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Abstract

Implicit feedback is prevalent in the real-world and widely used to construct rec-
ommender systems. However, utilizing the implicit feedback data is considerably
more complicated than the case with its explicit counterpart. This is because
implicit feedback provides only positive feedback, and we cannot know whether
the non-interacted feedback is positive or negative. Furthermore, positive feedback
for popular items is more frequently observed than rare ones; the relevance of
such popular items is often overestimated. Existing solutions to the challenges
have shown to be subject to a bias towards the ideal losses of interest or accepts
a simple pointwise approach, which is inappropriate for the top-N recommenda-
tion task. In this work, we first define an ideal pairwise loss function that should
be used to optimize ranking metrics and propose an unbiased estimator for this
ideal pairwise loss. Then, we propose a corresponding algorithm called Unbiased
Bayesian Personalized Ranking. The pairwise algorithm addressing the two major
difficulties has not yet been investigated, and the proposed algorithm is the first
pairwise method to solve the two major challenges in a theoretically principal
way. Through theoretical analysis, we provide critical statistical properties of the
proposed unbiased estimator and a variance reduction technique. The empirical
evaluations using semi-synthetic and real-world datasets demonstrate the practical
strength of our approach.

1 Introduction

In the literature concerning recommender systems, collaborative filtering is one of the most basic
approaches for achieving well-performing top-N recommendations [27]. Conventionally, there are
two types of feedback data used in collaborative filtering systems. The first one is called explicit
feedback data. In collaborative filtering based on explicit feedback, one has access to the users’
preferences on items, and the goal is to predict preferences or ratings of the unrated user–item pairs
by using the sparse observed feedback. Explicit feedback data usually contains both positive and
negative feedback, and thus, this type of feedback is desirable to obtain a recommender. However,
collecting sufficient explicit feedback takes time and cost; the use of this type of data is limited
in real-world systems. The other one is called implicit feedback data. This feedback is collected
through a users’ natural behavior such as clicking or viewing and is more prevalent than the other.
However, there are two major challenges to make recommendations using implicit feedback. First,
implicit feedback contains only positive feedback, and negative feedback is unobserved. In other
words, we cannot know whether a non-interacted item in the user’s history is irrelevant to the user
or has simply not yet been exposed. Addressing this positive-unlabeled nature of implicit feedback
is essential to recommend items that are highly relevant to users. The second challenge is that the
missing mechanism of feedback is missing-not-at-random (MNAR) [26]. For example, users are
more likely to interact with popular items than tail items, and recommender systems are also more
likely to recommend popular items than tail ones [26]. It is widely known that these biased feedback
data lead to sub-optimal and severely biased recommendations [26, 19, 21, 24].
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In collaborative filtering using implicit feedback, latent factor models (LFM) have been widely used
[6]. Weighted matrix factorization (WMF) is one of the most popular methods among them [6, 13].
It addresses the positive-unlabeled problem by upweighting the prediction loss of interacted items
because they are always considered to be positive. This kind of prediction method aims to predict the
relevance levels of the user–item pairs directly and is known as the pointwise approach. On the other
hand, Bayesian personalized ranking (BPR) learns the scoring function that correctly ranks users’
preference levels over items [15, 20]. This method uses a loss function over two items per user and is
known as the pairwise approach. This approach is more suitable than its pointwise counterpart for
the top-N recommendation settings [15, 20, 10].

These conventional methods have shown their effectiveness empirically; however, they do not directly
address the problems of implicit feedback. Both pointwise and pairwise approaches minimize loss
functions by regarding interacted data as positive feedback and non-interacted data as negative
feedback. However, in implicit feedback data, non-interacted data does not always signify negative
feedback, and thus, the loss functions that conventional methods optimize are considered to be biased.

On the other hand, few studies directly address the positive-unlabeled problem. For example, latent
probabilistic models using exposure variables have been proposed [13, 3, 22]. The exposure variables
represent whether a user has been exposed to an item. Once a user has been exposed to an item,
the interaction between the user–item pair represents their relevance. Exposure matrix factorization
(ExpoMF) is the most basic method based on this probabilistic model and EM-algorithm [13]. In the
E-step, it estimates the exposure probability of each item, and in the M-step, it updates user–item
latent factors by minimizing the loss that upweights the data with high estimated exposure probability.
This method is the first one to model the positive-unlabeled mechanism using exposure variables.
However, it does not solve the other problem, i.e., the MNAR problem. This is because ExpoMF
upweights the loss of data with high exposure probability (mostly popular items); therefore, the
prediction accuracy for tail items will be degraded.

