Combustion of \(n \)-butyl acetate synthesized by a new and sustainable biological process and comparisons with an ultrapure commercial \(n \)-butyl acetate produced by conventional Fischer esterification

Yujie Wang\(^a\), Zhu Chen\(^b\), Matthew Haefner\(^a\), Songtao Guo\(^a\), Nicholas DiReda\(^a\), Yuechao Ma\(^b\), Yi Wang\(^b\), C. Thomas Avedisian\(^a\),\(^*\)

\(^a\) Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, United States
\(^b\) Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, United States

A R T I C L E I N F O

Keywords: Butyl acetate, Droplet combustion, Biofuels, Soot, Microgravity, genome engineering

A B S T R A C T

This paper reports a study of the combustion dynamics of \(n \)-butyl acetate (BA) using the configuration of a burning droplet. Two grades of BA were examined: one (SBA) synthesized by a new process described in the paper that uses a metabolically engineered solventogenic *Clostridium* strain through an extractive fermentation process using \(n \)-hexadecane as the extractant; and one commercially available as a high-purity (99.9\%) ‘neat’ BA grade produced by conventional Fischer esterification (NBA). The initial droplet diameter was primarily 0.6 mm with some limited experiments carried out for 0.4 mm droplets to show the influence of convection. Experiments were performed in the standard atmosphere and ignition was by spark discharge. The results showed the presence of impurities in the SBA at mass concentrations totaling about 6\% which included \(n \)-butanol, \(n \)-hexadecane, iso-propyl alcohol and ethyl acetate. Droplet burning rates and flame structures were not influenced by these impurities at this concentration level. In the presence of convection created by buoyancy, droplets burned faster with stretched flames and a luminosity revealing the presence of soot by incandescence at the flame tips. Reducing the initial droplet diameter to 0.4 mm eliminated the convective effect and resulted in near spherical flames. The results presented show that the new synthesis process is a sustainable alternative for BA production with burning characteristics identical to NBA in both convective and stagnant gas transport fields.

1. Introduction

The promise of biofuels lies in their potential to provide a sustainable alternative to fossil fuels that power energy systems such as combustion engines especially when blended with such fuels. Their development comes at a time of renewed interest in reducing greenhouse gases and particulate emissions from ground transportation vehicles. For example, fuel economy standards are being proposed in the United States that will require automobiles to reach 51 miles per gallon by 2026 [1]. Blending biofuels with petroleum fuels (e.g., diesel, gasoline) is an effective way to realize a volumetric reduction of fossil fuels with generally favorable fuel economy standards being proposed in the United States that will require automobiles to reach 51 miles per gallon by 2026 [1]. Blending biofuels with petroleum fuels (e.g., diesel, gasoline) is an effective way to realize a volumetric reduction of fossil fuels with generally favorable impacts on particulate and gaseous emissions. At the same time, blending biofuels with neat petroleum fuels typically results in heats of combustion that are lower than the petroleum fuel [2], and blending can reduce fuel economy.

Many biofuels have recently been considered as additives to petroleum fuels to replace the widely used ethanol. Detailed screening processes have been developed to aid in the selection. For example, a tiered process of screening was developed based on fuel properties such as boiling point, freezing point, miscibility with hydrocarbons, vapor pressure and oxidation stability among others [3,4]. A ‘merit’ function (MF) for gasoline blending was described [5] based on a formula which included a number of thermal properties to screen various biofuels: the higher the MF, the more attractive would be the biofuel as a bio-blendstock for gasoline.

Among the biofuels considered for blending with gasoline or diesel are esters. Their production can be renewable and environmentally friendly [6,7]. \(n \)-butyl acetate (BA; \(\text{C}_6\text{H}_{12}\text{O}_2 \)) in particular has favorable properties as a sustainable biofuel additive to petroleum fuels, including considerations of freezing, boiling and flash points [2]. As an oxygenated compound, BA shares with other biofuels a propensity to reduce (though not completely eliminate) particulate emissions through mechanisms based on carbon/
oxygen bonds in the biofuel molecule which restrict carbon from becoming incorporated into soot \cite{8}. Several concerns need to be addressed before BA can become a commercial additive to petroleum fuels. A sustainable method of production must be developed that can produce BA in the quantities needed to meet the needs of the transportation sector. In 2019, this need would have been almost five billion gallons for biofuel additives to diesel fuel at a 10% loading \cite{9}.

