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Abstract 

This project aims to understand how self-assessed health status relates to preferences for cycling in-

frastructure. An integrated latent class and latent variable choice model is fitted using responses to a 

stated preference experiment from a panel of New York City residents (N = 801). Estimates show that 

people with stated good physical health tend to have preference parameters similar to those of experi-

enced cyclists. This result means that the provision of cycling infrastructure with the purpose of at-

tracting non-cyclists also has the potential of attracting those with worse health outcomes. This result 

suggests a double benefit coming from car use reduction and lower health spending. 

Keywords: Transportation and health, cycling, latent variable, latent class 

  



Introduction 

The past two decades have seen increasing research interest in the analysis of cyclists’ 

preferences for cycling infrastructure [1, 2]. These studies have used different methods to 

identify the built environment characteristics that are preferred by cyclists, and that could 

therefore be exploited to encourage a broader modal shift toward sustainable transportation. The 

vast consensus is that cyclists prefer infrastructure that is separated from traffic, as well as 

shorter and more direct routes [3]. 

Even though this consensus may be true for the population as a whole, there are significant 

differences both within cyclists and non-cyclists that should be considered during policy 

formulation. For example, a review carried out by Aldred et al. [4] shows that women and the 

elderly tend to have a stronger preference for segregated cycling paths. Another distinction that 

has been identified in the literature has to do with cycling experience. People that have less 

cycling experience also tend to have a stronger preference for segregation from motorized 

vehicles [5, 6]. This information can be used by city planners to tailor their policies to the needs 

of different segments of the population. 

The relationship between health and cycling has also been heavily studied, but unfortunately not 

from the point of view of infrastructure provision or preferences. The research questions relating 

the two have primarily focused on the effects cycling has on people’s health. As expected, 

previous research has concluded that, on average, cyclists have a lower prevalence of diabetes, 

hypercholesterolemia, and obesity [7, 8]. Understanding the interconnection of cycling 

preferences and health could lead to infrastructure that is better suited to the less healthy segment 

of the population, motivating this segment to start cycling and improve their health outcomes. 

In this study, we address the relationship between self-assessed health status and infrastructure 

preferences. We do this using data collected from an online survey of New York City residents. 

We then use this data to estimate a latent class and latent variable choice model that describe 

health outcomes and cycling experience. Results show that respondents with higher body mass 

indices (BMI) and worse self-assessed health status have a stronger preference for segregated 

infrastructure and a lower sensitivity toward travel time. 

 



The rest of the report is organized as follows: The data collection process is described first, with 

a description of the sample. Then, the latent class and latent variable methodology is presented. 

After this, results are shown and discussed. 

 

  



Data collection and preliminary analyses 

We use microdata from an online survey carried out during December of 2019. This survey 

included several types of questions, including sociodemographic information, general travel 

patterns, and physical fitness indicators. Respondents were recruited from a representative 

Qualtrics panel. All respondents were regular New York City commuters (to work or school), 

over 18 years of age. Table 1 summarizes select characteristics of the sample. 

Table 1: Sample characteristics 

Characteristic  Level  Value  

Gender  Male  39.3%  

 
Female  60.7%  

Age  Mean  35.6  

 
Standard deviation  13.7  

Household income  Less than $10,000  5.9%  

 
$10,000 - $15,000  2.6%  

 
$15,000 - $25,000  7.7%  

 
$25,000 - $35,000  8.9%  

 
$35,000 - $50,000  10.9%  

 
$50,000 - $75,000  19.7%  

 
$75,000 - $100,000  15.6%  

 
$100,000 - $150,000  11.2%  

 
$150,000 - $200,000  5.1%  

 
$200,000 - $500,000  4.7%  

 
More than $500,000  2.0%  

Race or ethnicity  American Indian or Alaska Native  < 0.1%  

 
Asian  12.6%  

 
Black or African American  25.6%  

 
Native Hawaiian or other Pacific Islander  < 0.1%  

 
White  46.2%  

 
Other, including multi-racial  0.1%  

 
Hispanic or Latino  28.0%  



Characteristic  Level  Value  

Cars available  None  34.7%  

 
One  47.4%  

 
Two  14.6%  

 
Three or more  3.2%  

Home location  Bronx  15.2%  

 
Brooklyn  25.0%  

 
Manhattan  35.6%  

 
Queens  22.3%  

 
Staten Island  1.9%  

BMI  Mean  25.3  

 
Standard deviation  5.9  

 
Obese (BMI > 30)  18.7%  

 
Overweight (25 BMI < 30)  26.8%  

 
Healthy (18:5 BMI < 25)  53.8%  

 
Underweight (BMI < 18:5)  0.7% 

The section of the survey that is most relevant to this study is a set of choice experiments 