The work that is most related to ours is [18]. They proposed the unbiased estimator for the loss func-
tion of interest that can be estimated from only the MNAR implicit feedback. The matrix factorization
model that utilized this unbiased loss function is called Rel-MF and empirically outperformed WMF
and ExpoMF. However, Rel-MF (and also WMF and ExpoMF) is based on the pointwise approach.
In the top-N recommendation settings, the pairwise approach has been considered to be desirable and
exhibits promising empirical results [23, 20]. However, the pairwise approach directly addressing
two major challenges of implicit feedback has not yet been fully investigated, even though it is widely
acknowledged that the pairwise algorithm generally outperforms the pointwise counterpart with
respect to the top-N recommendation quality.

In this work, we first define the ideal pairwise loss function defined using the relevance parameter.
Then, we propose an unbiased estimator for the ideal pairwise loss and a corresponding pairwise
algorithm called Unbiased Bayesian Personalized Ranking. To the best of our knowledge, the
proposed method is the first pairwise algorithm that theoretically solves the positive-unlabeled and
MNAR problems of implicit feedback simultaneously. Moreover, we provide several theoretical
properties of the proposed unbiased estimator and a variance reduction technique that further improves
the statistical quality of the estimator. Finally, we conduct extensive empirical comparisons using semi-
synthetic and real-world datasets. The results demonstrate that the proposed algorithm consistently
outperforms the baseline algorithms under the situation where the observable interaction logs are
severely biased.

2 Preliminaries

In this section, we introduce the basic notation and formulate the implicit feedback recommendation.

2.1 Notation

Let u ∈ U denote a user and i ∈ I denote an item. Dpoint = U × I and Dpair = U × I × I be the
set of all possible data for pointwise and pairwise algorithms, respectively. Yu,i denotes a binary
random variable representing interactions between user u and item i. If the interaction of (u, i) is
observed, then Yu,i = 1 else, Yu,i = 0. Note that, in collaborative filtering with implicit feedback,
Yu,i = 1 indicates positive feedback, on the other hand, Yu,i = 0 is either a negative or unlabeled
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positive feedback. To precisely formulate this implicit nature, we introduce relevance and exposure
variables. First, the relevance variable for (u, i) is denoted as Ru,i, and this is a binary random
variable representing relevance between user u and item i. Ru,i = 1 means u and i are relevant, in
contrast, Ru,i = 0 suggests u and i are irrelevant. The other is the exposure variable denoted as Ou,i,
which is a random variable representing whether user u has been exposed to the item i. One difficulty
of the implicit feedback recommendation is that both the relevance and exposure random variables
are unobserved; only interaction variables are observable in nature.

We now model the implicit feedback recommendation problems as follows.

Yu,i = Ou,i ·Ru,i (1)
P (Yu,i = 1) = P (Ou,i = 1) · P (Ru,i = 1)

= θu,i · γu,i (2)
θu,i > 0, γu,i > 0, ∀(u, i) ∈ Dpoint

where θu,i = P (Ou,i = 1) and γu,i = P (Ru,i = 1) are defined as exposure and relevance parame-
ters, respectively.

Eq. (1) assumes that interaction between the item i and user u is observed if i has been exposed to
u and they are relevant (i.e., Yu,i = 1 ⇔ Ou,i = 1 = 1 & Ru,i = 1 ). Position-based model, an
established click generative model in unbiased learning-to-rank [9, 25], makes the same assumption.
This model precisely formulates the implicit feedback setting where an interaction does not always
signify a relevance signal.

On the other hand, Eq. (2) assumes that interaction probability can be represented as the product of
the exposure and relevance parameters1. Under this assumption, the MNAR problem is interpreted
as the situation where interaction probability and relevance level are not proportional due to the
non-uniform exposure probabilities.

2.2 Performance Metric of Interest

Top-N scoring metrics such as mean average precision and discounted cumulative gain are often used
to evaluate recommendation policies with implicit feedback [26, 13]. In general, these metrics are
defined using interaction probability; however, it is undesirable to measure the quality of recommender
systems with respect to user experience because click does not always signify relevance in our model.
This motivates us to consider the following quality measure defined using relevance level as the
performance metric.

