MURI Meeting

Phyllis Wan

Columbia University

April 15, 2016
Testing the goodness-of-fit of AR(p) model

\[X_t = \sum_{k=1}^{p} \phi_k X_{t-k} + Z_t \]

- \(Z_t \overset{iid}{\sim} F \)

- Causal
 - \(1 - \sum_{k=1}^{p} \phi_k z^k = 0 \) no roots inside the unit circle
Testing the goodness-of-fit of AR(p) model

\[X_t = \sum_{k=1}^{p} \phi_k X_{t-k} + Z_t \]

- Observations \((X_t)_{t=1,\ldots,n}\)
Testing the goodness-of-fit of AR(p) model

\[X_t = \sum_{k=1}^{p} \hat{\phi}_k X_{t-k} + \hat{Z}_t \]

- Observations \((X_t)_{t=1,\ldots,n}\)
- Parameter estimates \(\hat{\phi}_k\) (e.g., least-square, Yule-Walker, etc.)
- Fitted residuals \((\hat{Z}_t)\)

Proposal: Test the serial dependence of \((\hat{Z}_t)\)
Measure of Dependence: Generalized Distance Covariance

\[T^2(X, Y; \mu) := \int |\varphi_{X,Y}(s, t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds, dt) \]

- Random variables \(X \in \mathbb{R}^p \) and \(Y \in \mathbb{R}^q \),

\[X \perp Y \iff \varphi_{X,Y}(s, t) = \varphi_X(s)\varphi_Y(t), \forall s, t \]
Measure of Dependence: Generalized Distance Covariance

\[T^2(X, Y; \mu) := \int |\varphi_{X,Y}(s, t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds, dt) \]

- Random variables \(X \in \mathbb{R}^p \) and \(Y \in \mathbb{R}^q \),

\[X \perp \perp Y \iff \varphi_{X,Y}(s, t) = \varphi_X(s)\varphi_Y(t), \ \forall s, t \]

- Existence:
 - \(\mu \) finite
 - \(\mu \) infinite: \(\int (1 \wedge |s|^\alpha)(1 \wedge |t|^\alpha) \mu(ds, dt) < \infty \) and
 \[\mathbb{E}[|X|^\alpha + |Y|^\alpha + |XY|^\alpha] < \infty \]
Measure of Dependence: Generalized Distance Covariance

\[T^2(X, Y; \mu) := \int |\varphi_{X,Y}(s, t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds, dt) \]

- Random variables \(X \in \mathbb{R}^p \) and \(Y \in \mathbb{R}^q \),
 \[
 X \perp \perp Y \iff \varphi_{X,Y}(s, t) = \varphi_X(s)\varphi_Y(t), \ \forall s, t
 \]
- Existence:
 - \(\mu \) finite
 - \(\mu \) infinite: \(\int (1 \wedge |s|^{\alpha})(1 \wedge |t|^{\alpha}) \mu(ds, dt) < \infty \) and
 \[
 \mathbb{E}[|X|^{\alpha} + |Y|^{\alpha} + |XY|^{\alpha}] < \infty
 \]
- Traditional distance covariance (Székely et al., 07):
 \[
 \mu(ds, dt) = c|s|^{-2}|t|^{-2}
 \]
Measure of Dependence: Generalized Distance Covariance

\[T^2(X, Y; \mu) := \int |\varphi_{X,Y}(s, t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds, dt) \]

- Random variables \(X \in \mathbb{R}^p \) and \(Y \in \mathbb{R}^q \),

\[X \perp Y \iff \varphi_{X,Y}(s, t) = \varphi_X(s)\varphi_Y(t), \ \forall s, t \]

- Existence:
 - \(\mu \) finite
 - \(\mu \) infinite: \(\int (1 \wedge |s|^{\alpha})(1 \wedge |t|^{\alpha}) \mu(ds, dt) < \infty \) and \(\mathbb{E}[|X|^{\alpha} + |Y|^{\alpha} + |XY|^{\alpha}] < \infty \)

- Traditional distance covariance (Székely et al., 07):

\[\mu(ds, dt) = c|s|^{-2}|t|^{-2} \]

- Distance correlation:

\[R^2(X, Y; \mu) = \frac{T^2(X, Y; \mu)}{\sqrt{T^2(X, X; \mu)T^2(Y, Y; \mu)}} \]
Measure of Dependence: Generalized Distance Covariance

\[T^2(X, Y; \mu) := \int |\varphi_X,Y(s, t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds, dt) \]

- Assume \(\mu(ds, dt) = \mu_1(ds) \times \mu_2(dt) \) symmetric about the origin
- Let \(\tilde{\nu}(s) = \begin{cases} \int_{\mathbb{R}^d} e^{i\langle s, x \rangle} \nu(dx), & \nu \text{ finite} \\ \int_{\mathbb{R}^d} (1 - \cos\langle s, x \rangle) \nu(dx), & \nu \text{ infinite} \end{cases} \)

\[T(X, Y; \mu) = \mathbb{E}[\tilde{\mu}_1(X - X')\tilde{\mu}_2(Y - Y')] + \mathbb{E}[\tilde{\mu}_1(X - X')]\mathbb{E}[\tilde{\mu}_2(Y - Y')] - 2\mathbb{E}[\tilde{\mu}_1(X - X')\tilde{\mu}_2(Y - Y'')] \]

- where \(X', Y', Y'' \) are iid copies of \(X, Y, Y \) respectively
Measure of Dependence: Generalized Distance Covariance

\[T_n^2(X, Y; \mu) := \int |\varphi^n_{X,Y}(s, t) - \varphi^n_X(s)\varphi^n_Y(t)|^2 \mu(ds, dt) \]