regarding route choice using public bicycles. Each respondent faced seven binary choice 

scenarios, where two hypothetical routes were shown. The scenarios were developed in a virtual 

city environment similar to a typical Manhattan avenue. Examples of the virtual cycling 

conditions are shown in Figure 1, and the experimental attributes with their levels are shown in 

Table 2. A total of 5,560 choices were recorded. 

Table 2: Attribute levels of choice scenarios 

Variable Levels 

Travel time Pivoted around respondents’ stated travel time. 

Traffic / Speed Heavy traffic and slow speeds, or normal traffic flow with high speeds. This relationship 

was designed to replicate a slow, congested street, or an uncongested street with cars 

driving at the speed limit. 

One or two way lane Either one or two-way cycle lanes. 

Parking Inexistent, on left or on right. 

Lane design Painted surface and/or with a buffer between the lane and cars. All choice scenarios had 

at least one of these possible protections. 



 

Figure 1: Examples of choice scenarios presented to respondents 

Several effect indicators were also collected to identify respondents’ health outcomes and 

cycling experience. We fitted a structural equation model to confirm the relationship between the 

effect indicators and the latent variables of interest, as well as to identify respondents’ 

characteristics that correlate with the underlying factors. The significant indicators are shown in 

Table 3. 

The fitted structural equation model produced two underlying dimensions (latent variables): 

“experienced cyclist” and “poor health status.” These, in turn, are negatively correlated between 

them (Figure 2). 

  



Table 3: Indicators used to fit a latent variable model using structural equation modeling 

Indicator Type of response 

Health outcomes 
 

Body Mass Index (BMI) Continuous. Constructed using stated height and weight. 

Self-reported health status 5 point Likert scale, from “Excellent” to “Very poor.” 

Cycling experience 
 

Self-description of type of cyclist 4 point ordinal response, from “An advanced, confident 

cyclist who is comfortable riding in most traffic 

situations” to “I do not know how to bike.” 

Uses app to access Citi Bike Binary 

Bikes at least once a week 

during the fall or spring (two 

indicators) 

Binary 

Typically walks or bikes during a 

weekday or weekend for more than 

10 minutes (two indicators) 

Binary 

 

Figure 2: Relation between the two latent variables produced by the structural equation model, at 

the respondent level 

  



Methodology 

To identify how preference structures vary across respondents depending on their general health 

outcome, we use an integrated choice and latent class model. Nevertheless, because these health 

outcomes are not directly measurable using an online survey, we model them using latent 

variables. This produces an integrated choice, latent class and latent variable model. Each one of 

these components, as well as their integration, is described in the following subsections. 

 

Latent class choice models 

One strategy for modeling unobserved heterogeneity in preferences is to assume a discrete 

distribution of preferences, representing a discrete number of consumer categories of classes. 

Econometrically, the underlying categories may be inferred by estimating latent classes, as 

proposed by Kamakura and Russell [9]. Latent class choice models include two components: one 

relates individuals to the latent (unobserved) classes, whereas the other relates individuals to 

choices given their latent class. 

The utility derived by individual j when they choose alternative i given that they belong to 

class s can be represented by (1). Xij is a vector of observed alternative attributes and consumer 

characteristics, and βs is a vector of class-specific taste parameters. Utility Uij
s can take different 

forms across classes, including varying distributional assumptions for the class-specific error 

component, εij
s, and the specification of the indirect utility function, V s. 