Rrel
(
Ẑ
)
=

1

|U|
∑
u∈U

∑
i∈I

P (Ru,i = 1)︸ ︷︷ ︸
relevance level

·c
(
Ẑu,i

)
(3)

where Ẑ = {Ẑu,i}(u,i)∈D is the predicted ranking of item i for user u, and the function c(·)
characterizes a top-N scoring metric [26].

The focus of this study is to optimize the performance metric defined as in Eq. (3) using only the
observed interaction logs.

2.3 Ideal Loss Functions of Interest

Here, we define ideal pointwise and pairwise loss functions that should be optimized to maximize the
ranking metric on the relevance level as in Eq. (3).
Definiton 1. The ideal pointwise loss function is defined as

Lpoint
ideal

(
R̂
)
=

1

|Dpoint|
∑

(u,i)∈Dpoint

γu,iδ
(1)
(
R̂u,i

)
+ (1− γu,i) δ(0)

(
R̂u,i

)
(4)

where R̂u,i is the prediction for the relevance and δ(R), (R ∈ {0, 1}) denotes local loss for user–item
pairs (u, i). For example, when δ(R)(R̂) = −R log(R̂)− (1−R) log(1− R̂), then Eq. (4) is called
the binary cross entropy loss.

1This assumption comprises the same structure as that of the no-hidden confounder assumption in causal
inference [17, 16, 8] and can also be represented as E ⊥ R|u, i.
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Definiton 2. The ideal pairwise loss function is defined as

Lpair
ideal

(
X̂
)
=

1

|Dpair|
∑

(u,i,j)∈Dpair

γu,i (1− γu,j) `
(
X̂uij

)
(5)

where X̂uij is the difference between the predicted scores of items i and j, and ` denotes the local
loss for the triplet (u, i, j). We describe the formal definition of the loss function of BPR in Section 3.

In the following sections, we denote δ(R)(R̂u,i) as δ(R)
u,i and `(X̂uij) as `uij for simplicity.

A prediction matrix R̂ or a scoring set X̂ minimizing the ideal losses defined using relevance levels
is expected to lead to the desired values of the top-N recommendation metrics in Eq. (3). Thus, we
see the implicit feedback problem as the statistical estimation problem and aim to estimate the ideal
loss functions using only the biased interaction feedback.

2.4 Summary of Existing Estimators and Algorithms

In this section, we describe standard baseline algorithms (WMF, ExpoMF, Rel-MF, and BPR) and
estimators used in these methods.

2.4.1 Weighted Matrix Factorization (WMF)

WMF is a commonly used model for implicit feedback recommendation [6]. It relies on the following
estimator.

L̂WMF

(
R̂
)
=

1

|Dpoint|
∑

(u,i)∈Dpoint

cYu,iδ
(1)
u,i + (1− Yu,i) δ(0)u,i (6)

where c ≥ 1 is a hyperparameter determining the weight of interacted data relative to non-interacted
ones. When user or item features are unavailable, a positive constant is set as c for all interacted
data and this weight are tuned via cross-validation. Although this is the standard baseline model for
implicit feedback [13], [18] showed that the loss function used in the WMF has a bias against the
ideal pointwise loss as follows (see Proposition 3.1 of [18] for detail).

E
[
L̂WMF

(
R̂
)]
6= Lpoint

ideal

(
R̂
)

As stated above, WMF actually optimizes a biased loss function. This is because WMF treats
non-interacted items as low confidence negative feedback. However as stated in the previous Section,
non-interacted feedback does not always a negative feedback. Thus, the loss function of WMF is
considered to be unsuitable for optimizing the metric of interest in Eq. (3).

2.4.2 Exposure Matrix Factorization (ExpoMF)

ExpoMF adopts a loss function different from that of the WMF model to address the positive-
unlabeled problem of implicit feedback. The method is constructed based on the latent probabilistic
model as follows [13, 22].

U ∼ N
(
0, λ−1U IK

)
, V ∼ N

(
0, λ−1V IK

)
Ou,i ∼ Bernoulli (µi) , Yu,i |Ou,i = 1 ∼ N

(
U>u Vi, λ

−1
y

)
where λU , λV , and λy are hyperparameters for prior distributions. The model also assumes

Ou,i = 0⇒ Yu,i = 0 (7)
which is consistent with our formulation.

