Lecture 9
PMOS Field Effect Transistor (PMOSFET or PFET)

In this lecture you will learn:

• The operation and working of the PMOS transistor
A PMOS Transistor

Basic Idea: Current can be made to flow in the inversion layer by applying a voltage across it in the horizontal direction.
MOS Transistor: The Gradual Channel Approximation

• The operation of the MOS transistor is best understood under the “gradual channel approximation” which assumes that:

"Electrostatics of the MOS transistor in the horizontal direction have nothing to do with the electrostatics in the vertical direction"

• This assumption decouples the 2-dimensional complicated problem into two 1-dimensional simpler problems – one for the vertical direction and one for the horizontal direction.

• The electrostatics in the vertical direction have already been worked out by us in the context of the MOS capacitor

• In this lecture we will work out the electrostatics in the horizontal direction and calculate the current flow

PMOS Transistor: Current Flow

Current in the inversion channel at the location y is:

$$I_D = -W Q_P(y) v_y(y)$$

$Q_P(y) = \text{Inversion layer charge (C/cm}^2\text{)}$

$v_y(y) = \text{Drift velocity of inversion layer charge (cm/s)}$

Drift velocity of holes is:

$$v_y(y) = \mu_p E_y(y)$$

$E_y(y) = \text{Horizontal component of the electric field (V/cm)}$

Therefore:

$$I_D = -W Q_P(y) \mu_p E_y(y)$$
PMOS Transistor: Current Flow

Let the potential in the channel from the source to the drain end be written as:

\[\phi_s(y) = -\phi_n + V_{CB}(y) \]

At the source end: \(V_{CB}(y = 0) = V_{SB} \)
At the drain end: \(V_{CB}(y = L) = V_{DB} = V_{DS} + V_{SB} \)

Then the horizontal electric field in the channel is:

\[E_y(y) = - \frac{d\phi_s(y)}{dy} = - \frac{dV_{CB}(y)}{dy} \]

Therefore:

\[I_D = W Q_p(y) \mu_p \frac{dV_{CB}(y)}{dy} \]

PMOS Transistor: Inversion Charge

The inversion charge in the channel is:

\[Q_p(y) = \begin{cases} 0 & \text{For } V_{GB} > V_{TP}(y) \\ -C_{ox}(V_{GB} - V_{TP}(y)) & \text{For } V_{GB} \leq V_{TP}(y) \end{cases} \]

Where the position dependent threshold voltage is:

\[V_{TP}(y) = V_{FB} - 2\phi_n + V_{CB}(y) - \frac{-2 \varepsilon_s q N_d (2\phi_n - V_{CB}(y))}{C_{ox}} \]

The channel potential is “y” dependent, and therefore the threshold voltage is also “y” dependent. Consequently, the inversion charge is also “y” dependent.
PMOS Transistor: Inversion Charge and FET Threshold Voltage

So:

\[Q_P(y) = -C_{ox}(V_{FB} - V_{TP}(y)) \]

\[= -C_{ox}\left(V_{GB} - V_{FB} + 2\phi_n - V_{CB}(y) + \sqrt{\frac{2\varepsilon_s \epsilon_d (2\phi_n - V_{CB}(y))}{C_{ox}}} \right) \]

use: \(V_{GB} = V_{GS} + V_{SB} \) and: \(V_{CB}(y) = V_{CS}(y) + V_{SB} \)

\[= -C_{ox}\left(V_{GS} - V_{FB} + 2\phi_n - V_{CS}(y) + \sqrt{\frac{2\varepsilon_s \epsilon_d (2\phi_n - V_{CS}(y) - V_{SB})}{C_{ox}}} \right) \]

\[Q_P(y) = -C_{ox}(V_{GS} - V_{TP} - V_{CS}(y)) \]

The PMOS transistor threshold voltage is defined as:

\[V_{TP} = V_{FB} - 2\phi_n - \frac{\sqrt{2\varepsilon_s \epsilon_d (2\phi_n - V_{SB})}}{C_{ox}} \]

