϵ : Λ→ L2(Ω × [0,T ]), q → lϵ(·, q), (50)

is continuous.

Proof. Given any travel demand q1, q2 ∈ Λ and ∥q1 − q2∥L2(Ω×[0,T ]) → 0, we claim that

∥l̂ϵ(·, q1) − l̂ϵ(·, q2)∥L2(Ω) → 0. (51)

According to the stability and regularity of the eikonal equation, the travel cost ϕ is continuous

about q with respect to the L2 norm, and ϕ(x, y, t) is Lipschitz continuous about variables

x, y, t, respectively. According to the definition of l(x, y, t, q) where the penalty cost function

is a piece-wise linear continuous function, the operator l(·, q) is continuous, and l(x, y, t, q) is

Lipschitz continuous with respect to variables x, y, t.

Thus, there exists a constant C > 0, such that

|l(x, y, t, q) − l(x1, y1, t1, q)| ≤ C(|x − x1| + |y − y1| + |t − t1|). (52)

Given any ε > 0, there exists δ > 0 such that for any q1, q2 ∈ Λ, when

∥q1 − q2∥L2(Ω×[0,T ]) < δ → ∥l(·, q1) − l(·, q2)∥L2(Ω×[0,T ]) <
ε5/2

√
532C3

. (53)

Next, we show that for any (x, y, t) ∈ Ω × [0,T ], the following inequality holds:

|l(x, y, t, q1) − l(x, y, t, q2)| < ε. (54)

Without loss of generality, we assume l(x, y, x, q1) ≤ l(x, y, x, q2), and prove it by contradiction.

Assume that

l(x, y, t, q1) < l(x, y, t, q2) − ε. (55)

Then for any (x
′

, y
′

, t
′

) ∈ [x − ε
6C , x] × [y − ε

6C , y] × [t − ε
6C , t], according to equation (47),

l(x
′

, y
′

, t
′

, q1) ≤ l(x, y, t, q1) +C(|x − x
′

| + |y − y
′

| + |t − t
′

|),

< l(x, y, t, q2) − ε +C(|x − x
′

| + |y − y
′

| + |t − t
′

|),

≤ l(x, y, t, q2) − ε + 3C
ε

6C
,

≤ l(x, y, t, q2) −
1
2
ε.

(56)
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Thus, we have

∥l(·, q1) − l(·, q2)∥2L2(Ω×[0,T ]) =

∫
Ω

∫ T

0
|l(x, y, t, q1) − l(x, y, t, q2)|2dtdxdy,

≥

∫ x

x− ε
2C

∫ y

y− ε
2C

∫ t

t− ε
2C

|l(x, y, t, q1) − l(x, y, t, q2)|2dtdxdy,

≥ (
ε

6C
)3(
ε

2
)2.

(57)

This is contradictory to equation (53); thus, equation (54) holds. Next, we claim that for any

(x, y) ∈ Ω

|l̂(x, y, q1) − l̂(x, y, q2)| < ε. (58)

Without loss of generality, we assume that l̂(x, y, q1) < l̂(x, y, q2). If equation (58) is not

satisfied, then

l̂(x, y, q1) < l̂(x, y, q2) − ε. (59)

Assuming that l̂(x, y, q1) = l(x, y, t̂, q1), then again, according to equation (54), we have

l(x, y, t̂, q1) > l(x, y, t̂, q2) − ε. (60)

Combining equations (59) and (60), we have l(x, y, t̂, q2) < l̂(x, y, q2), which is contradicted by

the definition of l̂(x, y, q2); thus, equation (58) hold.

Accordingly, by definition, we have∣∣∣lϵ(x, y, t, q1) − lϵ(x, y, t, q2)
∣∣∣

=
∣∣∣∣max

{
l(x, y, t, q1), l̂(x, y, q1) + ϵ(x, y, t)

}
−max

{
l(x, y, t, q2), l̂(x, y, q2) + ϵ(x, y, t)

}∣∣∣∣ ,

=



(i)
∣∣∣l(x, y, t, q1) − l(x, y, t, q2)

∣∣∣ ,
(ii)

∣∣∣l(x, y, t, q1) − l̂(x, y, q2) − ϵ(x, y, t)
∣∣∣ ,

(iii)
∣∣∣l̂(x, y, q1) + ϵ(x, y, t) − l(x, y, t, q2)

∣∣∣ ,
(iv)

∣∣∣l̂(x, y, q1) − l̂(x, y, q2)
∣∣∣ .