The ExpoMF utilizes an EM-based iterative algorithm to derive user–item matrices. In the E-step, it
estimates posterior exposure probability θ′u,i = E [Ou,i |Yu,i], and in the M-step, model parameters
are updated to maximize the log-likelihood2. As described in [18], given the true posterior exposure
probabilities, the M-step can be seen as optimizing the following weigted loss function [18].

L̂ExpoMF

(
R̂
)
=

1

|Dpoint|
∑

(u,i)∈Dpoint

θ′u,i

(
Yu,iδ

(1)
u,i + (1− Yu,i) δ(0)u,i

)
(8)

2The detailed procedure is described in Section 3.3 of [13].
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In this loss function, the posterior probability represents the confidence of how much relevance
information an interaction indicator Yu,i includes. Therefore, the loss function of the ExpoMF
model is designed to consider the local loss of user–item pairs where the user has seen the item (i.e.,
Ou,i = 1). This is because if an item has been exposed, an interaction can be viewed as representing
relevance information (O = 1⇒ Y = R). Thus, this approach aims to solve the positive-unlabeled
problem by selecting high confidence negative feedback from numerous unlabeled feedbacks.

However, as discussed in [18], the loss function in Eq. (8) optimized in the M-step of the ExpoMF
algorithm is also biased against the ideal pointwise loss.

E
[
L̂ExpoMF

(
R̂
)]
6= Lpoint

ideal

(
R̂
)

This is because ExpoMF upweights the local loss of data data having high exposure probability. This
upweighting leads to poor prediction accuracy for data having low exposure probability such as tail
items. Therefore, it will fail to achieve the goal of recommender systems; recommending relevant
items from non-interacted ones.

2.4.3 Relevance Matrix Factorization (Rel-MF)

Rel-MF is currently the only method that utilizes an unbiased estimator for the ideal pointwise loss
as its loss function. The loss function of Rel-MF is defined as follows.

L̂Rel-MF

(
R̂
)
=

1

|Dpoint|
∑

(u,i)∈Dpoint

Yu,i
θu,i

δ
(1)
u,i +

(
1− Yu,i

θu,i

)
δ
(0)
u,i (9)

As shown in Proposition 4.3 of [18], the estimator defined in Eq. (9) satisfies the unbiasedness toward
the ideal pointwise loss as:

E
[
L̂Rel-MF

(
R̂
)]

= Lpoint
ideal

(
R̂
)

This unbiasedness is deserible to optimize the pointwise metric in Eq. (4). However, in the top-
N recommendation literature, it is widely known that the pairwise approach that considers the
relevance orders of given pair of items is suitable for the task and has empirically outperformed
the pointwise counterpart [15, 10, 20]. Moreover, the pairwise algorithms such as LambdaMART
are also preferred because of its practical high performance in the Learning-to-Rank literature [].
Therefore, the unbiased pairwise loss function should be developed as well as the pointwise loss for
debiasing the implicit feedback to improve the recommendation quality from biased user feedback.
In addition, empirical comparisons of pointwise and pairwise approaches in the MNAR implicit
feedback recommendation setting is needed.

2.4.4 Bayesian Personalized Ranking (BPR)

BPR is a well-established pairwise algorithm for the top-N recommendations based on implicit
feedback. It models a user’s preference over two items, where the interaction of one item is observed,
and that of the other is not. BPR assumes that interacted items should be ranked higher than all the
other non-interacted items and optimizes the following loss function to obtain latent factors.

L̂BPR

(
X̂
)
=

1

|Dpair|
∑

(u,i,j)∈Dpair

Yu,i(1− Yu,j)`
(
X̂uij

)
(10)

where `(·) = − ln(σ(·)) is generally used3, and X̂uij = UTu Vi −UTu Vj is the difference of predicted
scores, where Uu, Vj are low-dimensional user and item factors, respectively.

It is obvious from the loss function in Eq. (10), BPR compares the interacted item (Yu,i = 1) and
non-interacted ones (1 − Yu,j = 1 ⇒ Yu,j = 0) for each user. The BPR algorithm has shown
promising empirical results on ranking tasks [15]. However, the following proposition states that the
loss function of BPR is, in reality, biased against the ideal pairwise loss function.
Proposition 1. (Bias of BPR) The estimator optimized in BPR is biased against the ideal pairwise
loss in Eq. (5).

E
[
L̂BPR

(
X̂
)]
6= Lpair

ideal

(
X̂
)

3σ(·) is the sigmoid function
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As stated in Proposition 1, the loss function of the BPR model is biased towards the ideal pairwise
loss. This is because BPR treats all non-interacted feedback as negative feedback and does not deal
with the positive-unlabeled problem; therefore, it may underestimate the relevance of non-interacted
pairs.