PMOS Transistor: Inversion Charge

The inversion charge in the channel is:

\[Q_P(y) = -C_{ox}(V_{GS} - V_{TP} - V_{CS}(y)) \]

Near the source end:

\[V_{CS}(y = 0) = 0 \]

and

\[Q_P(y = 0) = -C_{ox}(V_{GS} - V_{TP}) \]

Near the drain end:

\[V_{CS}(y = L) = V_{DS} \]

and

\[Q_P(y = 0) = -C_{ox}(V_{GS} - V_{TP} - V_{DS}) \]

Conclusion:

Inversion layer charge is maximum near the source end and minimum near the drain end (as shown graphically in the figure)
PMOS Transistor: Current Flow

Current in the inversion channel at the location \(y \) is:

\[
I_D = -W Q_P(y) \mu_P E(y) = -W Q_P(y) \mu_P \frac{dV_{CS}(y)}{dy} \]

Integrate the above equation from \(y=0 \) to \(y=L \):

\[
\int_0^L I_D \, dy = - \int_0^L W \mu_P C_{ox} (V_{GS} - V_{TP} - V_{CS}(y)) \frac{dV_{CS}(y)}{dy} \, dy
\]

And the result is:

\[
I_D = \frac{W}{L} \mu_P C_{ox} \left[V_{GS} - V_{TP} - \frac{V_{DS}}{2} \right] V_{DS}
\]

Some interpretation is required to understand the range of validity of the above equation. This we do next ……..

PMOS Transistor: Current Flow

First note that:

when \(V_{DS} = 0 \)
then \(I_D = 0 \) \[\text{There can be no current when there is no bias and no electric field in the channel to drive the current} \]

Also note that:

The inversion layer charge is maximum at the source end and is given by:

\[
Q_P(y = 0) = -C_{ox} (V_{GS} - V_{TP} - V_{CS}(y = 0)) = -C_{ox} (V_{GS} - V_{TP})
\]

When \(V_{GS} \geq V_{TP} \) there is no inversion charge anywhere in the channel and therefore \(I_D = 0 \)

Conclusion:

\[
I_D \neq 0 \text{ only when: } V_{GS} < V_{TP} \text{ AND } V_{DS} \neq 0
\]
PMOS Transistor: Current Flow

Suppose now:

\[V_{GS} < V_{TP} \quad \text{and} \quad V_{DS} < 0 \]

First plot the \(I_D - V_{DS} \) curve from the result:

\[I_D = -\frac{W}{L} \mu_p C_{ox} \left[V_{GS} - V_{TP} - \frac{V_{DS}}{2} \right] V_{DS} \]

As \(V_{GS} \) is decreased the current magnitude increases

\[\ldots \ldots \text{but then it decreases} \? \]

This decrease is unphysical!
A mathematical artifact!

Note that current magnitude is maximum when:

\[V_{DS} = V_{GS} - V_{TP} \]

PMOS Transistor: Pinch-Off

The inversion charge in the channel near the drain end is:

\[Q_p(y = L) = -C_{ox} (V_{GS} - V_{TP} - V_{CS}(y = L)) \]
\[= -C_{ox} (V_{GS} - V_{TP} - V_{DS}) \]

When \(V_{DS} \) approaches \(V_{GS} - V_{TP} \) the inversion layer charge just near the drain end approaches zero

This condition is called “pinch-off”

For \(V_{DS} < V_{GS} - V_{TP} \) there is a small section of channel just near the drain end that is almost devoid of mobile carriers (i.e. holes). This is a highly resistive section.
PMOS Transistor: Pinch-Off and Current Saturation

The channel has been “pinched off”

For $V_{DS} \leq V_{GS} - V_{TP}$:

Channel potential: $V_{CS}(y) = V_{GS} - V_{TP}$

Channel potential: $V_{CS}(y) = V_{DS}$

Any decrease in V_{DS} below $V_{GS} - V_{TP}$ completely falls across this small resistive section.

