Directional histograms
Measuring independence for stable distributions

John Nolan
American University
Washington, DC, USA

MURI Workshop, NYC
6 March 2015
1. Directional histograms

2. Independence measure η_p for bivariate stable r. vectors

3. Sample measure $\hat{\eta}_p$
Outline

1. Directional histograms

2. Independence measure η_p for bivariate stable r. vectors

3. Sample measure $\hat{\eta}_p$
Directional histogram $d = 2$ - count how many in each "direction"

- Mix of 5000 light-tailed data values
- 100 heavy-tailed data values

- Threshold = 0
- Threshold = 1
- Threshold = 4
Generalize to $d \geq 3$?

- triangulate sphere
- each simplex on sphere determines a cone
- loop through data points, seeing which cone each falls in
- If $d = 3$, plot
- Variations:
 - threshold based on distance from center
 - use ℓ_p ball
 - restrict to positive orthant

Nolan (American U)
MURI NYC
6 March 2015
Directional histogram $d = 3$

Omni-directional data, plot type='radial'
Directional dependence (simulated data)

mix of 5000 light tailed, 100 heavy tailed data values
All data

threshold = 0
Thresholding by distance from origin

threshold = 5
Thresholding by distance from origin (alternate view)

threshold = 5
Directional histogram $d > 3$

Subdivision routines return a list of simplices in some order. For any d, can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.
Directional histogram $d > 3$

Subdivision routines return a list of simplices in some order. For any d, can compute the directional histogram counts.

Then plot the a standard histogram using index of simplex.

Lose geometry, but can show concentration in different directions. Thresholding may reveal a few directions where extremes lie.

Can use to select model to use on a given data set, e.g. isotropic when histogram is roughly uniform, discrete angular measure when just a few directions present after thresholding.
\(d = 5\), with 512 cones/directions - isotropic

\[\text{counts} \times \text{cone} \]

\[n=10000 \quad \text{threshold}=0\]

\[\text{counts} \times \text{cones} \]

\[\text{threshold}=3\]
\(d = 5 \), with 512 cones/directions - \(m = 7 \) point masses

\[n = 10000 \quad \text{threshold}=0 \]

\[\text{threshold}= 300 \]
$d = 5$, with 512 cones/directions - concentration in sectors
Outline

1. Directional histograms

2. Independence measure η_p for bivariate stable r. vectors

3. Sample measure $\hat{\eta}_p$
Spectral measure characterization

We will say $X \sim S(\alpha, \Lambda, \delta; j)$, $j = 0, 1$ if its joint characteristic function is given by

$$\phi(u) = E \exp(i\langle u, X \rangle) = \exp \left(- \int_S \omega(\langle u, s \rangle|\alpha; j) \Lambda(ds) + i\langle u, \delta \rangle \right),$$

where

$$\omega(t|\alpha; j) = \begin{cases}
|t|^\alpha [1 + i \text{sign} (t) \tan \frac{\pi \alpha}{2} (|t|^{1-\alpha} - 1)] & \alpha \neq 1, j = 0 \\
|t|^\alpha [1 - i \text{sign} (t) \tan \frac{\pi \alpha}{2}] & \alpha \neq 1, j = 1 \\
|t| [1 + i \text{sign} (t) \frac{2}{\pi} \log |t|] & \alpha = 1, j = 0, 1.
\end{cases}$$

The 1-parameterization is more commonly used, but discontinuous in α. 0-parameterization is a continuous parameterization.
Projection parameterization

Every one dimensional projection $\langle u, X \rangle = u_1 X_1 + u_2 X_2 + \cdots + u_d X_d$ has a univariate stable distribution, with a constant index of stability α and skewness $\beta(u)$, scale $\gamma(u)$ and shift $\delta(u)$ that depend on the direction u. We will call the functions $\beta(\cdot)$, $\gamma(\cdot)$ and $\delta(\cdot)$ the projection parameter functions. They determine the joint distribution via the Cramèr-Wold device, so we can parameterize X by these projection parameter functions: $X \sim S(\alpha, \beta(\cdot), \gamma(\cdot), \delta(\cdot), j)$, $j = 0$ or $j = 1$. In what follows, we will always assume that X has normalized components: $\gamma(1, 0) = \gamma(0, 1) = 1$. We will sometimes use polar notation: $\gamma(\theta) := \gamma(\cos \theta, \sin \theta)$.