(61)

We next consider case (ii) in equation (61), in which l(x, y, t, q1) ≥ l̂(x, y, q1) + ϵ(x, y, t) and

l(x, y, t, q2) ≤ l̂(x, y, q2) + ϵ(x, y, t).
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If l(x, y, t, q1) ≥ l̂(x, y, q2) + ϵ(x, y, t), then

∣∣∣l(x, y, t, q1) − l̂(x, y, q2) − ϵ(x, y, t)
∣∣∣ ≤ l(x, y, t, q1) − l(x, y, t, q2). (62)

Otherwise, if l(x, y, t, q1) < l̂(x, y, q2) + ϵ(x, y, t), then

∣∣∣l(x, y, t, q1) − l̂(x, y, q2) − ϵ(x, y, t)
∣∣∣ ≤ ∣∣∣l̂(x, y, q1) − l̂(x, y, q2)

∣∣∣ . (63)

Thus, according to the above two equations, we have

∣∣∣l(x, y, t, q1) − l̂(x, y, q2) − ϵ(x, y, t)
∣∣∣ ≤ max

{
l(x, y, t, q1) − l(x, y, t, q2),

∣∣∣l̂(x, y, q1) − l̂(x, y, q2)
∣∣∣ }.

(64)

Similarly, the following inequality for case (iii) also holds

∣∣∣l̂(x, y, q1) + ϵ(x, y, t) − l(x, y, t, q2)
∣∣∣ ≤ max

{
l(x, y, t, q1) − l(x, y, t, q2),

∣∣∣l̂(x, y, q1) − l̂(x, y, q2)
∣∣∣ }.

(65)

According to equations (61), (64) and (65), we have∣∣∣lϵ(x, y, t, q1) − lϵ(x, y, t, q2)
∣∣∣ ≤ max

{
l(x, y, t, q1) − l(x, y, t, q2),

∣∣∣l̂(x, y, q1) − l̂(x, y, q2)
∣∣∣ }

≤ ε.
(66)

Therefore, if qn is a sequence that converges to q∗ in the L2 norm, then

∥lϵ(·, qn) − lϵ(·, q∗)∥2L2(Ω×[0,T ]) =

∫
Ω

∫ T

0
(lϵ(x, y, t, qn) − lϵ(x, y, t, q∗))2dtdxdy

≤ |Ω|Tε2.

(67)

Thus, the operator lϵ is continuous. □

Next, we present the existence of a solution to the VI problem following Theorem

Theorem 3.5. If the travel demand q(x, y, t) is square-integrable and uniformly bounded on

Ω × [0,T ], the operator lϵ is continuous about q, and the tolerance ϵ(·) : Ω × [0,T ] → R+ is

bounded, then a solution exists for the VI problem.

Proof. First, because the travel demand has a uniform upper bound, we denote it as C. We

next construct the finite dimensional set Λn as an approximation of the feasible set Λ. Without
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loss of generality, we assume that the region is a rectangle, and denote Ω = [0, X]× [0,Y]. For

each n ≥ 1, we divide the domain [0, X]× [0,Y]× [0,T ] into 2n sub-intervals in each direction,

and denote
0 = x0 < x1 < · · · < x2n = X,

0 = y0 < y1 < · · · < y2n = Y,

0 = t0 < t1 < · · · < t2n = T.

Then, the sequence of the finite dimensional set is defined as

Λn =
{
qn : q(x, y, t) ≤ C,∀(x, y, t) ∈ Ω × [0,T ], q(x, y, t) is constant on

[xi−1, xi] × [y j−1, y j] × [tk−1, tk],
∫

T
q(x, y, t)dt = Q(xi, y j),∀(x, y) ∈ [xi−1, xi] × [y j−1, y j]

}
.