For $V_{DS} < V_{GS} - V_{TP}$, integrate the current equation from $y=0$ to $y=L-\Delta L$:

$$I_D = -\int_0^{L-\Delta L} W \mu_p C_{ox} (V_{GS} - V_{TP} - V_{CS}) dV_{CS}$$

$$\Rightarrow I_D = -\frac{W}{2(L-\Delta L)} \mu_p C_{ox} (V_{GS} - V_{TP})^2 = -\frac{W}{2L} \mu_p C_{ox} (V_{GS} - V_{TP})^2$$

So for $V_{DS} < V_{GS} - V_{TP}$ the current is what it was when V_{DS} was equal to $V_{GS} - V_{TP}$.

Thus for large negative values of $V_{DS} (< V_{GS} - V_{TP})$ the current saturates!

PMOS Transistor: Current Flow

The $I_D - V_{DS}$ curves for an PMOS looks like as shown in the figure.

The three curves are for different values of $V_{GS} - V_{TP}$.

$$I_D = \begin{cases} 0 & \text{For } V_{GS} > V_{TP} \\ -\frac{W}{L} \mu_p C_{ox} \left[V_{GS} - V_{TP} - \frac{V_{DS}}{2} \right] V_{DS} & \text{For } 0 \geq V_{DS} \geq V_{GS} - V_{TP} \\ -\frac{W}{2L} \mu_p C_{ox} (V_{GS} - V_{TP})^2 & \text{For } 0 \geq V_{GS} - V_{TP} \geq V_{DS} \end{cases}$$
PMOS Transistor: Current Flow

The three curves are for different values of \(V_{DS} \):

- **Cut-off region**:
 \[I_D = 0 \]
 For \(V_{GS} > V_{TP} \)

- **Linear region**:
 \[I_D = \frac{W}{L} \mu_p C_{ox} \left(V_{GS} - \frac{V_{DS}}{2} \right) V_{DS} \]
 For \(0 \geq V_{DS} \geq V_{GS} - V_{TP} \)

- **Saturation region**:
 \[I_D = \frac{W}{2L} \mu_p C_{ox} \left(V_{GS} - V_{TP} \right)^2 \]
 For \(0 \geq V_{GS} - V_{TP} \geq V_{DS} \)

PMOS Transistor: Saturation Current vs \(V_{DS} \)

For \(V_{DS} < V_{GS} - V_{TP} \) (in the saturation region), there is a small section of the channel just near the drain end that is almost devoid of mobile carriers (i.e., holes).

Channel potential:
\[V_{CS}(y) = V_{GS} - V_{TP} \]

Channel potential:
\[V_{CS}(y) = V_{DS} \]

In saturation, for \(V_{DS} < V_{GS} - V_{TP} \), integrate the current equation from \(y=0 \) to \(y=L-\Delta L \):

\[I_D = -\int_0^{L-\Delta L} I_D \ dy = -\int_0^{L-\Delta L} \left[\frac{W}{2L} \mu_p C_{ox} \left(V_{GS} - V_{TP} - V_{CS} \right) \right] dV_{CS} \]

\[\Rightarrow I_D = -\frac{W}{2L} \mu_p C_{ox} \left(V_{GS} - V_{TP} \right)^2 \approx -\frac{W}{2L} \mu_p C_{ox} \left(V_{GS} - V_{TP} \right)^2 \left(1 - \frac{\Delta L}{L} \right) \]

\[\approx \frac{W}{2L} \mu_p C_{ox} \left(V_{GS} - V_{TP} \right)^2 \left(1 + \frac{\Delta L}{L} \right) \]
PMOS Transistor: Saturation Current vs V_{DS}

For $V_{DS} < V_{GS} - V_{TP}$ (in the saturation region) there is a small section of the channel just near the drain end that is almost devoid of mobile carriers (i.e., electrons).