3 Proposed Method

In this section, we present an unbiased estimator for the ideal pairwise loss inspired by the inverse
propensity score (IPS) estimator in the context of causal inference [17, 16, 8]. We then provide the
learning algorithm of Unbiased Bayesian Personalized Ranking (UBPR) and the essential theoretical
properties of the proposed unbiased estimator.

3.1 Proposed Estimator

First, we formally define the propensity score to deal with the MNAR problem of implicit feedback.
Propensity score is often used to estimate causal effects of treatments from observational data
[8, 16, 17]. The propensity score in the implicit recommendation setting is defined as follows.
Definiton 3. (Propensity Score) Propensity score of user–item pair (u, i) is

θu,i = P (Ou,i = 1) = P (Yu,i = 1 |Ru,i = 1)

Then, the proposed estimator is defined using the propensity score.
Definiton 4. (Unbiased estimator for the ideal pairwise loss) When propensity scores are given, then
the unbiased pairwise loss function is defined as

L̂unbiased

(
X̂
)
=

1

|Dpair|
∑

(u,i,j)∈Dpair

Yu,i
θu,i

(
1− Yu,j

θu,j

)
`uij (11)

The proposed estimator weights each data by the inverse of the propensity and can also be represented
as

1

|Dpair|
∑

(u,i,j)∈Dpair

Yu,i
θu,i

(
Yu,j

(
1− 1

θu,j

)
+ (1− Yu,j)

)
`uij (12)

From the expression in Eq. (12), it can be seen as utilizing user-item pairs where the interaction of
both items are observed (Yui = Yuj = 1) as well as the interacted and non-interacted pair of items
(Yui = 1&Yuj = 0). In the following proposition, we show that the unbiased pairwise loss is truely
unbiased against the ideal pairwise loss.
Proposition 2. The unbiased pairwise loss in Eq. (11) is unbiased against the ideal pairwise loss in
Eq. (5).

E
[
L̂unbiased

(
X̂
)]

= Lpair
ideal

(
X̂
)

Proposition 2 shows that the proposed unbiased pairwise loss function derived via propensity weight-
ing is valid for debiasing the MNAR implicit feedback.

We also present the variance the proposed unbiased estimator.
Theorem 3. (Variance of the unbiased pairwise loss) Given sets of independent random variables
{(Yu,i, Ou,i, Ru,i)}, propensity scores {θu,i}, and predicted scoring set X̂ , the variance of the
unbiased pairwise loss is

V
(
L̂unbiased

(
X̂
))

=
1

|Dpair|2

 ∑
(u,i,j)∈Dpair

vuij`uij +
∑
u∈U

∑
i∈I

∑
(j,k)∈I×I

j 6=k

wuijk`uij`uik


where

vuij = γu,i(1− 2γu,j)

(
1

θu,i
− γu,i

)
+ γu,iγu,j

(
1

θu,iθu,j
− γu,iγu,j

)
wuijk =

(
1

θu,i
− γu,i

)
γu,i(1− γu,j)(1− γu,k)`uik`uij
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Algorithm 1 Unbiased Bayesian Personalized Ranking
Input: observed interaction data {Yu,i}, learning_rate µ, regularization parameter λ.
Output: learned model parameters U ,V

1: Initialize U ,V , and estimate propensity scores {θu,i}
2: repeat
3: Sample mini-batch samples Dmini from D
4: Compute loss = L̂unbiased

(
X̂
)
+ λ

(
‖U‖22 + ‖V ‖22

)
with Dmini

5: Update parameters U ← U + µ
(
∂loss
∂U − λU

)
, V ← V + µ

(
∂loss
∂V − λV

)
6: until convergence;
7: return U ,V

3.2 Variance Reduction Technique

The RHS of both the variance depend on the product of two propensity scores. Thus, these bounds
can be loose, especially for tail items having low exposure probability. From these implications, we
also propose to utilize the following non-negative estimator inspired by the work in positive-unlabeled
learning [11] as follows:

Definiton 5. (Non-negative estimator) When propensity scores and a constant β ≥ 0 are given, then
the non-negative estimator is defined as

L̂non-neg

(
X̂
)
=

1

|Dpair|
∑

(u,i,j)∈Dpair

max

{
`unbiased

(
X̂uij

)
=
Yu,i
θu,i

(
1− Yu,j

θu,j

)
`uij

(
X̂uij

)
, 0

}
(13)

The non-negative estimator reduces the variance of the estimator at the cost of introducing some bias.