(68)

According to Han et al. (2015), the setΛn is convex and compact in Hilbert space L2(Ω×[0,T ]).

Thus, for each n ≥ 1, according to Schauder fixed-point theorem, (Evans (1998), Section 9.2,

Theorem 3), there exists qn,∗ ∈ Λn such that

⟨lϵ(·, qn,∗), qn − qn,∗⟩ ≥ 0, ∀qn ∈ Λn. (69)

where ⟨·, ·⟩ is the inner product. Because qn,∗ is uniformly bounded, the sequence qn,∗ is uni-

formly bounded and satisfies equation (69). According to the Bolzano-Weierstrass theorem,

there exists a subsequence in the Hilbert space L2(Ω × [0,T ]). For simplicity, we also denote

this subsequence as qn,∗, and denote its limit as q∗. It is obvious that q∗ belongs toΛ. However,

for any q ∈ Λ, there exists a piecewise constant approximation {qn}, which converges to q in

the ∥ · ∥L2 norm. Because the operator lϵ(·, q) is continuous about q with respect to the L2 norm,

and there is continuity of the inner product in Hilbert space, we pass equation (69) to the limit

(let n→ ∞) and obtain

lim
n→∞
⟨lϵ(·, qn,∗), qn − qn,∗⟩ = ⟨lϵ(·, q∗), q − q∗⟩ ≥ 0, ∀q ∈ Λ. (70)

Thus, the existence holds. □

3.3 Uniqueness

On the one hand, according to Theorem 3.5, if q is square-integrable and uniformly bounded,

a solution to the VI problem. On the other hand, for the BR-DUE problem, some researchers
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have shown that the solution is usually not unique. According to Definition 2.2, for any fixed

location (x, y), the travel demand should satisfy constraint (3), and if the travel demand is pos-

itive at time t, then the related total cost should be located in indifference band. Under these

two constraints, the feasible solution is not unique, and is dependent on the distribution of the

travel demand in the indifference band. Next, we give an intuitive and graphical illustration of

the non-uniqueness for a boundedly rational DUE problem. Figure 1 depicts two boundedly

rational DUE solutions q(x, y, t) and the corresponding total cost l(x, y, t) where the location

(x, y) is fixed and they are both functions of departure time t. In Figure 1(a), the travel demand

is uniformly distributed on [a, b]. In Figure 1(b), the travel demand satisfies a non-uniform

distribution and is defined as

q(x, y, t) = Q(x, y)
[l̂(x, y) + ϵ(x, y, t) − l(x, y, t)]+∫ T

0
[l̂(x, y) + ϵ(x, y, t) − l(x, y, t)]+dt

. (71)

where [a]+ = max(a, 0).

(a) uniform distribution (b) non-uniform distribution

Fig. 1: An illustration of a BR-RDUE solution and the associated total cost.

Either of the specific uniform and non-uniform distributions, among the infinite possibil-

ities, could have some physical meaning. For the uniform distribution, there is no difference

in choice preference at any point within the indifference band, and thus there is no reason to

prefer one point over any other in a short-run decision. Then, in the long run, the chances of a

choice falling on any point in the band are likely to be equal, as there is no inherent preference
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for one point over any others within the band. Hence, a uniform distribution would probably

be the long-run, or expected, outcome in the probabilistic context. The specific non-uniform

distribution defined in equation (71) may also imply a certain probabilistic outcome. In the

long run, the points that have lower costs would probably eventually be experienced by travel-

ers and attract more people to these points in the long run. Therefore, although we argue that

there is no difference among people’s preferences within the indifference band in the short run,

people will still inform their choices through accumulated travel experience, good or bad, in

the long run.

Remark 3.1. There exists a constant C, such that for any ϵ ≥ C, the traveler can depart at

any time, i.e., the ”indifference band” included in the overall time period.

4 Solution procedure

In this section, we introduce the numerical methods and the complete solution procedure

to solve the established BR-SDTRC-RDUE model. For simplicity, we consider rectangular

computational regions in the numerical tests and use classical finite difference methods. Nev-

ertheless, our model imposes no restriction on the shape of the computational domain. For a

more complicated domain, one simply needs to replace the finite difference method with other

methods, such as discontinuous Galerkin methods, and follow the same solution procedure

discussed in this section.