𝑈𝑖𝑗
𝑠 = 𝑉𝑠(𝑿𝑖𝑗; 𝜷𝑠) + 𝜀𝑖𝑗

𝑠 (1) 

If we assume, first, a random utility maximization framework and, second, that εs are 

independent and identically distributed Extreme Value Type I, then the probability 

that j chooses i given that they belong to class sis equal to the conditional logit choice probability 

(2). Cjs is the choice set individual j faces given that they belong to class s in this equation. 

If V s is assumed to have a linear specification, as is usually done in the literature, the scale 

parameter μs has to be normalized to ensure parameter identification. 

𝑃𝑗(𝑖|𝑠, 𝑿𝑖𝑗; 𝜷𝑠) =
exp (𝜇𝑠𝑉𝑠(𝑿𝑖𝑗; 𝜷𝑠))

∑ exp (𝜇𝑠𝑉𝑠(𝑿𝑙𝑗; 𝜷𝑠))𝑙∈𝐶𝑗𝑠

(2) 



Since class membership cannot be directly observed, it is useful to construct some probabilistic 

measure relating individuals to classes. Let’s define a class-membership link function Wjs as 

shown in (3), where γs is a vector of class-specific parameters relating observable consumer 

characteristics, Xj, with class s. Note that function Z may be specified in such a way that it only 

depends on a constant that must be estimated. Nevertheless, this approach is not informative on 

the relationship between individual characteristics and preference patterns. 

𝑊𝑗𝑠 = 𝑍(𝑿𝑗; 𝜸𝑠) + 𝜁𝑗𝑠 (3) 

We will assume the probability that a consumer j belongs to class s is proportional to the class-

membership function, Wjs and that ζ are independent and identically distributed Extreme Value 

Type I. With this, the probability that j belongs to s is given by the multinomial logit probability 

(4). If Z has a linear specification, the scale parameter ς has to be once again normalized. 

𝑃𝑗(𝑠|𝑿𝑗; 𝜸𝑠) =
exp (𝜍 ⋅ 𝑍(𝑿𝑗; 𝜸𝑠))

∑ exp (𝜍 ⋅ 𝑍(𝑿𝑗; 𝜸𝑝))𝑆
𝑝=1

(4) 

To obtain the unconditional probability of j choosing i, we must marginalize 𝑃𝑗(𝑖|𝑠) over 𝑃𝑗(𝑠), 

as shown in (5). 

𝑃𝑗(𝑖|𝑿𝑖𝑗; 𝜷, 𝜸) = ∑ 𝑃𝑗(𝑖|𝑠, 𝑿𝑖𝑗; 𝜷𝑠) ⋅ 𝑃𝑗(𝑠|𝑿𝑗; 𝜸𝑠)

𝑆

𝑠=1

(5) 

One advantage this approach has is that it is fairly simple and straightforward. Moreover, since 

classes are discrete categories, this marginalization does not require to simulate an integral. This 

model’s main disadvantage is that it is non-convex, which may make maximum likelihood 

estimation difficult. 

The latent class logit model has been applied in varied settings. Some examples include 

preference for residential location [10], medical procedures [11, 12], transportation modes 

[13, 14, 15, 16], vehicle ownership [17], and in the field of environmental economics [18, 19]. 



 

The Integrated Choice and Latent Variable model (ICLV) 

Another way of accounting for unobservable factors in the decision-making process is through 

latent variables. Latent variables are those that affect the decision-making process but cannot be 

directly measured. Previous research has exploited latent variables in many ways, including 

environmental concerns [20], risk aversion [21], or perceived quality [22]. 

A discrete choice model that considers unobservable attributes can be described by (6), 

where Xin
* is a vector of latent variables. Assuming once again that ε are independent and 

identically distributed Extreme Value Type I and that V has a linear specification, the choice 

probability can be expressed as the conditional logit probability (7). 