3.3 Learning Algorithm

Here, we formally describe the proposed UBPR algorithm. It obtains its model parameters by
optimizing the following loss function based on the unbiased pairwise loss for an ideal pairwise loss
function.

U ,V = argmin
U ,V

L̂unbiased

(
X̂
)
+ λ

(
‖U‖22 + ‖V ‖22

)
(14)

where the second term is the L2-regularization for the latent factors and λ is a hyperparameter for the
regularization.

We summarize the whole learning procedure of UBPR in Algorithm 1.

4 Experimental Results

In this section, we empirically demonstrate the effectiveness of the proposed UBPR.

4.1 Experimental Setup

We used the Yahoo! R3 dataset4. This is an explicit feedback dataset collected from a song
recommendation service. As described in [26], it contains users’ ratings towards randomly selected
sets of music as a test set and thus can be used to measure recommenders’ true performances. In
the experiment, we treated items rated greater than or equal to 4 as relevant, and the others were
considered irrelevant.

We compared WMF[6], ExpoMF [13], Rel-MF [18], BPR [15], and UBPR5. For all the methods, the
size of latent dimensions was tuned within the range of {50, 55, . . . , 150} using a validation set. The

4http://webscope.sandbox.yahoo.com/
5We used the implementation provided at https://github.com/dawenl/expo-mf for ExpoMF.
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Figure 1: Ranking metrics on the Yahoo! R3 dataset with different values of K. UBPR consistently
outperforms the other baselines for both all and rare items.

L2 reguralization hyper-parameter λ was set to 10−4 for all the method. As for the proposed method
and the Rel-MF, we estimated the propensity score by the following relative item popularity.

θ̂∗,i =

( ∑
u∈U Yu,i

maxi∈I
∑
u∈U Yu,i

)η
(15)

In our assumption, interaction probability depends on both exposure probability and relevance level,
thus, we set η = 0.5.

4.2 Results

Figure 2 shows the performance of the methods, corresponding to rare and all items. We defined
the items that had been clicked by 300 users at most in the training set as rare. As shown in the
figure, the Rel-MF significantly outperformed the other baselines on almost all the metrics, for
example, improving the DCG@5 by 5.7%, Recall@5 by 4.4%, and MAP@5 by 7.8% over the
Rel-MF. Furthermore, for rare items, the proposed method improved the DCG@5 by 5.2%, Recall@5
by 3.8%, and MAP@5 by 6.8% over the best baseline.

The results indicate that the proposed algorithm significantly outperforms the other baselines and
validates the effectiveness of the proposed debiasing approach on biased implicit feedback.

5 Conclusion

In this study, we explored two major challenges; the positive-unlabeled and MNAR problems of
collaborative filtering with implicit feedback. To solve the challenges, we first modeled the implicit
recommendation problem using relevance and exposure variables. Then, we proposed the unbiased
estimator for the ideal pairwise loss function and a corresponding algorithm called Unbiased Bayesian
Personalized Ranking. Empirical evaluation using the standard public dataset demonstrated that the
proposed algorithm outperformed the current state-of-the-art baselines.
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Supplementary Material

A Omitted Proofs

A.1 Proof of Proposition 1

Proof.

E
[
L̂BPR

(
X̂
)]

= E

 1

|Dpair|
∑

(u,i,j)∈Dpair

Yu,i(1− Yu,j)`uij


=

1

|Dpair|
∑

(u,i,j)∈Dpair

E [Yu,i] (1− E [Yu,j ])`uij

=
1

|Dpair|
∑

(u,i,j)∈Dpair

θu,iγu,i(1− θu,jγu,j)`uij

Thus we obtain,

E
[
L̂BPR

(
X̂
)]
− Lpair

ideal

(
X̂
)
=

1

|Dpair|
∑

(u,i,j)∈Dpair

θu,iγu,i(1− θu,jγu,j)`uij −
1

|Dpair|
∑

(u,i,j)∈Dpair

γu,i(1− γu,j)`uij

=
1

|Dpair|
∑

(u,i,j)∈Dpair

γu,i ((θu,i − 1) + (1− θu,iθu,j)γu,j) `uij

For L̂BPR

(
X̂
)

to be theoretically unbiased, θu,i−1 = 0⇒ θu,i = 1, 1−θu,iθu,j = 0⇒ θu,iθu,j =

1 are need to be satisfied for all pairs from the last equation. However, θu,i and θu,j can take different
values among user–item pairs, and thus, these conditions are not always satisfied. Thus, the loss
function of BPR is biased toward the ideal pointwise loss function.