We divide the computational domain Ω into Nx × Ny grid points and denote the (i, j)-th

point as (xi, y j). We further denote the number of grid points in time as Nt and denote the

n-th time level as tn. For any function u(x, y, t) defined on Ω × [0,T ], we approximate it with

discrete grid point values {un
i, j, i = 1, · · · ,Nx, j = 1, · · · ,Ny, n = 1, · · · ,Nt}, where un

i, j is an

approximation for u(xi, y j, tn). The whole BR-SDTRC-DUE model comprises several parts,

and we apply the following methods to solve each part.

• The projection method is used to solve the VI problem (37).
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• The Lax-Friedrichs scheme is used to solve the conservation law (38).

• The fast sweeping method is used to solve the eikonal equation (39).

• The Lax-Friedrichs scheme is used to solve the HJ equation (6).

In this study, we omit the formulations of the above numerical schemes. For more details,

please refer to Yang et al. (2019, 2022).

Notice that different parts of the model interact with each other and cannot be solved inde-

pendently. We therefore use an iteration method to solve the complete model. Starting from

an initial guess about the traffic demand, we solve the RDUE model to get the cost functions.

Then we solve the VI problem to update the traffic demand function. We repeat this proce-

dure until we obtain the convergent solutions. In the following table, we introduce the detailed

solution procedure (Figure 2), where the relative gap function is defined as

RGAPdiscrete =

∑
i∈{1,...,Nx}

∑
k∈{1,...,Ny}

∑
n∈{1,...,Nt}

qn
ik

(
ln
ik − l̂ik

)
∑

i∈{1,...,Nx}

∑
k∈{1,...,Ny} Qik l̂ik

. (72)

Algorithm 1 Solution procedure for BR-SDTRC-RDUE model

Step 1. Set an initial travel demand qk based on Q(x, y) and set k = 1.

Step 2. Compute the travel cost ϕ(x, y, t) and travel time I(x, y, t) by solving the RDUE-C
model defined in Section 2.1.

Step 3. Compute the schedule delay cost p(x, y, t) by using equation (10).

Step 4. Compute the total cost l(x, y, t) by using equation (11).

Step 5. Compute the operator lϵ(x, y, t, qk) by using equation (15).

Step 6. Update the travel demand qk+1 by solving the VI problem.

Step 7. Compute the relative gap function. If |q
k+1−qk |

qk ≤ ε1 and RGAPdiscrete ≤ ε2 , stop;
Otherwise set k = k + 1 and go to Step 2.

5 Numerical examples

In this section, we provide a numerical example to demonstrate the correctness and char-

acteristics of the model and our algorithms. We give the problem settings in Section 5.1 and

then show the numerical results in Section 5.2.
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Fig. 2: Flowchart of the solution procedure

Fig. 3: The modeling domain
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5.1 Problem settings

As shown in Figure 3, we consider a rectangular modeling region, which is 35 km long and

25 km wide with a single central business district (CBD) and an obstacle within it. The center

of the CBD is located at (10 km, 10 km) with a diameter of 2 km, and the obstacle is located at

(25 km, 15 km) with a diameter of 4 km. We consider the activities of travelers traveling from

their home (origin) to the CBD (destination).

In this numerical example, it is assumed that no traffic is present at the beginning of the

modeling period and the travel cost at the boundary of the CBD is zero, i.e.,

ρ0(x, y) = 0,∀(x, y) ∈ Ω, ϕc(x, y, t) = 0, ∀(x, y) ∈ Γc, t ∈ [0,T ].

The modeling period [0,T ] = [0 h, 6 h]. It is considered that travelers, regardless of their

residential location, have a similar desired arrival time as they head to the CBD. Thus, the

desired arrival time for this numerical example is defined as t∗ = 2.8 h. For the schedule-delay

cost function, the parameters γ1, γ2 and ∆ are taken as 48 $/h, 108$/h and 0.2 h, respectively.

