ER-2714: Development of Coupled Physiochemical and Biological Systems for In-Situ Remediation of Mixed Perfluorinated Chemical and Chlorinated Solvent Groundwater Plumes

Performers: Kurt Pennell (Brown), Natalie Capiro (Auburn), John Fortner (Yale)

Technology Focus
• Develop coupled in situ remediation technologies to treat groundwater plumes containing mixtures of per and polyfluoroalkyl substances (PFAS) and chlorinated ethenes.

Research Objectives
• Develop highly sorptive and reactive nanomaterials for PFAS and chlorinated ethenes; Develop biological systems to degrade chlorinated ethenes and PFAS byproducts; Evaluate the performance of coupled physicochemical and biological technologies in dynamic systems.

Project Progress and Results
• Synthesized highly sorptive nanomaterials; Demonstrated heated activated persulfate degradation of PFOA; Detected inhibition of TCE and PCE degradation in the presence of PFAS mixtures; Demonstrated sequestration of PFOA and PFOS in columns treated with stabilized activated carbon.

Technology Transition
• Continue nanomaterial synthesis and treatability testing; Disseminate findings via publications, conference, and professional organizations.

Contact: kurt_pennell@brown.edu