BA is conventionally produced by the Fischer esterification process. Fischer esterification usually needs a strong acid (such as sulfuric acid) as the catalyst which consumes comparatively high energy as the reactions are carried out at environmentally unfriendly \cite{6,10,11}. The production process consumes comparatively high energy as the reactions are carried out at 60–110 °C. On the other hand, the microbial fermentation process described here can be carried out at room temperature with greater selectivity for BA production.

We hypothesized that solventogenic clostridia can be an excellent microbial platform for BA production by taking advantage of its natural pathways for co-producing acyl-CoAs (acetyl-CoA and butyryl-CoA), fatty acids (acetate and butyrate), and alcohols (ethanol and butanol) either as intermediates or end-products. Through systematic genome engineering we developed a specific strain, *C. saccharoperbutylicatonicum* FJ-1201, with potential yields of 20.3 g/L BA using monosugars (glucose and xylose) which could be generated from lignocellulosic biomass as the substrate in an extractive batch fermentation process with *n*-hexadecane as the extractant \cite{22}. After fermentation, the SBA that results is a mixture of NBA and various by-products as listed in Table 1. The BA produced in the process is NBA which, as noted in Table 1, is diluted by the four organics listed and water at the indicated mass concentrations which amount to 6%. At this level, the burning characteristics of NBA could be influenced by the dissolved by-products. This aspect is considered in Section 5.

It should be noted that the process as described above using the *Clostridium* strain was specific to BA production with high selectivity. However, it can be applied to other organics such as *n*-butanol, butyl butyrate, and longer chain hydrocarbon molecules through systematic metabolic engineering of the microbial pathways. The product yields would be dependent on the molecule of interest.

3. Burning configuration for SBA and NBA

The initial effort to synthesize SBA in a bench-scale experimental design has yielded several tens of milliliters at a time. Such a quantity is insufficient for testing in large scale combustion configurations such as engines. An alternative platform to accommodate small production volumes was instead selected for studying SBA combustion: an isolated droplet burning under conditions that promote spherical droplet flames with a 1-D gas transport originating by minimizing the presence of forced and natural convection. Fig. 1a is a schematic. There are several reasons for this choice.

The cost of NBA at over $2100 USD/L can make combustion engine testing economically impractical. For the initial droplet diameter of the present study, 0.6 mm, volumes on the order of only 10 μL per experiment are needed. The data reported here were obtained with an SBA and NBA fuel supply of less than 500 ml.

Simulations needed for validating combustion kinetic mechanisms are usually obtained using detailed numerical models from commercial codes. The experimental conditions typically eliminate the liquid phase by prevaporizing it so that complications associated with droplet/gas couplings which influence the chemistry of ignition \cite{24} are not
considered. With droplets present, the computational challenges are considerable but the results will be useful for validating the more complex configuration of 1-D droplet burning where fuel evaporation, unsteady gas and liquid transport, multicomponent mixture, radiation and sooting effects can be considered [25–29]. Simulations are not included in the present study because reduced kinetic mechanisms for BA are currently not available. The data developed as part of the present study should be useful for validating BA’s kinetic mechanism for the 1-D droplet burning case. The data in the figures presented here are included in the Supplementary Material section.

4. Experiment

A brief description of the experimental design to create the configurations in Fig. 1 is provided in this section. Further details are given in [25,29,30]. The experiments were carried out under carefully controlled conditions to promote a one-dimensional gas transport. For 1-D gas transport there should be no relative velocity between the droplet and surrounding ambience. Such conditions were created by restricting the movement of test droplets in a stagnant gas (the standard atmosphere in the present study) and minimizing the effects of buoyancy by carrying out the experiments with a sealed free-fall chamber. Droplets were deployed onto two intersecting 14 μm diameter SiC fibers to prevent them from moving within a sealed chamber filled with room temperature air at atmospheric pressure. The chamber was mounted onto a metal frame with two cameras attached. The entire package is released into free fall during which the droplets are ignited and their burning histories recorded. The experimental time is about 1.2 s and the initial droplet diameters for most of the experiments reported here was 0.6 mm.

Ignition was achieved by electrical discharges from two sparks positioned on opposite sides of the droplet, though we found little difference in the burning process when one spark or two sparks were employed. Ignition was initiated 200 ms into free-fall. The spark duration was approximately 600 μs. The electrodes supporting the sparks were spring-loaded in solenoids to enable rapid retraction and precise re-positioning of the electrode tips after each experiment. Fig. 2 shows the arrangement of a droplet relative to the electrodes with approximate dimensions indicated.

