Reopening Cornell During the COVID-19 Pandemic

Peter Frazier
Associate Professor
Operations Research & Information Engineering

J. Massey Cashore
Ning Duan
Alyf Janmohamed
Jiayue Wan
Yujia Zhang
Shane Henderson
David Shmoys
Consider two scenarios. University A decides to reopen. For the health and safety of students, faculty and staff, it institutes a screening program to identify asymptomatic students infected with the novel coronavirus and prevent them from spreading it by repeated testing and isolation. The school also monitors symptoms daily, restricts group sizes, modifies classrooms and dorms, secures extensive quarantine capacity, restricts travel, and imposes requirements for masks and social distancing.

University B decides that this is too risky and chooses to play it safe. The school doesn’t reopen for residential instruction this fall and opts instead to teach all courses online. It takes cautious steps to open for selected professional or graduate programs and research efforts, but doesn’t implement the complex process of screening thousands of undergraduates and modifying the learning environment for social distancing.

Surprisingly, epidemiological modeling done by a group led by Cornell Prof. Peter Frazier suggests that despite playing it safe, sometime during the fall University B may well experience markedly worse health outcomes in its community, while University A will have more effectively safeguarded public health.

For many universities, closing the campus to undergraduates is probably not the safest option—notwithstanding concerns that college students may not adhere to public-health guidelines. That’s because at many colleges, students will gather on and around campuses whether classes are held in person or online.
Cornell’s strategy

- Bring back ~75% of UG and graduate students to campus
- ~80% of students have at least one in-person class
- Arrival testing
- Aggressive asymptomatic screening:
 test all UG’s 2x / week, most others 1x / week
- Adaptive testing: expands traditional contact tracing to full social circle
- Large-scale testing enabled by pooling + vet school lab
- Travel beyond Ithaca strongly discouraged
It has worked so far

- 12K UG in Ithaca (5K in dorms)
- Another 10K grad students + staff + faculty on campus
- 121 positives since 8/16
- 5 in the last week
- 0.12% test positivity
Agenda

1. COVID-19 at universities that opened without aggressive screening
2. Cornell’s screening program
3. Takeaways for impacting policy with data science
1. COVID-19 at universities that opened without aggressive screening
Over 1,000 students have tested positive for Covid-19 at University of Alabama since classes resumed

By Hollie Silverman and Dakin Andone, CNN

Updated 5:06 PM ET, Sat August 29, 2020

North Carolina’s flagship university moves online after 130 Covid-19 cases

The University of North Carolina at Chapel Hill changes course after coronavirus spreads during the first week of classes

Governor Cuomo Deploys SWAT Team to SUNY Oneonta to Contain COVID-19 Cluster

AUGUST 30, 2020 | Albany, NY

CORONAVIRUS | PUBLIC SAFETY | HEALTH
Why does this happen?
The approach followed by most other colleges offering in-person instruction

- Test students on arrival (maybe)
- Test students with symptoms
- Do traditional contact tracing on positive cases
Index case is infected, not yet infectious
Index case is infectious & asymptomatic
Another person becomes infected
Another person becomes infected
Another person becomes infected
Index case shows symptoms
Index case calls doctor, is tested, then isolated by health department.
Contacts are traced and quarantined, but two are missed
The infections we miss can keep spreading
Why contact tracing can miss cases

1. Identified carriers may not remember / know / report their contacts
2. Contacts may not answer their phone
3. Carriers are most infectious **before** becoming symptomatic
4. Carriers may not report their symptoms
5. Many carriers (~50%) **never** become symptomatic, especially among young people
Why might contact tracing be more likely to miss cases at college campuses?

Making contact tracing less effective on college campuses:

- Young people are more likely to be asymptomatic carriers, giving more contacts during their pre-symptomatic infectious period
- Young people have more contacts per day
- Young people tend to comply less with behavioral modifications

Making it more effective:

- Behavior is more monitored and controlled than in the general population
- Young & otherwise healthy people may be less susceptible to infection and may be less infectious when infected
Mathematical Models

A. Stochastic Compartmental Simulation
B. Differential Equations
Stochastic Compartmental Simulation

https://github.com/peter-i-frazier/group-testing

- Simulation tracks # of people in compartments described by:
 - Disease state (susceptible, infectious, symptomatic w/ severity, recovered / removed)
 - Whether or not they are in isolation / quarantine
 - How long they have been in this compartment
 - Group (UG in high-density housing, etc.)