𝑈𝑖𝑗 = 𝑉(𝑿𝑖𝑗 , 𝑿𝑖𝑗
∗ ; 𝜷) + 𝜀𝑖𝑗 (6) 

𝑃𝑗(𝑖|𝑿𝑖𝑗 , 𝑿𝑖𝑗
∗ ; 𝜷) =

exp (𝑉(𝑿𝑖𝑗 , 𝑿𝑖𝑗
∗ ; 𝜷))

∑ exp (𝑉(𝑿𝑙𝑗 , 𝑿𝑙𝑗
∗ ; 𝜷))𝑙∈𝐶𝑗

(7) 

To derive a choice probability that does not depend on unobservables, some distribution for the 

latent variable must be specified. Therefore, a stochastic model must be built relating these latent 

variables with observable variables, such as the one shown in (8). Here, function X* describes the 

structural relation between observable and unobservable variables through parameters λ. The 

error term ωij accounts for variables not included in this model that affect Xij
*. 

𝑿𝑖𝑗
∗ = 𝑋∗(𝑿𝑖𝑗; 𝝀) + 𝜔𝑖𝑗 (8) 

The latent variable model is completed with a measurement relationship that can be expressed in 

general terms by (9), where function I relates the response to some effect indicator Iij with the 

underlying latent construct Xij
*. Common specifications for these measurement relations are 

linear regressions when Iij is continuous, or ordered logit or probit models when Iij is a 

categorical variable, such as a Likert scale. 

𝐼𝑖𝑗 = 𝐼(𝑿𝑖𝑗
∗ ; 𝝉) + 𝜈𝑖𝑗 (9) 

From this system of equations, an unconditional choice probability can be derived using (10), 

where g and f are density functions of Iij and Xij
* respectively. 



𝑃𝑗(𝑖|𝑿𝑖𝑗 , 𝐼𝑖𝑗; 𝜷, 𝝉, 𝝀) = ∫ 𝑃𝑗(𝑖|𝑿𝑖𝑗 , 𝑿𝑖𝑗
∗ ; 𝜷) ⋅ 𝑔(𝐼𝑖𝑗|𝑿𝑖𝑗

∗ ; 𝝉) ⋅ 𝑓(𝑿𝑖𝑗
∗ ; 𝝀) 𝑑𝑿𝑖𝑗 (10) 

This Integrated Choice and Latent Variable model (ICLV) was proposed by Walker and Ben-

Akiva [23] and has gained wide popularity in the choice modeling community, despite some 

criticisms. Even though most applications involve attitudinal latent variables (those that are 

related to some unobservable characteristic of consumers), perceptual latent variables can also be 

constructed Bahamonde-Birke et al. [24]. 

 

A latent class logit model with latent variables 

An empirical problem of latent class choice models is that there is no clear interpretation of the 

fitted latent segments. What researchers usually do is to make intuitive sense of the overall 

segment by looking at the observable variables correlated with class membership model. These 

interpretations are hypotheses and not conclusions founded on the econometric model itself. If 

attitudinal latent variables are used to construct the class-membership model, direct and 

empirically well-founded relationships between latent constructs and class-specific taste 

parameters can be derived. This approach also frees the researcher from subjective 

interpretations of the parameters. 

A latent class logit model with latent variables can be constructed by defining the class-

membership function solely based on latent variables, as in (11). This model produces a class-

membership and choice probabilities conditional on these latent variables, shown in (12) and 

(13). 

𝑊𝑗𝑠 = 𝑍(𝑿𝑗
∗; 𝜸𝑠) + 𝜁𝑗𝑠 (11) 

𝑃𝑗(𝑠|𝑿𝑗
∗; 𝜸𝑠) =

exp (𝜍 ⋅ 𝑍(𝑿𝑗
∗; 𝜸𝑠))

∑ exp (𝜍 ⋅ 𝑍(𝑿𝑗
∗; 𝜸𝑝))𝑆

𝑝=1

(12) 

𝑃𝑗(𝑖|𝑿𝑖𝑗 , 𝑿𝑗
∗; 𝜷, 𝜸) = ∑ 𝑃𝑗(𝑖|𝑠, 𝑿𝑖𝑗; 𝜷𝑠) ⋅ 𝑃𝑗(𝑠|𝑿𝑗

∗; 𝜸𝑠)

𝑆

𝑠=1

(13) 

From the system of equations, we can obtain an unconditional choice probability that can be used 

to make inference, as shown in (14). 