In this numerical example, the speed function is defined as

U(x, y, t) = U f (x, y)
{

1 − exp
[

C
U f (x, y)

(1 −
ρ j

ρ(x, y)
)
]}
, ∀(x, y) ∈ Ω, t ∈ [0,T ], (73)

where U f (x, y) = 56
[
1 + 4 × 10−3d(x, y)

]
km/h is the free-flow speed when d(x, y) is the dis-

tance from the location (x, y) to the center of the CBD, ρ j = 6000 veh/km2 is the traffic jam

density, and C = 8 km/h is the backward congested wave parameter. Here functions U f (x, y)

and d(x, y) are chosen such that the free-flow speed in the domain further from the CBD is

higher due to fewer junctions.

5.2 Numerical results

We present the numerical results in this subsection. According to the analysis in Section

3, the uniqueness of the solution to the BR-SDTRC-RDUE model does not hold. In our nu-

merical example, to derive a unique solution, we assume that the travel demand (departure

rate) satisfies a given distribution in the indifference band. In the following results, the travel
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demand satisfies the uniform distribution in Figures 4–13 and satisfies the non-uniform distri-

bution in Figure 14.

We first consider the BR-SDTRC-RDUE-C model with different choices of ϵ. Figure 4

shows the travel demand q(x, y, t), the total cost l(x, y, t, q) and the bounded total cost lϵ(x, y, t, q)

at locations (x, y) = (15 km, 10 km) and (x, y) = (34 km, 24 km), respectively. In the case

where ϵ = 0, we can see that travel demand is concentrated at the time when the total cost is

minimized. Otherwise, the travel demand is always located within the time region where the

total cost belongs to the indifference band. It can be concluded that travelers always choose

a departure time such that the total costs are “indifferent,” and thus, the boundedly rational

simultaneous dynamic user equilibrium route choice and departure time choice principle is

satisfied. As the desired arrival time interval is [2.6 h, 3.0 h], all traveler departure times at

different locations are earlier than 3 h. Additionally, as the distance to the CBD from location

(34 km, 24 km) is greater than that from location (15 km, 10 km), the departure time from

(34 km, 24 km) is always earlier. At the beginning and ending period, the modeling region

is uncongested, and therefore the instantaneous travel cost ϕ(x, y, t) and travel time I(x, y, t)

should be relatively constant in this period. Therefore, the total cost l is mainly affected by

the early- and late-arrival penalties, which are linearly dependent on the departure time. Be-

cause the time values for early or late arrivals are γ1 = 48 $/h and γ2 = 108 $ /h, respectively,

we observe from Figure 4 that the total cost l(x, y, t) decreases at a constant rate of 48 $/h in

the beginning and increases at a constant rate of 108 $/h at the ending period. Finally, the

value of the departure rate decreases as the tolerance ϵ increases, which demonstrates that the

boundedly rational concept can disperse the departure rate.

Next, we define the accumulated instantaneous travel cost and the total cost in the whole

city and the entire time period as

Φ =

∫ T

0

"
Ω

q(x, y, t)ϕ(x, y, t)dΩdt, (74)

Ψ =

∫ T

0

"
Ω

q(x, y, t)l(x, y, t)dΩdt. (75)
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(a) ϵ = 0

(b) ϵ = 2.5

(c) ϵ = 5.0

(d) ϵ = 7.5

Fig. 4: The travel demand and total travel cost of traveler with different ϵ at location (15, 10)
(left column) and (34, 24) (right column).
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(a) instantaneous cost (b) actual cost

Fig. 5: The accumulated instantaneous/actual travel cost Φ/Φa and accumulated instanta-
neous/actual total cost Ψ/Ψa under different ϵ.

Similarly, the accumulated actual travel cost and total cost in the whole city and entire time

period are defined as

Φa =

∫ T

0

"
Ω

q(x, y, t)ϕa(x, y, t)dΩdt, (76)

Ψa =

∫ T

0

"
Ω

q(x, y, t)la(x, y, t)dΩdt. (77)

where ϕa is the actual travel cost, which can be computed using the time-dependent HJ equa-

tion, and la is the related actual total cost.