- Assume \(\mu(ds, dt) = \mu_1(ds) \times \mu_2(dt) \) symmetric about the origin
- Let \(\tilde{\nu}(s) = \begin{cases} \int_{R^d} e^{i\langle s, x \rangle} \nu(dx) & , \nu \text{ finite} \\ \int_{R^d} (1 - \cos\langle s, x \rangle) \nu(dx) & , \nu \text{ infinite} \end{cases} \)

\[
T_n(X, Y; \mu) = \frac{1}{n^2} \sum_{i,j=1}^{n} \tilde{\mu}_1(X_i - X_j) \tilde{\mu}_2(Y_i - Y_j) \\
+ \frac{1}{n^4} \sum_{i,j,k,l=1}^{n} \tilde{\mu}_1(X_i - X_j) \tilde{\mu}_2(Y_k - Y_l) \\
- \frac{2}{n^3} \sum_{i,j,k=1}^{n} \tilde{\mu}_1(X_i - X_j) \tilde{\mu}_2(Y_i - Y_k).\]

Measure of Dependence: Generalized Distance Covariance

\[T_n^2(X, Y; \mu) := \int |\varphi_{X,Y}^n(s, t) - \varphi_X^n(s)\varphi_Y^n(t)|^2 \mu(ds, dt) \]

- Consistency under ergodicity
- Asymptoticity under certain α-mixing condition
Auto-Distance Covariance Function

Let $\mathbf{Z}_1 = (Z_1, \ldots, Z_{n-h})$, $\mathbf{Z}_{h+1} = (Z_{h+1}, \ldots, Z_n)$, then

$$T_n^2(h) := T_n^2(\mathbf{Z}_1, \mathbf{Z}_{h+1}; \mu)$$

If $Z_t \overset{iid}{\sim} F$, then

$$n T_n^2(h) \xrightarrow{d} \int |G_F(s, t)|^2 \mu(ds, dt)$$

- G_F is a Gaussian field dependent on F
Example: Kilkenny wind speed time series

Figure: ACF and auto-distance correlation function (ADCF) of Kilkenny daily wind speed time series from 1/1/61 - 9/27/63
Testing the goodness-of-fit of AR(p) model

\[X_t = \sum_{k=1}^{p} \hat{\phi}_k X_{t-k} + \hat{Z}_t \]

- Observations \((X_t)_{t=1,...,n}\)
- Parameter estimates \(\hat{\phi}_k\)
- Fitted residuals \(\hat{Z}_t\)

Proposal: Test the serial dependence of \((\hat{Z}_t)\)

Statistic of interest: \(\tilde{T}_n^2(h) := T_n^2(\hat{Z}_1, \hat{Z}_{n+1}; \mu)\)
Auto-distance covariance of AR(p) residuals

\[X_t = \sum_{k=1}^{p} \hat{\phi}_k X_{t-k} + \hat{Z}_t \]

Statistic of interest: \(\tilde{T}_n^2(h) := T_n^2(\hat{Z}_1, \hat{Z}_{h+1}; \mu) \)

Theorem

- Assume that
 \[\int (s^2 \wedge t^2 \wedge (st)^2) \mu(ds, dt) < \infty \]

- If \(\mathbb{E} Z^2 < \infty \), then
 \[n \tilde{T}_n^2(h) \xrightarrow{d} \int |G_F(s, t) + \xi_h(s, t)|^2 \mu(ds, dt) \]

where

\[\xi_h(s, t) = t \varphi_Z(t) \varphi'_Z(s) \Psi_h^T Q \]

- \(\Psi_h = (\psi_{h-j})_{j=1, \ldots, p} \) where \(\psi_j \) are the coefficients in the causal representation \(X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} \)

- \(Q \) is the limit distribution of \(\sqrt{n}(\hat{\phi} - \phi) \)
Example: Auto-distance covariance of AR(10) residuals: $Z_t \sim N(0, 1)$

Figure: Left panel: empirical box plots of \tilde{T}_n^2; Right panel: empirical 5%, 50%, 95% quantiles of \tilde{T}_n^2 and T_n^2.
Example: Auto-distance covariance of AR(10) residuals: $Z_t \sim N(0, 1)$

Figure: Left panel: empirical box plots of \tilde{T}_n^2; Right panel: empirical 5%, 50%, 95% quantiles of \tilde{T}_n^2, from simulations and from bootstrapping, and that of T_n^2
Example: Auto-distance covariance of AR(10) residuals

\[X_t = \sum_{k=1}^{p} \hat{\phi}_k X_{t-k} + \hat{Z}_t \]

Statistic of interest: \(\tilde{T}_n^2(h) := T_n^2(\hat{Z}_1, \hat{Z}_{h+1}; \mu) \)

Theorem

- Assume that
 \[\int (s^2 \wedge t^2 \wedge (st)^2) \mu(ds, dt) < \infty \]

- If \(Z \) is in the domain of attraction of a stable distribution of index \(\alpha \in (0, 2) \), then
 \[n \tilde{T}_n^2(h) \xrightarrow{d} \int |G_F(s, t)|^2 \mu(ds, dt). \]
Example: Auto-distance covariance of AR(10) residuals: $Z_t \sim t(1.5)$

Figure: Left panel: empirical box plots of \tilde{T}_n^2; Right panel: empirical 5%, 50%, 95% quantiles of \tilde{T}_n^2 and T_n^2.

Formal content (if any)
Example: Kilkenny wind speed time series

Figure: ACF and auto-distance correlation function (ADCF) of Kilkenny daily wind speed time series after AR(3) fitting.