Nolan (American U)
MURI NYC
6 March 2015
17 / 37
Projection parameterization

Every one dimensional projection \(\langle u, X \rangle = u_1 X_1 + u_2 X_2 + \cdots + u_d X_d \) has a univariate stable distribution, with a constant index of stability \(\alpha \) and skewness \(\beta(u) \), scale \(\gamma(u) \) and shift \(\delta(u) \) that depend on the direction \(u \).

We will call the functions \(\beta(\cdot) \), \(\gamma(\cdot) \) and \(\delta(\cdot) \) the projection parameter functions. They determine the joint distribution via the Cramér-Wold device, so we can parameterize \(X \) by these projection parameter functions:

\[
X \sim S(\alpha, \beta(\cdot), \gamma(\cdot), \delta(\cdot); j), \ j = 0 \text{ or } j = 1.
\]
Projection parameterization

Every one dimensional projection \(\langle \mathbf{u}, \mathbf{X} \rangle = u_1 X_1 + u_2 X_2 + \cdots + u_d X_d \) has a univariate stable distribution, with a constant index of stability \(\alpha \) and skewness \(\beta(\mathbf{u}) \), scale \(\gamma(\mathbf{u}) \) and shift \(\delta(\mathbf{u}) \) that depend on the direction \(\mathbf{u} \).

We will call the functions \(\beta(\cdot), \gamma(\cdot) \) and \(\delta(\cdot) \) the projection parameter functions. They determine the joint distribution via the Cramér-Wold device, so we can parameterize \(\mathbf{X} \) by these projection parameter functions:

\[
\mathbf{X} \sim \mathbf{S}(\alpha, \beta(\cdot), \gamma(\cdot), \delta(\cdot); j), \quad j = 0 \text{ or } j = 1.
\]

In what follows, we will always assume that \(\mathbf{X} \) has normalized components:

\(\gamma(1, 0) = \gamma(0, 1) = 1. \)

Will sometimes use polar notation: \(\gamma(\theta) := \gamma(\cos \theta, \sin \theta). \)
\(\Lambda(\cdot) \) and \(\gamma(\cdot) \)

\text{independent}

\[\gamma^\alpha(\theta), \quad \alpha = 1.5 \]
isotropic

\[\gamma^\alpha(\theta), \quad \alpha = 1.5 \]
pos. linear dep.

\[\gamma^\alpha(\theta), \quad \alpha = 1.5 \]
pos. associated

\[\gamma^\alpha(\theta), \quad \alpha = 1.5 \]
Set $\gamma_\perp(u) = (|u_1|^\alpha + |u_2|^\alpha)^{1/\alpha}$ (independence), $p \in [1, \infty]$

$$\eta_p = \eta_p(X_1, X_2) = \|\gamma^\alpha(u_1, u_2) - \gamma_\perp^\alpha(u_1, u_2)\|_{L^p(S, du)}. \quad (1)$$

Here du is (unnormalized) surface area on S.
Set $\gamma_\perp(u) = (|u_1|^\alpha + |u_2|^\alpha)^{1/\alpha}$ (independence), $p \in [1, \infty]$.

$$\eta_p = \eta_p(X_1, X_2) = \|\gamma^\alpha(u_1, u_2) - \gamma_\perp^\alpha(u_1, u_2)\|_{L^p(S, du)}.$$

Here du is (unnormalized) surface area on S.

X has independent components if and only if $\eta_p = 0$ for some (every) $p \in [1, \infty]$.