Figure 5 shows the accumulated instantaneous/actual travel costΦ/Φa and the accumulated

instantaneous/actual total cost Ψ/Ψa under different ϵ. From Figure 5(a), we find that the

accumulated instantaneous travel cost Φ and accumulated instantaneous total cost Ψ increase

as ϵ increases. This occurs because in BR-SDTRC-RDUE-C models, travelers choose their

route and departure time according to instantaneous information. Under the boundedly rational

influence, there are more uncertainties in the travelers’ decisions. Additionally, the larger the

tolerance, the more dispersed the departure rate. From Figure 5(b), we can see that the relevant

accumulated actual costs (Φa and Ψa) decrease as ϵ increase. According to the difference
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between the instantaneous and actual costs, it is demonstrated that inaccuracy is high when

travelers base their choices on instantaneous information.

(a) x = 15 km, y = 10 km (b) x = 34 km, y = 24 km

Fig. 6: The instantaneous travel cost of traveler with different ϵ at (15 km, 10 km) and
(34 km, 24 km), respectively.

Next, we look into the detailed traffic-related costs at location (15 km, 10 km) and (34 km, 24

km) at different times. Figures 6 and 7 show the instantaneous/actual travel cost for travelers

with different ϵ at (15 km, 10 km) and (34 km, 24 km), respectively. Comparing Figures 6(a)

and 7(a) (or 6(b) and 7(b)), the shapes of the curves of instantaneous travel cost and actual

travel cost are very similar, but the times when the travel cost is maximized are different, es-

pecially for the location at (34 km, 24 km). From all these sub-figures, we see that the peak

value of instantaneous or actual travel cost decreases as the tolerance increases, and greater

tolerance can lead to a less congested traffic system.

Figures 8 and 9 show the instantaneous/actual penalty cost of travelers with different ϵ at

(15 km, 10 km) and (34 km, 24 km), respectively. These sub-figures show that the instanta-

neous and actual penalty costs are nearly the same, and in the BR-SDTRC-RDUE model, only

the inaccurate instantaneous information affects the traveler’s travel cost.

Combining the travel cost and penalty cost, Figures 10 and 11 show the instantaneous/actual

total cost for travelers with different ϵ at (15 km, 10 km) and (34 km, 24 km), respectively.
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(a) x = 15 km, y = 10 km (b) x = 34 km, y = 24 km

Fig. 7: The actual travel cost of traveler with different ϵ at (15 km, 10 km) and (34 km, 24 km),
respectively.

(a) x = 15 km, y = 10 km (b) x = 34 km, y = 24 km

Fig. 8: The instantaneous penalty cost of traveler with different ϵ at (15 km, 10 km) and
(34 km, 24 km), respectively.
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(a) x = 15 km, y = 10 km (b) x = 34 km, y = 24 km

Fig. 9: The actual penalty cost of with different ϵ at (15 km, 10 km) and (34 km, 24 km),
respectively.

(a) x = 15 km, y = 10 km (b) x = 34 km, y = 24 km

Fig. 10: The instantaneous total cost of traveler with different ϵ at (15 km, 10 km) and
(34 km, 24 km), respectively.
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(a) x = 15 km, y = 10 km (b) x = 34 km, y = 24 km

Fig. 11: The actual total cost of traveler with different ϵ at (15 km, 10 km) and (34 km, 24 km),
respectively.

Coupled with the plot of travel demand, when the travel demand is positive, the instantaneous

total cost with greater tolerance is large and equal to the instantaneous total cost with smaller

tolerance, but the actual total cost has a reverse effect. These results are also in accordance

with the results in Figure 5; thus, bounded rationality can reduce congestion.

Figure 12 shows the density plots for travelers with ϵ = 0 and ϵ = 7.5 at different times,

respectively. As shown in Figure 12(a1) (Figure 12 (b1)) at t = 2 h, travelers who reside further

away have already departed because of the longer distance and hence longer travel time. At

t = 2.4 h, travelers who reside near the CBD start to join the traffic system (Figure 12(a2)

and 12(b2)). At t = 2.8 h, all travelers have nearly reached their destination, resulting in a

high density of this type of traveler in the vicinity of the CBD (Figure 12(a3) and 12(b3)). At

t = 3.2 h, most travelers have entered the CBD and left the traffic system (Figure 12(a4) and

12(b4)). Comparing the density plots at ϵ = 0 and ϵ = 7.5, when ϵ = 7.5, travelers depart

earlier than they do when ϵ = 0, resulting in less congestion in the city.