A.2 Proof of Proposition 2

Proof.

E
[
L̂unbiased

(
X̂
)]

= E

 1

|Dpair|
∑

(u,i,j)∈Dpair

Yu,i
θu,i

(
1− Yu,j

θu,j

)
`uij


=

1

|Dpair|
∑

(u,i,j)∈Dpair

E [Yu,i]

θu,i

(
1− E [Yu,j ]

θu,j

)
`uij

=
1

|Dpair|
∑

(u,i,j)∈Dpair

γu,i (1− γu,j) `uij

= Lpair
ideal

(
X̂
)

A.3 Proof and Statement of a Technical Lemma

Here we state some technical lemmas that are used to prove the later theorems.
Lemma 4. (Covariance) Given a scoring set Xuij , Let a random variable Zuij be

Zu,i,j =
Yu,i
θu,i

(
1− Yu,j

θu,j

)
`uij

Then for any user u ∈ U and items i ∈ I, j ∈ I, k ∈ I where i 6= j 6= k, the covariance of Zuij
and Zuik are

Cov(Zuij , Zuik) =

(
1

θu,i
− γu,i

)
γu,i(1− γu,j)(1− γu,k)`uik`uij (16)
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Proof. First, the covariance can be represented as
Cov(Zuij , Zuik) = E[ZuijZuik]− E[Zuij ]E[Zuik]

By proposition 2, the second term of the RHS is
E[Zuij ]E[Zuik] = γ2u,i(1− γu,j)(1− γu,k)`uij`uik

Then, we calculate the first term below.

ZuijZuik =

(
Yu,i
θu,i

(
1− Yu,j

θu,j

)
`uij

)
×
(
Yu,i
θu,i

(
1− Yu,k

θu,k

)
`uik

)
=
Yu,i
θ2u,i

(
1− Yu,j

θu,j

)(
1− Yu,k

θu,k

)
`uij`uik

Thus, the expectation of ZuijZuik is

E[ZuijZuik] =
γu,i
θu,i

(1− γu,j)(1− γu,k)`uij`uik

Here, we use E[Yu,i] = θu,iγu,i,E[Yu,j ] = θu,jγu,j ,E[Yu,k] = θu,kγu,k and the independence
assumption. Finally, the covariance can be obtained as follows.

E[ZuijZuik]− E[Zuij ]E[Zuik] =
γu,i
θu,i

(1− γu,j)(1− γu,k)`uij`uik − γ2u,i(1− γu,j)(1− γu,k)`uij`uik

=

(
1

θu,i
− γu,i

)
γu,i(1− γu,j)(1− γu,k)`uik`uij

A.4 Proof of Theorem 1

Proof. First, we define

Zu,i,j =
Yu,i
θu,i

(
1− Yu,j

θu,j

)
`uij

Then we have V (Zuij) as

V (Zuij) = E
[
(Zuij)

2
]︸ ︷︷ ︸

(b)

− (E [Zuij ])
2︸ ︷︷ ︸

(c)

By Proposition 2, (c) = (γu,i(1− γu,j)`u,i,j)2 = (γ2u,i − 2γu,iγu,j + γ2u,i)`
2
uij . Next,

Z2
uij =

Yu,i
θ2u,i

(
1− 2Yu,j

θu,j
+
Yu,j
θ2u,j

)
`2uij (17)

where Y 2
u,i = Yu,i and Y 2

u,j = Yu,j . The expectation of the RHS of Eq. (17) is

(b) =
γu,i
θu,i

(
1− 2γu,j +

γu,j
θu,j

)
`2uij

Therefore,
V (Zuij) = (b)− (c)

=
γu,i
θu,i

(
1− 2γu,j +

γu,j
θu,j

)
`2uij −

(
γ2u,i − 2γu,iγu,j + γ2u,i

)
`2uij

=

[
γu,i(1− 2γu,j)

(
1

θu,i
− γu,i

)
+ γu,iγu,j

(
1

θu,iθu,j
− γu,iγu,j

)]
︸ ︷︷ ︸

vuij

`2uij (18)

Then, the variance of the sums of random variables {Zuij} are

V
(
L̂unbiased

(
R̂
))

=
1

|Dpair|2

 ∑
(u,i,j)∈Dpair

V (Zuij) +
∑
u∈U

∑
i∈I

∑
(j,k)∈I×I

j 6=k

Cov(Zuij , Zuik)


(19)

Combining Eq. (16), Eq. (18), and Eq. (19) completes the proof.
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B Related Work

In this section, we review the existing related studies.