η_p measures how far the scale function of X is from the scale function of a stable r. vector with independent components: when X is symmetric, earlier work shows $\sup_{x \in \mathbb{R}^2} |f(x) - f_\perp(x)| \leq k_\alpha \|\gamma(\cdot) - \gamma_\perp(\cdot)\|$.
\[|\gamma_1^\alpha(\theta) - \gamma_2^\alpha(\theta)| \]
Properties of η_p

- The p-norm in (1) is evaluated as an integral over the unit circle \mathbb{S}, not all of \mathbb{R}^2. In polar coordinates,

$$
\eta_p = \left(2 \int_{0}^{\pi} |\gamma^\alpha(\cos \theta, \sin \theta) - \gamma^\alpha_\perp(\cos \theta, \sin \theta)|^p \, d\theta \right)^{1/p},
$$

where the interval of integration has been reduced by using the fact that $\gamma(\cdot)$ is π-periodic.

- α can be any value in $(0, 2)$ and X can have symmetric or non-symmetric components, and it can be centered or shifted.

- η_p is symmetric: $\eta_p(X_1, X_2) = \eta_p(X_2, X_1)$.

• $\eta_p \geq 0$ by definition, not measuring positive/negative dependence, just distance from independence. Don't think there is a general way of assigning a sign, e.g. rotate the indep. components case by $\pi/4$ and the resulting distribution bunches around both the lines $y = x$ and $y = -x$ for large values of $|X|$.

• The definition makes sense in the Gaussian case: when $\alpha = 2$, the scale function for a bivariate Gaussian distribution with correlation ρ is $\gamma(u)^2 = 1 + 2\rho u_1 u_2$ and $\gamma_\perp = 1$. Then $\eta_P^p = |2\rho|^p \int_S |u_1 u_2|^p du$, so $\eta_p = k_p |\rho|$. In elliptically contoured/sub-Gaussian case, can get an integral expression that can be evaluated numerically.

• Multivariate stable $X = (X_1, \ldots, X_d)$ has mutually independent components if and only if all pairs are independent, so the components of X are mutually independent if and only if $\eta_p(X_i, X_j) = 0$ for all $i > j$.
Covariation and co-difference in terms of $\gamma(\cdot)$

For $\alpha > 1$, the covariation is

$$[X_1, X_2]_\alpha = \int_S s_1 s_2^{\langle \alpha-1 \rangle} \Lambda(ds) = \frac{1}{\alpha} \left. \frac{\partial \gamma^\alpha(u_1, u_2)}{\partial u_1} \right|_{(u_1=0, u_2=1)}.$$

Thus the covariation depends only on the behavior of $\gamma(\cdot, \cdot)$ near the point $(1, 0)$. If X_1 and X_2 are independent, then $[X_1, X_2]_\alpha = 0$; but the converse is false.
Covariation and co-difference in terms of $\gamma(\cdot)$

For $\alpha > 1$, the covariation is

$$[X_1, X_2]_\alpha = \int_{S} s_1 s_2^{<\alpha-1>} \wedge(ds) = \frac{1}{\alpha} \frac{\partial \gamma^\alpha(u_1, u_2)}{\partial u_1} \bigg|_{(u_1=0, u_2=1)}.$$

Thus the covariation depends only on the behavior of $\gamma(\cdot, \cdot)$ near the point $(1, 0)$. If X_1 and X_2 are independent, then $[X_1, X_2]_\alpha = 0$; but the converse is false.

The co-difference is defined for symmetric α-stable vectors, and can be written as

$$\tau = \tau(X_1, X_2) = \gamma^\alpha(1, 0) + \gamma^\alpha(0, 1) - \gamma^\alpha(1, -1),$$

and is defined for any $\alpha \in (0, 2)$. If X_1 and X_2 are independent, then $\tau = 0$. When $\alpha < 1$ and $\tau = 0$, then indep. If $\alpha > 1$, need both $\tau(X_1, X_2) = 0$ and $\tau(X_2, X_1) = 0$ to guarantee indep.
Outline

1. Directional histograms

2. Independence measure η_p for bivariate stable r. vectors

3. Sample measure $\hat{\eta}_p$
Use max. likelihood estimation of the marginals and get $\hat{\alpha}$, normalize each component. For angles $0 \leq \theta_1 < \theta_2 < \cdots < \theta_m \leq \pi$, define