- Population age distribution is accounted for in transition probabilities

- Simulation applies these interventions
 - Contact tracing
 - Later: Asymptomatic surveillance
Here’s what happens when contact tracing isn’t good enough

(Results shown are from stochastic compartmental simulation, though resemble a differential equation due to large population size used)
Differential Equation (SIR) models

\(S_t, I_t, R_t \) = fraction of population that is susceptible (S), infectious (I), or recovered (R)

\(\beta = (\text{# contacts / day / person}) \times (\text{# infections transmitted / contact}) \)

Infectious period lasts Exponential(\(\gamma \)) days

\[\frac{dS_t}{dt} = -\beta I_t S_t \]

\[\frac{dI_t}{dt} = \beta I_t S_t - \gamma I_t \]

\[\frac{dR_t}{dt} = \gamma I_t \]

Note: SIR model is shown to provide intuition. Our compartmental sim is much more detailed.
The SIR differential equation produces trajectories like these

When does an epidemic happen?

Recall:

- Infectious period lasts $1/\gamma$ days on average
- $\beta = \text{(# contacts / day / person)}$ ($\text{(# infections transmitted / contact)}$

An epidemic happens if:

- Each infectious person infects more than 1 other person at $S_0=1$, i.e., $R_0 = \beta/\gamma > 1$

We can see this from the differential equation:

- Recall: $\frac{dI_t}{dt} = \beta I_t S_t - \gamma I_t$
- At $S_0 = 1$, $\frac{dI_t}{dt} = (\beta - \gamma) I_t = \gamma (R_0-1) I_t$
- So $I_0 > 0$ grows iff $R_0 > 1$

Note: SIR model is shown to provide intuition. Our compartmental sim is much more detailed.
You can expand these models to account for contact tracing

\[\gamma' = \gamma - \alpha \] is the rate at which people recover without reporting symptoms

\[\alpha = \text{symptom reporting rate} \]

\[N = \# \text{new positive cases found per contact trace} \]
If effective $R_0 > 1$, the epidemic still grows1

effective $R_0 = \text{net # secondary free infections from each primary infection} = \text{(infections/day)} \times \text{days} - \left(\frac{\text{# traced}}{\text{report}} \right) \times P(\text{report}) = R_0 - \frac{N \times \alpha}{\alpha + \gamma'}$

1 Can be shown from the differential equations in the previous slide, with some extra algebra
If “effective R0” (net # free secondary infections per primary) > 1, the epidemic still grows.
Contact tracing isn’t good enough on its own. It needs social distancing.

Parameters* from CDC

- $R_0 \approx 2.5$ (Early in the pandemic, without social distancing)
- % symptomatic = 65%
- Assume all symptomatic cases seek care (optimistic)

Effective $R_0 = R_0 - (\text{# traced / report}) \times P(\text{report}) = 2.5 - (\text{# traced / report}) \times (0.65)$

=> Contact tracing needs to find 2.3 positives per report (92% of the 2.5 secondary cases the reporting case infects).

=> We must rely on compliance with social distancing & masks to reduce R_0
2. Cornell’s testing program
What’s different at Cornell

- Test all students on arrival
- Test students with symptoms
- Test students without symptoms 2x / 1x per week (asymptomatic screening)
- Do traditional contact tracing + adaptive testing on positive cases

Massive # of tests with is enabled by:

- Large PCR capacity at the Vet College
- Pooled testing
- Collaboration with Cayuga Health Systems
Adaptive Testing
Contact tracing is performed. Some contacts of the index case are quarantined. Some contacts are missed.
Adaptive testing tests the social circle of the index cases.
Adaptive testing catches the cases missed by contact tracing.
Asymptomatic Screening
What if we missed one in adaptive testing?
Screen everyone 2 times per week (Monday)

Asymptomatic testing
Screen everyone 2 times per week (Tuesday)
Screen everyone 2 times per week (Tuesday)
Without screening: epidemic grows if $R_0 = \frac{\beta}{\gamma} > 1$

(2.5 > 1)

With screening, epidemic grows if

Effective $R_0 = \frac{\beta}{\gamma + T} < 1$

To keep the epidemic from growing, screen at least 15% of the population per day, i.e., screen everyone once per week.

(Assumes infectious period $1/\gamma$ is 10 days)
Screening 1x per week might be enough, 2x is safer

Testing once every 5 days

Results from our compartmental simulation model
Screening 1x per week might be enough, 2x is safer

Results from our compartmental simulation model
Screening should be targeted

- \(\frac{dl_t}{dt} = S_t \circ \beta l_t - \text{diag}(\gamma+T) l_t \)
- At \(S_0 = [1,...,1] \), \(\frac{dl_t}{dt} = (\beta - \text{diag}(\gamma+T)) l_t \)
- Need all eigenvalues of \(\beta - \text{diag}(\gamma+T) \) to be negative (note \(\beta \) is symmetric => eigenvalues are real)
- If \(\beta \) is diagonal, decomposes to \(\beta_i < \gamma_i+T_i \) for each \(i \)
 (Equivalently, each subpopulation’s effective \(R_0 = \beta_i/(\gamma_i+T_i) < 1 \))
Screening should be targeted

- β is almost diagonal
- T is discrete (1x / wk, 2x / wk, etc.)
- We enumerate options & use comparental simulation to trace a Pareto frontier
- Each letter corresponds to a collection of test frequency assignments
- E.g., “B” means:
 - UG in high-density housing 2x / week
 - Off-campus staff 1x / month
 - Everyone else 1x / week
Adaptive testing gives good infection control with few tests if you can’t screen enough.
Residential instruction is safer than virtual instruction*

- Based on surveys & leases signed with landlords, several thousand undergraduates seemed likely to return to Ithaca, even with virtual instruction only.
- Asymptomatic screening would have been hard to mandate and enforce for these students.
- Under many realistic parameter regimes, epidemics grow exponentially in the virtual instruction population.