Droplet burning was recorded using two cameras in perpendicular directions. One view provided backlight images from a high-speed black and white (BW) camera at 200 frames/s and 4MP per image and the other provided color views of self-illuminated flames using a color camera at 30 frames/s. The light source for the BW camera was provided by a single wavelength LED (Prismatix Mic-LED with BLCC-04; 637 nm).

Using the video recordings of the burning process, droplet diameter measurements (D) were made using an analysis program that extracted these measurements in an automated way over the collection of images for a given burning event [31]. A circle fit to the droplet shape was
assumed because the BW images in the videos did not show any discernable deviation of cross-sectional shape from circular. The droplet boundary could be determined to within 3 pixels. With a calibration factor of 0.002 mm/pixel, the uncertainty of droplet diameter was approximately ± 0.006 mm.

Measurements of flame diameters (D) could not be automated because the flame boundaries were not sharp (a characteristic of droplet flames). Moreover, the flame boundary was less sharp than the droplet boundary with a higher pixel calibration factor; 0.014 mm/pixel for the color camera used. D therefore had to be obtained by a manual process. We used the ImagePro Plus (Rockville, MD, USA) software program coupled with a 24 in. Dell 4K HD monitor to manually overlay flame images with a virtual ellipse because flame shapes were not entirely circular as shown in Fig. 5. Measurements were made of major (a') and minor (b') axes to obtain an equivalent diameter of (a' × b')^{1/2}. Operator skill was required to position the ellipse for each image. Different operators were calibrated against each other for consistency. The flame boundary could be determined to within approximately 8 pixels giving an uncertainty in D of approximately ± 0.112 mm.

The initial droplet diameter (D_o) was fixed at 0.6 mm so that D_o would not be an added variable in the experiments [30]. This size was large enough to provide good image clarity for most of the burning history yet small enough that a large fraction of the burning history could be recorded. Some limited experiments were also carried out for D_o = 0.4 mm to show the effect of droplet size on buoyancy and flame shape. The smallest diameter measured with the optical arrangement was approximately 0.1 mm. For each condition three or four repetitions were carried out.

Precise control of the initial droplet diameter was achieved using the process schematically illustrated in Fig. 2. Before the period of free-fall, a droplet of approximately 0.8 mm (dotted gray circle in Fig. 2) was first deployed onto the fibers by using a piezoelectric generator to propel droplets onto the intersection of the fibers. The droplet was then allowed to evaporate in the surrounding still air until the desired D_o was reached, here being 0.6 mm. During evaporation an image of the droplet was projected on a monitor until it filled a virtual circle displayed on the monitor of the desired D_o. A fairly precise and repeatable initial droplet diameter could be formed in this way with a precision of ± 0.005 mm for droplets.

The method in Fig. 2 of setting D_o is most applicable to single component fuels. If the fuel is multicomponent, the waiting time for the droplet to evaporate down to the size of interest can induce changes of the droplet composition prior to ignition due to preferential evaporation while vaporizing in air. This problem was noted previously [29]. As a result, the initial concentration would not necessarily be the one prepared. It depends on the evaporation rate and internal diffusional resistance of species transport to the droplet surface.

With the above method of setting D_o the gases surrounding the droplet will initially comprise a fuel-rich mixture of BA. The effect of this pre-existing vaporized BA on burning was assessed by comparing burning of NBA droplets formed as noted above with droplets immediately ignited after deployment with little to no pre-vaporization. The evolutions of scaled droplet and flame diameters ignited either immediately after deployment or after first vaporizing down to the desired size (0.6 mm) are shown in Figs. 3 and 4, respectively. The data show that the burning process for the two cases are nearly identical. This shows that the vaporized BA in Fig. 2 is either diffused away from the droplet or burned off quickly after ignition, and either possibility does not influence burning.