Channel potential: $V_{CS}(y) = V_{GS} - V_{TP}$

Channel potential: $V_{CS}(y) = V_{DS}$

To a very good approximation:

\[
\frac{\Delta L}{L} \approx -V_{DS}
\]

\[\Rightarrow \frac{\Delta L}{L} \approx -\lambda_p V_{DS}\]

So for $0 \geq V_{GS} - V_{TP} \geq V_{DS}$ (saturation region):

\[
I_D \approx \frac{W}{2L} \mu_p C_{ox} \left(V_{GS} - V_{TP} \right) ^2 \left(1 - \lambda_p V_{DS} \right)
\]

A better PFET current model is:

\[
I_D = \begin{cases}
0 & \text{For } V_{GS} > V_{TP} \\
-\frac{W}{L} \mu_p C_{ox} \left[V_{GS} - V_{TP} - \frac{V_{DS}}{2} \right] V_{DS} \left(1 - \lambda_p V_{DS} \right) & \text{(Cut-off region)} \\
-\frac{W}{2L} \mu_p C_{ox} \left(V_{GS} - V_{TP} \right) ^2 \left(1 - \lambda_p V_{DS} \right) & \text{(Saturation region)} \\
\end{cases}
\]
The PMOS transistor threshold voltage depends on the applied source to bulk potential difference:

\[V_{TP} = V_{FB} - 2\phi_n - \sqrt{2\varepsilon_s q N_d (2\phi_n - V_{SB})} \]

\[\Rightarrow V_{TP} = V_{TP}(V_{SB} = 0) - \gamma_p \left(\sqrt{2\phi_n - V_{SB}} - \sqrt{2\phi_n}\right) \]

\[\gamma_p = \frac{\sqrt{2\varepsilon_s q N_d}}{C_{ox}} = \text{Backgate effect parameter} \]

To get rid of the body effect, one can short the bulk (or the backgate) to the source such that \(V_{SB} = 0 \)

\[V_{TP} = V_{TP}(V_{SB} = 0) - \gamma_p \left(\sqrt{2\phi_n - V_{SB}} - \sqrt{2\phi_n}\right) \]

However, depending on the technology used, this may not always be possible……..
PMOS Transistor: Velocity Saturation

The drift velocity vs field curve for almost all materials is not linear and therefore
\[v_{dp} = \mu_p E \]
does not really hold

Drift velocity saturates at high fields!

A better approximation is:
\[v_{dp} = \mu_p E \frac{E}{E_{sat}} \]

In Silicon: \(E_{sat} \approx 5 \times 10^4 \) V/cm

Current in the inversion channel at the location \(y \) is:
\[I_D = -W Q_p(y) \mu_p E(y) \frac{E}{1 + \frac{E}{E_{sat}}} = -W C_{ox} (V_{GS} - V_{TP} - V_{CS}) \frac{\mu_p}{1 + \frac{E_{sat}}{E}} \frac{dV_{CS}(y)}{dy} \]

Integrate the above equation from \(y=0 \) to \(y=L \):
\[\int_0^L 1 \frac{dV_{CS}(y)}{dy} \frac{1}{E_{sat}} \frac{dy}{dy} dy = - \int_0^L W \mu_p C_{ox} (V_{GS} - V_{TP} - V_{CS}) dV_{CS} \]

Answer is (in linear region):
\[I_D = - \frac{W}{L} \mu_p C_{ox} (V_{GS} - V_{TP} - V_{DS}) \frac{V_{DS}}{1 + \frac{V_{DS}}{V_{sat}}} \frac{V_{sat}}{V_{sat}} \]

Answer is (in saturation region):
\[I_D = - \frac{W}{2L} \frac{\mu_p}{1 + \frac{V_{GS} - V_{TP}}{V_{sat}}} C_{ox} (V_{GS} - V_{TP})^2 \]

Velocity saturation decreases the current
PMOS Transistor: Breakdown

Potential drop in this region:
\[|V_{DS} - (V_{GS} - V_{TN})| \]

Field in this region:
\[\frac{|V_{DS} - (V_{GS} - V_{TN})|}{\Delta L} \]

Large fields near the drain end in saturation can lead to breakdown.

Breakdown limits the maximum value of \(V_{DS} \).

Channel potential:
\[V_{CS}(y) = V_{GS} - V_{TP} \]

Channel potential:
\[V_{CS}(y) = V_{DS} \]

Breakdown

\[V_{DS} \]

\[I_D \]