* Realizing that we don’t know what virtual instruction would have brought, and have substantial parameter uncertainty (still)
“at Michigan State University, there's been a big jump in cases since some students returned to the town last month, and that's despite the fact that they're not taking any classes in person.”
Takeaways for impacting policy with data science
Sensitivity analysis was critical
Communication was critical

46 thoughts on “Updates from the Modeling Team”

1. June 26, 2020 at 1:00 pm

While I appreciate all of the hard work that went into this report, like many others, I am deeply concerned about the assumptions of the model. By not modeling 50 or 75% compliance and comparing it to 100% compliance in the residential scenario, this report essentially denies us the opportunity to determine what level of compliance would be necessary to limit risk. Maybe 80% compliance is good enough, maybe it's not – but we can't know from what's here. It is also absurd to assume 0 fatalities, based on everything we know about COVID-19 and our local Cornell community. How many members of the Cornell community, exactly, are the president and provost willing to let die to ensure a residential semester? How might different plans affect that number of deaths? Again, we're denied the option to even explore the impacts – any discussion of “risk” that pretends fatality is not on the table is unrealistic at best, deliberately misleading at worst. Making decisions based on this model, given these limitations, is deeply concerning.

4. Testing in the virtual instruction setting + testing compliance in the residential setting

We have analyzed both non-compliance in the residential setting and offering testing in the virtual instruction setting. This was done before the June 15 report was published but was not ready in time to be included in that published report. Some of the results in this analysis are available as a slide in the June 24 faculty senate meeting. We will include a full writeup of this analysis in the addendum.

One way to understand the impact of non-compliance in the residential setting is to look at Figure 15 in the full report, which shows results as a function of the percentage of the population tested each day. If non-compliance is distributed uniformly across the population, then failure to comply is equivalent to 100% compliance with less frequent testing. Using this reasoning, we can see that 71% compliance with 5-day testing in the residential setting is comparable to 100% compliance with 7-day testing with results pictured in Table 14 (1800 infections, 22 hospitalizations).

The analysis to be included in the addendum shows that if we achieve high compliance with once-per-5-day testing in the virtual instruction setting, then we do see fewer infections than the residential setting, with the breakeven point around 50% compliance. (A number of details will be discussed in the addendum.)

Although this falls outside of the realm of modeling, we comment briefly here on some practical reasons that testing with high compliance is difficult in the virtual instruction setting. We defer other legally-focused questions about our ability to mandate testing to University Counsel.

In the residential scenario, Cornell's ability to ensure compliance with testing comes first from the ability to restrict access to physical property for those that miss testing, and also through an RA’s ability to talk directly to students who live in dorms. In the virtual instruction scenario, for students that aren't using Cornell's physical property, this first ability goes away.
As Classes Begin, Cornell’s Reopening Model Is Put to the Test

By Anil Oza

In June, Cornell modeled for a potential campus reopening, when cases nationwide seemed to have plateaued. But since then, the U.S. has seen almost 3 million more COVID-19 cases and 60,000 deaths.

During the past month, many schools, including several of Cornell’s peers in the Ivy League, decided to reverse plans for hybrid semesters and opt for entirely virtual learning. Many schools that suddenly changed their plans cited complications from rising COVID-19 cases nationwide, but Cornell has doubled-down on its plan, promising that it can work until Thanksgiving break.

With classes set to begin in two days, how does Cornell’s model hold up to reality?

According to Prof. Peter Frazier, operations research and information engineering, and the scientist behind Cornell’s model, the recent trend in school closures reinforces the University’s focus on noncompliance to social distancing and asymptomatic screening.

“I would say that monitoring social gatherings and high density housing was and continues to be a focus. The data that we’re getting now kind of allows us to understand that phenomena more,” Frazier said. “That particular
There are fewer infections than predicted among Cornell students, staff & faculty.
Takeaways for impacting policy with data science

- Do what is needed for the real problem, not for the paper
- Have mental models of your computer models
- Communication is critical
- Understand the political environment in which decision makers operate
- Luck helps: our decision makers were scientists
Thank you & stay safe
“From March to early May, we discouraged people with mild and moderate symptoms from being tested, so our data from that period represent mostly people with severe illness.”

https://www1.nyc.gov/site/doh/covid/covid-19-data-testing.page