Limited experiments were also carried out for SBA and NBA droplets burning in a buoyant atmosphere to assess the efficacy of SBA to replicate NBA under convective burning conditions. Fig. 1b is a schematic of

\[\frac{dD}{dt} = \frac{1}{D^2} \left(\frac{\rho}{\mu} \right) \frac{dD}{dx} \]

the convective flame configuration. In practice, BA droplets will be evaporated in the presence of a strong convective field. A simple way to assess the influence of convective burning is to observe the burning process in a flow created entirely by buoyancy in earth’s normal gravity. This was accomplished by deploying, and then igniting, a test droplet in the sealed chamber and allowing the droplet to burn but without releasing the package into free-fall. Though less controllable than imposing a forced air flow around a droplet, the buoyant flow exerts a similar influence on evaporation. The results are discussed in Section 5.

SBA is more complex than NBA because SBA is a multicomponent mixture. The effect of gas motion around SBA droplets could influence the droplet temperature, internal flow dynamics, and distribution of dissolve species inside SBA droplets by the concentration gradients that are developed by internal liquid motion induced by shear-induced mixing inside SBA droplets. These matters are discussed further in Section 5.2.
5. Results and discussion

5.1. Droplet flame structures

Selected photographs of droplet flames for NBA, SBA, and by-products formed during synthesis of BA (Table 1) are shown in Fig. 5 for burning without external convection. The time scale at the bottom is in seconds after ignition and $D_0 = 0.6$ mm.

The luminosity of the NBA and SBA flames in Fig. 5 reveals the presence of soot aggregates even though NBA is an oxygenate. Flame luminosity is indicative of soot incandescence and the amount of soot formed [32], and the bright yellow flame color is due to the wavelength of the light emitted in the visible light spectrum [33]. Of the SBA by-products in Table 1, only hexadecane has a sooting propensity high enough to where soot shells are visible. However, no soot shells are seen for SBA so SBA flame luminosity is not attributed entirely to dissolved hexadecane as a source of soot. A speculation is that as the fuel evaporates and the gases flow radially outward toward the flame the oxygenate delays the formation of soot to temperatures higher than the conventional soot inception temperature. With soot particle ignition closer to the high temperature regions of the flame, ignited soot aggregates could burn up more quickly before a soot shell fully forms.

The flame shapes for the SBA by-products were generally spherical throughout burning because of the expected minimal effect of buoyancy...
and forced convection in the burning environment. For SBA and NBA, however, the flames consistently became slightly non-spherical as shown at 0.3 s in Fig. 5, then transitioned to spherical with a blue color as soot formation diminished due to the smaller droplet diameter late in the burning history (cf. 0.5 s in Fig. 5). The origin of this effect is unclear and would benefit from detailed simulations that account for the fiber and soot formation. The trends in the quantitative data discussed in Section 5.2 did not show effects that can convincingly be related to asymmetries in the flame shape.

For burning in the presence of buoyant convection, Fig. 6 shows the flame structure of SBA and NBA droplets (where the actual ‘flame’ is the luminous portion). There are no obvious differences of flame configuration for the two grades of BA. Both show a hybrid configuration which is due to the buoyant velocity transporting fuel upwards and soot forming in the wake which produces the luminous portion from incandescence when the soot aggregates ignite as they reach the high temperature flame. This leaves the lower hemisphere devoid of soot and the flame has a blue hue there. The sort of stretched flame configuration in Fig. 6 complicates assigning a ‘diameter’ as a measure of its size, so we do not report flame diameter measurements for the convective droplet case.

The bright lateral streaks in Figs. 5 and 6 are due to the flame intersecting the fiber. The direction in which the flame is viewed makes these streaks visible. The flames appear stretched slightly in the lateral direction in some cases which could be related to an anchoring mechanism for flame holders described in [34]. This stretching effect is only visible in the cross-sectional images in Figs. 5 and 6. The small fiber diameters (14 μm) relative to the droplet size make this flame stretching effect highly localized, and visible only in the imaging direction.

The effect of buoyancy on droplet burning is determined by the relative magnitudes of the velocity induced by fuel evaporation - the ‘Stefan’ velocity v_S which is in the radial direction and by density differences between the hot flame and colder ambience, v_B, which is the buoyancy velocity in Fig. 1b. v_B was estimated by a scale analysis by balancing inertia in the momentum equation with buoyancy leading to $v_B \propto \sqrt{\frac{g(\bar{T}_f - \bar{T}_o)}{\rho_B}}$ where $\bar{\ell}$ is a characteristic length (D, D or D). For v_S we take the result from the 1-D droplet burning theory where it can be shown that $v_S \propto \frac{\rho_o}{\rho_f} \frac{K_o}{\nu} \frac{K_f}{\ell} = 1$ where K_o is the fuel burning rate. Choosing $\ell = D$,