$\hat{\gamma}_j = \hat{\gamma}(\cos \theta_j, \sin \theta_j) = \text{ML estimate of the scale of the projected data set } \langle Y_i, (\cos \theta_j, \sin \theta_j) \rangle, \ i = 1, \ldots, n$
Use max. likelihood estimation of the marginals and get $\hat{\alpha}$, normalize each component. For angles $0 \leq \theta_1 < \theta_2 < \cdots < \theta_m \leq \pi$, define

$$\hat{\gamma}_j = \hat{\gamma}(\cos \theta_j, \sin \theta_j) = \text{ML estimate of the scale of the projected data set } \langle Y_i, (\cos \theta_j, \sin \theta_j) \rangle, \ i = 1, \ldots, n$$

Define

$$\hat{\eta}_2 = \left(\sum_{j=1}^{m} \left(\hat{\gamma}_j \hat{\alpha}_j - \gamma_{\perp j} \right)^2 \right)^{1/2}.$$

Get critical values by simulation, depends on α and grid.

Suggest uniform grid with m points in first and second quadrant that avoid 0, $\pi/2$, π
Uniform grid with $m = 3$ in each quadrant
Covariance of $\hat{\gamma}(\theta_1)$ and $\hat{\gamma}(\theta_2)$
Power calculation via simulation, $\alpha = 1.5$, 5 grid points per quadrant, 1000 simulations

<table>
<thead>
<tr>
<th>n</th>
<th>isotropic</th>
<th>indep. $\pi/4$</th>
<th>indep. $\pi/8$</th>
<th>indep. $\pi/16$</th>
<th>exact linear dep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.191</td>
<td>0.322</td>
<td>0.243</td>
<td>0.213</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>0.223</td>
<td>0.624</td>
<td>0.381</td>
<td>0.183</td>
<td>1</td>
</tr>
<tr>
<td>100</td>
<td>0.344</td>
<td>0.918</td>
<td>0.644</td>
<td>0.214</td>
<td>1</td>
</tr>
<tr>
<td>200</td>
<td>0.636</td>
<td>0.998</td>
<td>0.937</td>
<td>0.440</td>
<td>1</td>
</tr>
<tr>
<td>300</td>
<td>0.874</td>
<td>1</td>
<td>0.997</td>
<td>0.627</td>
<td>1</td>
</tr>
<tr>
<td>400</td>
<td>0.960</td>
<td>1</td>
<td>1</td>
<td>0.791</td>
<td>1</td>
</tr>
<tr>
<td>500</td>
<td>0.989</td>
<td>1</td>
<td>1</td>
<td>0.893</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>0.999</td>
<td>1</td>
<td>1</td>
<td>0.959</td>
<td>1</td>
</tr>
<tr>
<td>700</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.980</td>
<td>1</td>
</tr>
<tr>
<td>800</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.985</td>
<td>1</td>
</tr>
<tr>
<td>900</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.998</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.997</td>
<td>1</td>
</tr>
</tbody>
</table>
Multivariate: compute $\hat{\eta}_{i,j}$ between all pairs (X_i, X_j)
Time series - plot $\eta(X_t, X_{t+h})$

Simulated data with stable innovations:

AR(1), coef = 0.5
n = 1000 alpha = 1.468 beta = -0.082
Time series - returns of Merck stock for 2010-2014

MRK
n = 1257 alpha = 1.744 beta = -0.078
Robustness of acf vs η plot

Simulated time series with independent stable terms. In this simulation, the η and acf plots look similar (left). Changing one point by replacing a point 15 time periods away from max with 0.8*max shows η plot unchanged, but acf shows strong dependence (right).

Independent
$n=1000$ $\alpha=1.54$ $\beta=0.091$

Independent with one extreme value added
$n=1000$ $\alpha=1.523$ $\beta=0.099$
η for \mathbf{X} in the domain of attraction of stable

The calculation of η only requires an estimate of the tail index α and scale in directions $\theta_1, \ldots, \theta_m$. Can use any tail estimator of the univariate data sets obtained by projecting the data in different directions. The following examples used a simple tail estimator - regression on the tail probabilities.