𝑃𝑗(𝑖|𝑿𝑖𝑗 , 𝐼𝑖𝑗 ; 𝜷, 𝝉, 𝝀, 𝜸) = ∫ (∑ 𝑃𝑗(𝑖|𝑠, 𝑿𝑖𝑗; 𝜷𝑠) ⋅ 𝑃𝑗(𝑠|𝑿𝑗
∗; 𝜸𝑠)

𝑆

𝑠=1

) ⋅ 𝑔(𝐼𝑖𝑗|𝑿𝑗
∗; 𝝉) ⋅ 𝑓(𝑿𝑖𝑗

∗ ; 𝝀) 𝑑𝑿𝑗
∗(14) 

Model parameters can be obtained using maximum likelihood estimation. Assuming that there 

are a total of N respondents and that each respondent n observed Tj choice scenarios, the 

likelihood can be expressed as: 

ℒ(𝜷, 𝝉, 𝝀, 𝜸|𝑿) = ∏ ∫ ∏ 𝑃𝑗(𝑖|𝑿𝑖𝑗𝑡 , 𝑿𝑗
∗; 𝜷, 𝜸)

𝑇𝑗

𝑡=1

⋅ 𝑔(𝐼𝑖𝑗|𝑿𝑗
∗; 𝝉) ⋅ 𝑓(𝑿𝑗

∗; 𝝀) 𝑑𝑿𝑗
∗

𝐽

𝑗=1

(15) 

There are a few examples of this model being used in the literature, including Hess et al. [20] and 

Krueger et al. [25]. 

Results 

The following subsections discuss the results of modeling the data presented in a previous 

section using the latent class and latent variable method. We will first discuss direct estimates, 

and then analyze marginal rates of substitution of the two models obtained. All results shown 

were obtained using the Apollo package in R [26]. 

This section presents results for two latent class and latent variable models. The one that 

addresses this study’s research question uses a latent variable describing health status to 

infrastructure preference. The second one relates cycling experience to these preferences. This 

model was estimated to compare and validate the results of the first one. Note that because these 

two latent variables are highly correlated (see Figure 2), both could not be integrated into a 

single model. Finally, a standard conditional logit was also estimated to have a baseline 

comparison for parameter estimates, marginal rates of substitution, and goodness-of-fit 

measures. Table 4 shows the results for all models. 

First, the likelihood values at convergence of the choice components for the latent class and 

latent variable models are higher than the one for the baseline MNL model. On the one hand, this 

result means that there is significant preference heterogeneity that cannot be captured by the 

conditional logit. On the other hand, the choice likelihood of Model 1 is slightly higher than the 

one of Model 2. Nevertheless, these differences are small. 



The latent variable model shows that “Poor health status” and “Experienced cyclist” tend to have 

parameters with opposite signs. This sign difference implies that the negative correlation found 

in the structural equation model mentioned before still holds here. People tend to have better 

health status and cycling experience if they are men, younger, own a car, and live in Manhattan, 

as opposed to other New York City boroughs. Some of these results are consistent with previous 

findings. For example, Rossetti et al. [5] also found that younger men tend to be more 

experienced cyclists. 

People that have a better health status and more experience cycling have a higher probability of 

belonging to Class 1 of Model 1 and Class 2 of Model 2. These classes show similar preference 

structures. For example, both have a negative parameter related to travel time, as expected. 

Moreover, these individuals show distaste for parking, and preference for painted and buffered 

cycle lanes. These results are in line with previous findings for people that have some experience 

in cycling [e.g., 5, 6]. Class 1 of Model 1 and Class 2 of Model 2 also have the same signs as the 

parameters in the baseline MNL model. 

The taste parameters for the other classes show behavioral patterns that are not consistent with 

economic theory. Most strikingly, the parameters related to travel time are either positive or not 

significant, meaning respondents in these classes tend to prefer longer routes or not care about 

travel time at all. This result is analyzed in depth in the following subsection. 

 

 

  



Table 4: Integrated choice, latent class and latent variable models, together with a baseline 

multinomial logit model (MNL). Notes: ***: p < 0.001, **: p < 0.01, *: p < 0.05. Robust std. 

errors used. Parameters of measurement eqs. not reported. 

 Baseline: MNL  Model 1: Health status  Model 2: Cycling exp.  