$$\frac{v_B}{v_B} = \frac{\rho_o}{\rho_f} \frac{K_o}{\nu} \frac{K_f}{\ell} = \frac{1}{Gr^{1/2} \rho_f \nu}$$

where Gr is the Grashof number, $Gr = \frac{g(\bar{T}_f - \bar{T}_o)}{\nu^2}$. As D is reduced the Stefan velocity progressively dominates over the buoyancy induced velocity and the droplet flames should therefore become more spherical. Such a reduction occurs naturally during a given burning event. Fig. 6 shows such a transition late in the burning history. Additionally with a reduction in droplet size, the bright luminous zone in Fig. 6 gradually disappears and the flames become blue which suggests a reduction of soot formation as the droplet becomes smaller by evaporation. The reduced soot formation as a droplet evaporates is consistent with an effect of droplet diameter on the residence time of fuel molecules transported between the droplet and flame [35].

5.2. Quantitative measurements

The evolution of droplet diameter for NBA and SBA is shown in Fig. 7 in scaled coordinates. The derivative of the data gives the fuel burn rate, $K_{f,o} = \frac{\partial (D/D_o)}{\partial t}$ where the subscripts ‘o’ and ‘c’ pertain to burning with minimal convection or strong convection, respectively. The data show

![Fig. 7. Comparison of the evolution of averaged scaled droplet diameter with scaled time for NBA and SBA without convection (Fig. 1a).](image)

![Fig. 6. Time series images of NBA and SBA burning in the presence of buoyant convection. Time after ignition is shown. At 0.4 s the buoyant flames show little evidence of soot and flames are nearly spherical.](image)
that SBA and NBA burning rates are nearly identical and well within experimental uncertainties. The flame diameters (Fig. 8) expressed as the relative distance of the flame to the droplet in Fig. 8, D/D₀, are also virtually identical. These results show that the by-product concentration at 6% (Table 1) is too low to influence burning.

Fig. 9 shows the evolution of droplet diameter of the by-products formed during production of SBA. Differences are significant with hexadecane and n-butanol burning the slowest and ethyl acetate the fastest with a burning rate only slightly higher than SBA and NBA. Furthermore, Fig. 10 also shows significant differences in flame positions of the SBA by-products, with by-products having flames closer to the droplet than SBA or NBA flames. These results further show that diluting NBA by 6% has no substantive effect on the physical dynamics of burning in terms of fuel burn rates and relative positions of the droplet flames to the droplet surface.

The evolution of droplet and flame diameters in Figs. 7 and 8 show no evidence of a preferential vaporization effect from the dissolved by-products. However, recent simulations [25] of multicomponent mixtures showed that a preferential vaporization effect can be present even when more global data such as those in Figs. 7 and 8 do not reveal this phenomenon. Without a capability to probe, either by simulation or experiment, the internal composition of SBA droplets, it is not yet evident if preferential vaporization exists during burning of SBA.

In practical applications BA droplets will burn in environments which have significant gas motion created by forced and natural convection. Considering NBA droplets specifically, Fig. 11 compares burning with and without convection. As expected, NBA droplets burn faster with convection. A common correlation for the influence of convection corrects the 1-D fuel burning rate, K₀, for the effect of convection in the form Kᵣ = K₀(1 + Grⁿ) [36], which is consistent with Fig. 11. While Kᵣ is ostensibly the Gr = 0 limit, we do not actually know this limit here because the experiments do not identically achieve g = 0 during the free-fall period.

With judicious adjustments of parameters, the convection and convection-free burning configurations (Fig. 1a and 1b) can become coincident. Considering \(v_b \) with \(\ell = D_o \) as the characteristic length scale, a convective burning effect can be eliminated by reducing D₀ whereby Kᵣ = K₀ should result. Taking D₀ = 0.4 mm as an example, Fig. 12 shows that the NBA burning rates are now almost identical simply by reducing the droplet diameter.

Fig. 13 compares NBA and SBA burning with convection. The response to convection is essentially the same with no substantive differences. Flame diameter comparisons are not shown because, as noted previously, the buoyant flame shapes would have been ad-hoc constructions.