Simulated using symmetrized Paretos: $X = Y_1 - Y_2$ where each term is $\text{indep. Pareto}(\alpha = 1.5)$. Fix $n = \text{sample size}$. Find critical value by simulation. Bootstrap indep. components (X_1, X_2), compute $\hat{\eta}$ and tabulate. Repeat $M = 10000$ times and find a critical value c_p based on $(1 - p)$ quantile of tabulated values.

Simulate different data sets: isotropic ($\cos U, \sin U$) X where $U \sim \text{Uniform}(0, 2\pi)$; rotations of independent case $R(\theta)(X_1, X_2)$ for $\theta = \pi/4, \pi/8, \pi/16$; exact linear dependence $\epsilon(X, X)$ where $\epsilon = \pm 1$ w/ prob. 1/2. Vary n and tabulate power.
η for X in the domain of attraction of stable

The calculation of η only requires an estimate of the tail index α and scale in directions $\theta_1, \ldots, \theta_m$. Can use any tail estimator of the univariate data sets obtained by projecting the data in different directions. The following examples used a simple tail estimator - regression on the tail probabilities.

Simulated using symmetrized Paretos: $X = Y_1 - Y_2$ where each term is indep. Pareto($\alpha = 1.5$).

- Fix $n=$sample size.
- Find critical value by simulation. Bootstrap indep. components (X_1, X_2), compute $\hat{\eta}$ and tabulate. Repeat $M = 10000$ times and find a critical value c_p based on $(1 - p)$ quantile of tabulated values.
- Simulate different data sets: isotropic $(\cos U, \sin U)X$ where $U \sim \text{Uniform}(0, 2\pi)$; rotations of independent case $R(\theta)(X_1, X_2)$ for $\theta = pi/4, pi/8, pi/16$; exact linear dependence $\epsilon(X, X)$ where $\epsilon = \pm 1$ w/ prob. 1/2.
- Vary n and tabulate power
Power calculations in DOA case

<table>
<thead>
<tr>
<th>sample size n</th>
<th>isotropic</th>
<th>independent $\sim \pi/4$</th>
<th>independent $\sim \pi/8$</th>
<th>independent $\sim \pi/16$</th>
<th>exact linear dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.253</td>
<td>0.057</td>
<td>0.049</td>
<td>0.058</td>
<td>0.161</td>
</tr>
<tr>
<td>200</td>
<td>0.708</td>
<td>0.025</td>
<td>0.040</td>
<td>0.049</td>
<td>0.342</td>
</tr>
<tr>
<td>300</td>
<td>0.844</td>
<td>0.010</td>
<td>0.013</td>
<td>0.023</td>
<td>0.481</td>
</tr>
<tr>
<td>400</td>
<td>0.940</td>
<td>0.011</td>
<td>0.020</td>
<td>0.022</td>
<td>0.995</td>
</tr>
<tr>
<td>500</td>
<td>0.956</td>
<td>0.011</td>
<td>0.007</td>
<td>0.018</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>0.986</td>
<td>0.024</td>
<td>0.013</td>
<td>0.028</td>
<td>1</td>
</tr>
<tr>
<td>700</td>
<td>0.988</td>
<td>0.023</td>
<td>0.003</td>
<td>0.009</td>
<td>1</td>
</tr>
<tr>
<td>800</td>
<td>0.995</td>
<td>0.258</td>
<td>0.012</td>
<td>0.019</td>
<td>1</td>
</tr>
<tr>
<td>900</td>
<td>0.998</td>
<td>0.284</td>
<td>0.013</td>
<td>0.011</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>0.993</td>
<td>0.498</td>
<td>0.006</td>
<td>0.009</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>0.996</td>
<td>0.376</td>
<td>0.008</td>
<td>1</td>
</tr>
<tr>
<td>3000</td>
<td>1</td>
<td>1</td>
<td>0.876</td>
<td>0.003</td>
<td>1</td>
</tr>
<tr>
<td>4000</td>
<td>1</td>
<td>1</td>
<td>0.989</td>
<td>0.003</td>
<td>1</td>
</tr>
<tr>
<td>5000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.004</td>
<td>1</td>
</tr>
</tbody>
</table>

Require larger sample to detect dependence; depends on choosing cutoff correctly and estimators of α and scale.