Choice model     
Class 1     
Time  -0.0389*** (-5.41)  -0.0636*** (-6.80)  1.34* (2.05)  

Heavy traffic  0.174*** (3.67)  0.116 (1.79)  0.211 (0.76)  

Two way  0.299*** (6.79)  0.163** (2.86)  5.02* (2.08)  

Parking on left  -0.770*** (-5.42)  -0.620*** (-3.34)  -3.45 (-1.00)  

Parking on right  -0.261*** (-5.04)  -0.415*** (-6.10)  -5.94 (-1.47)  

Paint  0.294* (2.21)  0.582*** (3.77)  10.0*** (11.24)  

Buffer  1.33*** (22.45)  0.695*** (10.35)  13.5* (2.06)  

Class 2     
Time   1.11* (2.18)  -0.0635*** (-6.94)  

Heavy traffic   0.138 (0.54)  0.111 (1.74)  

Two way   4.19* (2.25)  0.164** (2.91)  

Parking on left   -1.74 (-0.69)  -0.622*** (-3.37)  

Parking on right   -4.18 (-1.46)  -0.418*** (-6.26)  

Paint   12.1*** (17.38)  0.583*** (3.82)  

Buffer   10.8* (2.28)  0.699*** (10.41)  

Class membership model (Class 2)     
Intercept   -0.653*** (-3.38)  0.546*** (4.11)  

Poor health status   0.487* (2.51)   
Exp. cyclist    0.827*** (3.33)  

Latent variable model     
Female   0.625*** (4.11)  -0.202*** (-4.69)  

Age   0.0192*** (4.00)  -0.00345* (-2.29)  

Driver’s license   -0.497* (-2.55)  0.110* (2.22)  

N. of cars: None   0 (fixed)  0 (fixed)  

N. of cars: One   -0.271 (-1.54)  0.106* (2.17)  

N. of cars: Two or more   -0.696** (-2.89)  0.142* (2.44)  

Employed   -0.496** (-2.78)  0.0587 (1.38)  

Home location: Manhattan   0 (fixed)  0 (fixed)  

Home location: Bronx   0.509 (1.88)  -0.0762 (-1.15)  

Home location: Brooklyn   0.413* (2.21)  -0.135** (-2.68)  

Home location: Queens   0.530** (2.63)  -0.175** (-3.22)  

Standard deviation   1.11*** (3.62)  0.436*** (12.15)  

# of individuals  801  801  801  

# of observations  5,560  5,560  5,560  

log-likelihood  -2,898.89  -6,056.47  -7,094.20  

log-likelihood (choice model)  -2,898.89  -2,701.53  -2,709.00  

Draws for simulated integral  -  1,000 (Halton)  1,000 (Halton)  

# of parameters  7  30  30 

 

  



Marginal rates of substitution 

The ideal bicycle lane design has been a matter of debate among urban designers. City planners 

usually have to deal with the trade-off between segregation from cars (something the literature 

has consistently demonstrated is desirable for cyclists) and cost. Whereas cheaper bicycle lanes 

allow to expand the network at a faster pace, this cheaper infrastructure can fail to attract or even 

deter new riders. Given this dichotomy, the marginal rate of substitution (MRS) between 

different kinds of designs and travel time can help assess the costs and social benefits of different 

approaches to cycling infrastructure provision. 

 

Table 5 shows MRSs of interest. Since the maximum likelihood estimation parameters 

asymptotically distribute Normal, the MRSs were derived using the Delta method. The sample 

mean MRSs, on the other hand, are a weighted mean of these MRSs considering the individual-

level class membership probabilities. 

 

Table 5: Select marginal rates of substitution (MRS). Notes: ***: p < 0.001, **: p < 0.01, *: p < 0.05. MRS and (t-

satistics) reported. Robust standard errors used for Delta method. †t-statistics calculated with respect to 1. 