B.1 Implicit Recommendation Algorithms

The most basic prediction algorithm in the implicit recommendation is WMF [6]. It minimizes the
weighted pointwise loss function (e.g., binary cross-entropy loss or mean-squared loss) and obtains
user–item latent factors. Another well-known baseline is BPR [15]. This method minimizes the
pairwise loss function and learns user–item latent factors that give interacted items higher scores than
non-interacted ones. Several papers apply deep neural networks to these basic latent factor models
and show promising results on benchmark datasets [4, 20, 10].

As discussed in the introduction, these methods do not address the two major challenges of implicit
feedback recommendation. For example, for both pointwise and pairwise approaches, unlabeled
feedback is regarded as negative feedback. Thus, these conventional methods often underestimate the
relevance level of unlabeled data. Moreover, these methods do not deal with the MNAR problem
caused by popularity, presentation, and recency biases [26]. Thus, recommendations made by these
methods might be sub-optimal [14, 21, 19, 26].

B.2 Debiasing Recommender Systems

There are some studies directly addressing the MNAR problem in the explicit feedback recommen-
dation. Some works assumed missing data model and rating prediction model and estimated the
parameters of these models via the EM algorithm [14, 5]. Another approach to the MNAR problem
is the causal-based recommendation [2, 19, 12]. These methods applied the Inverse Propensity Score
(IPS) estimation [17, 16, 8] established in the context of causal inference or domain adaptation to
deal with the MNAR problem of when learning a recommender using explicit feedback.

In comparison with the explicit counterpart, there are only a few methods directly addressing the
challenging problems in implicit recommendation studies. Among them, ExpoMF is the most basic
one [13, 22, 3]. It introduces the exposure variable representing whether a user has been exposed to an
item and a corresponding probabilistic model assuming the generative mechanism of how interactions
occur. ExpoMF updates its parameters by minimizing the weighted squared loss in the M-step, and
the weights are the exposure probability estimated during the E-step. This is the important work
explicitly addressing the positive-unlabeled problem of implicit feedback. However, it does not tackle
the MNAR problem and might demonstrate the poor prediction accuracy on tail items. In addition,
[18] proposed an unbiased estimator for the ideal pointwise loss function using estimation techniques
from causal inference and positive-unlabeled learning. A corresponding prediction method called
Rel-MF is also proposed. However, this method is based on the pointwise approach. In general, the
pairwise algorithm practically outperforms the pointwise approach in the optimization of ranking
metrics. However, a method to deal with the bias of the pairwise approach has not yet been fully
investigated despite its effectiveness in the top-N recommendation problem. [15, 20].

B.3 Unbiased Learning-to-Rank

Unbiased Learning-to-Rank aims to obtain an optimal ranking function to optimally order documents
to a given query using only the biased click log data [9, 25, 7, 1]. To achieve this goal, addressing
the bias of the click log data is essential, which is similar to our implicit feedback recommendation
setting. Most studies in this area assume the position-based model (PBM) on the click generative
process[9, 25, 1]. Based on this click model, one can obtain an unbiased estimator for a listwise risk
function of interest through the IPS estimation [9].

The method that is most related to ours in the context of unbiased learning-to-rank is pairwise
debiasing and Unbiased LambdaMART [7]. Pairwise debiasing is the first debiasing method for
the pairwise loss function in unbiased learning-to-rank. In the theoretical analysis of [7], the
unbiasedness of the pairwise debiasing is shown; however, this unbiasedness is based on the unrealistic
assumption that both click and unclick probabilities are proportional to relevance and irrelevance
level, respectively6. This assumption is more strict than the simple PBM because unclick probability

6Eq. (16) and Eq. (17) of [7].
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is not necessarily proportional to the irrelevance level in this click model. In contrast to the work of
[7], our algorithm and loss function is based on looser assumptions and can be used to improve the
estimation quality of the pairwise debiasing method for the unbiased learning-to-rank problem.
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