We consider the total flow to the CBD through Γc (consisting of the inflow when vehicles

travel to the CBD) defined as

fCBD(t) =
∮
Γc

f (x, y, t) · n(x, y, t)ds (78)
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(a1) t = 2.0, ϵ = 0 (b1) t = 2.0, ϵ = 7.5

(a2) t = 2.4, ϵ = 0 (b2) t = 2.4, ϵ = 7.5

(a3) t = 2.8, ϵ = 0 (b3) t = 2.8, ϵ = 7.5

(a4) t = 3.2, ϵ = 0 (b4) t = 3.2, ϵ = 7.5

Fig. 12: The density plots for first group traveler with ϵ = 0 and ϵ = 7.5 at different time,
respectively.
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Fig. 13: The inflow plot.

where n is the unit normal vector pointing toward the CBD.

Figure 13 shows the inflow plot into the CBD. From this figure, we can see that the larger

the ϵ, the earlier the travelers depart. Combined with Figure 4, the traffic-related cost of the

system is reduced, which means that the boundedly rational concept can reduce the city’s

congestion. Moreover, the peaks of the inflow plots decrease as the tolerance increases, also

demonstrating that the city is less congested. Finally, with the BR-SDTRC-RDUE-C model,

we find that the inflow plots show large differences for different ϵ, and travelers tend to enter

the CBD earlier when the tolerance is larger. This causes some travelers to switch from late to

early arrival.

Figure 14 shows the travel demand, total cost and bounded total cost for travelers with

different ϵ at locations (15 km, 10 km) (left column) and (34 km, 24 km) (right column) with

non-uniform distribution (71). From this figure, greater travel demand is located in the time

region where the total cost is smaller. Compared with Figure 4, these two solutions also satisfy

the SDTRC principle in definition 2.2. Thus, the uniqueness of the solution to the BR-RDUE-

C model does not hold
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(a) ϵ = 2.5

(b) ϵ = 5.0

(c) ϵ = 7.5

Fig. 14: The travel demand and total cost of traveler with different ϵ at location (15 km, 10 km)
(left column) and (34 km, 24 km) (right column) with non-uniform distribution.
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6 Conclusion

This paper considers the simultaneous departure time and route choice dynamic user equi-

librium problem and incorporates the concept of bounded rationality using the continuum

modeling approach. The boundedly rational dynamic continuum user equilibrium model is

formulated, after which the existence and uniqueness of the solution to this model are dis-

cussed. We first use the RDUE-C model to describe the traffic flow, in which travelers choose

their routes to minimize the instantaneous travel cost. Then, we define the boundedly rational

simultaneous departure time and route choice dynamic user equilibrium, and prove that the

BR simultaneous departure time and route choice DUE model is equivalent to a VI problem

by constructing a new travel cost operator. Next, we consider the existence and uniqueness of

the solution to the BR-SDTRC-RDUE-C model. The existence is shown by Schauder’s fixed-

point existence theorem, and the non-uniqueness is demonstrated by an intuitive and graphical

illustration. Finally, in our numerical examples, we test the BR-SDTRC-RDUE-C model with

varying tolerance . We find that both the total actual travel cost and the total actual cost de-

crease as increases. However, we show that the solution depends on the distribution on the

“indifference band.” Both the uniform and non-uniform distribution solutions are shown in our

numerical results. In this study, we considered the existence and uniqueness of the solution to

the BR-SDTRC-RDUE-C model only. The existence and uniqueness of the solution to BR-

SDTRC-PDUE-C model are more difficult to analyze because these models consist of coupled

partial differential equations (the CL and HJ equations) and a forward–backward structure. In

addition, the day-to-day DTA problem incorporating bounded rationality has also become a

popular topic in recent years. We will investigate these problems in future work.
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