 Class 1  Class 2  Sample mean  

Baseline: Multinomial logit model 
   

Time and Paint  -7.56* min. (-2.05)  
  

Time and Buffer  

-34.23*** min. (-

5.75)  
  

Paint and Buffer† 0.221*** (-7.51)  
  

Model 1: Health status 
   

Time and Paint  -9.15** min. (-3.23)  10.83* min. (2.24)  -1.15 min. (-0.73)  

Time and Buffer  

-10.94*** min. (-

6.81)  9.74*** min. (8.78)  -2.66 min. (-1.63)  

Paint and Buffer† 0.836 (-0.66)  1.11 (0.24)  0.947* (-2.44)  

Model 2: Cycling experience 
   

Time and Paint  7.48* min. (2.08)  -9.17*** min. (-3.30)  -2.56** min. (-4.47)  

Time and Buffer  

10.08*** min. 

(11.35)  

-11.00*** min. (-

7.09)  -2.63*** min. (-3.63)  

Paint and Buffer† 0.742 (-0.72)  0.834*** (3.39)  0.797*** (-64.60) 



As expected, the class of experienced cyclists and people with good health outcomes are willing 

to increase their travel time in exchange of a more protected cycle lane. The detours these 

individuals were willing to make also fall within reasonable ranges: on average, respondents are 

willing to increase their travel time by approximately 9 and 11 minutes to access a painted and 

buffered cycle lane, respectively. The MRSs between the two types of design show that the 

differences between both are either not significant, or that buffered lanes are preferable. The 

MRS between painted and buffered infrastructure for the whole sample confirm that preference 

for buffered lanes is significantly higher than for painted lanes. 

The classes with unexpected travel time sensitivities seemed to behave in the opposite direction: 

their MRSs state that individuals are actually willing to take a longer, unprotected route than a 

shorter, protected one. In spite of this, the MRSs for the whole sample have the expected signs, 

and in the case of Model 2 are significantly lower than zero. This result suggest that the latent 

classes captured a wide preference heterogeneity within the sample. 

 

Figure 3: Empirical distributions of select marginal rates of substitution, at the respondent level 

Another way of observing this is through the distribution of mean MRSs among the sample. 

Figure 3 shows these distributions for the three MRSs considered in Table 5. In the case of 

Model 2, all respondents had mean MRSs with expected signs. This model shows that while the 

mean MRSs differ across the sample, individuals did not consistently prefer longer, more 

unprotected routes. Individuals’ preference structures, then, lie between the two classes, and 



cannot be described by only one. This is also shown in Figure 4, where it can be observed that 

respondents’ class membership probabilities lie within mid-range values. 

 

Figure 4: Empirical distributions of class-membership probabilities 

Something different happened in the case of Model 1, where the mean MRSs are more spread 

out. This result may be a consequence of the larger variance in the class-membership component 

of Model 1. This produces more weakly identified class membership probabilities. Nevertheless, 

these values could show there are other underlying issues with the dataset. For example, people 

with worse health status may not experience cycling often, and therefore cannot consider the 

attributes adequately. Another issue could be that the latent variable and latent classes are weakly 

identified, and therefore cannot capture respondents’ underlying heterogeneity correctly. 

Even though the MRSs for the conditional logit model have expected signs, their magnitudes 

differ from the sample means in the random parameter logit models. This difference in 

magnitude is likely coming from the conditional logit model not being able to recover 

heterogeneity in preferences. 

  



Conclusions 

Previous research dedicated to identifying preferences for cycling infrastructure has failed to 

consider the relationships of those preferences with health status. Understanding this association 

is essential for policymakers to improve health outcomes from the low-impact physical exercise 

that comes from cycling. If the specific needs of those with poorer health outcomes are addressed 

in the infrastructure design process, there is a higher likelihood that they will engage in active 

transportation and improve their health. 

We used a stated preference data set from New York City to fit an integrated choice, latent class 

and latent variable model to identify the relations between health and infrastructure preference. 

Results show that people with lower health outcomes tend to be less sensitive to travel time and 

more sensitive to protection from motorized vehicles. This preference structure is also very 

similar to the one of inexperienced cyclists. 

This study provides evidence that supports a double benefit from policies that promote cycling 

among the inexperienced: these not only have the potential benefit of producing a shift towards 

more sustainable modes of transportation, but also promote more physical exercise among the 

population that is less physically fit. This double benefit has the potential to reduce public health 

spending, as well as to decrease future spending to counter the effects of climate change. 
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