One aspect of burning where the presence of dissolved species can be a factor, even in small concentrations, is the potential for internal superheating leading to a flash boiling event. We observed that near the end of burning, SBA droplets tended to exhibit a bubbling effect as shown in Fig. 14. Formation of bubbles was not observed for SBA droplets burning without convection (Fig. 11). Nor was it ever observed for NBA droplets with or without convection. The difference appears to be due to the presence of dissolved by-products in SBA with their range of volatilities as listed in Table 1, and the influence of convection on shear-induced internal mixing of components inside the SBA droplets.

A necessary condition to trigger flash boiling is that the temperature of the droplet corresponding to the surface concentration should exceed the boiling point of one or more mixture components inside the droplet [37]. The presence of n-hexadecane and its high boiling point makes this viable for SBA. Considering a simplified case in which hexadecane is concentrated at the droplet surface, the SBA droplet temperature could conceivably reach 560 K at atmospheric pressure. This situation can
arise if the resistance to mass diffusion inside a multicomponent droplet is high enough to trap volatiles inside the droplet [38] or if the shear-induced mixing distributes the dissolved by-products in a way which confines volatile species to the interior of the droplet while the nonvolatile species concentrate at the surface and raise the droplet temperature above the nucleation temperature of the internal volatiles. The fact that NBA never showed flash boiling while it was observed for SBA makes this conjecture viable. Furthermore, there seems to be no possibility for the temperature of a single component liquid to exceed its normal boiling point under an equilibrium vaporization condition. A simple threshold temperature to trigger bubble nucleation is about 90% of a liquid’s critical point [39,40]. Using this criterion, iso-propanol, ethyl acetate and n-butanol could conceivably become superheated if their transport to the droplet surface is retarded by mass diffusion, or convective mixing keeps these species from the surface. It is also noted that the fiber can lower the energetic threshold to trigger flash boiling and the 90% criterion, and this consideration may have also contributed to SBA experiencing internal bubbling.

6. Conclusions

The results presented show that synthesizing butyl acetate by a process that uses a solventogenic *Clostridium* strain through an extractive fermentation process using n-hexadecane as the extractant yielded a mixture of butyl acetate and dissolved by-products at just under 6% mass fraction. For burning under conditions that promoted spherical droplet flames through minimizing the influence of external convection, no discernable differences between the burning of SBA and NBA were identified. The droplet burning rates and flame structures were virtually identical between NBA and SBA, though the individual by-product burning processes were different. Similarly, for burning in a convective environment promoted by buoyancy, SBA burning was nearly identical to NBA. No evidence of preferential vaporization was found for SBA, though such an effect is not precluded because concentration gradients inside SBA droplets can still exist. Evidence of disruptive burning was found for SBA which was believed to be due to SBA being
multicomponent and a possible influence of the support fibers. NBA did not show any disruptive burning because it is single component. The study has shown that SBA has burning characteristics almost identical to NBA and is a viable alternative to butyl acetate produced by conventional synthesis processes such as Fischer esterification.

CRediT authorship contribution statement

Yujie Wang: data curation, investigation, validation, formal analysis, visualization, software, writing-original draft, writing-reviewing & editing. Zhu Chen: data curation, investigation, validation. Matthew Haefner: data curation, investigation, validation, formal analysis, writing original draft, writing-reviewing & editing. Sontgao Guo: data curation, investigation, visualization, software. Nicholas DiReda: data curation, investigation, software. Yuechao Ma: data curation, investigation, validation. Yi Wang: data curation, investigation, validation, project administration, conceptualization, software, supervision, writing-original draft, writing-reviewing & editing. C. Thomas Avedisian: data curation, investigation, validation, conceptualization, methodology, project administration, software, supervision, writing original draft, writing-reviewing & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors acknowledge helpful discussions with Drs. A.J. Agrawal and Josh Bittle of the University of Alabama. The authors also thank the Iowa Central Fuel Testing Laboratory (Fort Dodge, Iowa) for chemical analysis of the bio-synthesized butyl acetate (SBA) used in the present study. This work was supported in part by grants from the Co-Optimization of Fuels & Engines (Co-Optima) program sponsored by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices (grants DE-EE0008483 and DE-EEO000798) with Dr. Alicia Lindauer as the Program Manager. Additional support was received from the National Aeronautics and Space Administration (grants NNX08A15G and 80NSSC18K0480) with Dr. Michael C. Hicks as the project monitor.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fuel.2021.121324.

References

