Laminar flow downregulates Notch activity to promote lymphatic sprouting

Dongwon Choi, … , Alex K. Wong, Young-Kwon Hong

J Clin Invest. 2017;127(4):1225-1240. https://doi.org/10.1172/JCI87442.

The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow–induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of *DTX1* and *DTX3L*. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, concertedly downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of *Orai1* and *Klf2* also markedly impaired lymphatic sprouting. Moreover, *Dtx3L* loss of function led to defective lymphatic sprouting, while *Dtx3L* gain of function rescued impaired sprouting in *Orai1* KO embryos. Together, the data reveal a molecular mechanism underlying laminar flow–induced lymphatic sprouting.

Find the latest version:

http://jci.me/87442/pdf
Laminar flow downregulates Notch activity to promote lymphatic sprouting

Dongwon Choi,1 Eunkyung Park,1 Eunson Jung,1 Young Jin Seong,1 Jaehyuk Yoo,1 Esak Lee,2 Mingu Hong,1 Sunju Lee,1 Hiroaki Ishida,1 James Burford,3 Janos Peti-Peterdi,4 Ralf H. Adams,5 Sonal Srikanth,6 Yousang Gwack,6 Christopher S. Chen,2 Hans J. Vogel,1 Chester J. Koh,7 Alex K. Wong,1 and Young-Kwon Hong8

1Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. 2Department of Biomedical Engineering and the Biological Design Center, Boston University, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 3Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. 4Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. 5Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, and University of Münster, Faculty of Medicine, Münster, Germany. 6Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. 7Division of Pediatric Urology, Texas Children’s Hospital, Baylor College of Medicine, Houston, Texas, USA.

The Journal of Clinical Investigation

The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow–induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of DTX1 and DTX3L. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, conversely downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of Orai1 and Klf2 also markedly impaired lymphatic sprouting. Moreover, Dtx3l loss of function led to defective lymphatic sprouting, while Dtx3l gain of function rescued impaired sprouting in Orai1 KO embryos. Together, the data reveal a molecular mechanism underlying laminar fluid flow–induced lymphatic sprouting.

Introduction

The lymphatic system consists of lymphatic networks and lymphoid organs (1). Unlike the blood vascular system, where the fluid (blood) leaves and returns to the same organ (the heart), lymphatic vessels start from the tissue interstitium as capillary lymphatics, become the collectors, and eventually end at the venous connection as the thoracic duct, the biggest-caliber lymphatic vessel. While capillary lymphatics are composed of a single layer of overlapping lymphatic endothelial cells (LECs) and are devoid of mural cells and continuous basement membrane, collecting lymphatic vessels are equipped with luminal valves, as well as mural cells and basement membrane. Whereas LECs in lymphatic capillaries are expected to experience a basal-to-apical interstitial flow, followed by unidirectional laminar flow to downstream compartments, the cells in the collecting lymphatics are more likely exposed to oscillatory flow.

Blood vessels carry a relatively constant volume of blood and remain distended at normal steady state. Lymphatic capillaries, however, remain collapsed until a significant volume of interstitial fluid flows into the lumen. As tissue fluid drainage is a primary function of lymphatic vessels, fluid flow was hypothesized to serve as an important nonbiological lymphangiogenic stimulus (2). Indeed, the initial pioneering studies using in vivo models showed that interstitial fluid flow caused by functional drainage serves as a critical morphogenic mediator of lymphatic vessel organization by controlling LEC migration, VEGF-C expression, and lymphatic capillary network formation (3–5). An increase in embryonic fluid drainage was previously found to coincide with the initial lymphatic development and serve as a signal for embryonic lymphatic expansion (6). Lymph drainage and flow were also shown to regulate collecting lymphatic vessel maturation as well as luminal valve formation and development in vivo (7, 8). A recent study using a 3D in vitro biomimetic model showed that interstitial flow alone is sufficient to activate lymphatic sprouting, and that this mechanical force synergizes with biological stimuli to enhance lymphatic growth (9). Therefore, flow-induced mechanical signals, together with biological stimuli, seem to play critical roles in lymphatic growth, expansion, maturation, valve formation, and remodeling (10).

Studies have shown that steady laminar flow at a rate equivalent to blood flow (greater than ~10 dyn/cm²) causes a variety of responses in blood vessel endothelial cells (BECs), including elongated cell morphology, cell proliferation arrest, increased

Conflict of interest: The authors have declared that no conflict of interest exists.

Submitted: March 9, 2016; Accepted: January 11, 2017.

https://doi.org/10.1172/JCI87442.
calcium entry, Notch activation, and upregulation of Krüppel-like factor 2 (KLF2), the master regulator of the shear stress response (11–17). Moreover, fluid shear stress can promote endothelial differentiation of bone marrow–derived progenitor cells and embryonic stem cells in vitro (16). Similarly, blood flow reprograms lymphatic vessels to blood vessels in mice (18). Thus, it is clear that fluid flow has a substantial effect on establishment and maintenance of the blood vascular system. In comparison, the molecular basis of functional drainage–induced lymphatic expansion remains undefined. In this study, we aimed to gain a mechanistic understanding of how the flow functions as a growth stimulus for lymphatic vessels during development. Our data show that laminar flow activates ORAI1, a major component of the calcium release–activated calcium (CRAC) channel, and results in calcium influx in LECs. Increased intracellular calcium, in turn, activates calmodulin (CaM) to promote a complex formation between a key shear stress regulator, KLF2, and the master regulator of lymphatic development, PROX1. The resulting KLF2/PROX1/CaM protein complex upregulates a heterodimeric Notch E3 ligase, encoded by Dtx1 (deltex E3 ubiquitin ligase 1) and Dtx3l (deltex E3 ubiquitin ligase 3L), which activates lymphatic sprouting through suppression of Notch activity. Together, our findings uncover a molecular mechanism underlying the laminar flow–induced lymphatic expansion.

Results

Laminar flow selectively suppresses NOTCH activity in LECs and increases lymphatic sprouting. We aimed to study the impact of low-rate laminar flow generated from functional lymphatic drainage on lymphatic development. Currently, the shear force levels in the developing embryonic lymphatic network are unknown. Thus, we applied various levels of laminar shear force on cultured LECs and found that steady laminar flow at approximately 2 dyn/cm² or higher clearly and consistently generated the classic endothelial shear stress responses, such as elongated cell morphology, upregulation of KLF2 and endothelial NOS, and calcium influx (Figure 1A; Supplemental Figure 1, A and B, and Supplemental Figure 2, A and B; supplemental material available online with this article; doi:10.1172/JCI87442DS1). Unexpectedly, the laminar flow at this shear force caused downregulation of the NOTCH target genes NRRP, HEY1, and HEY2 in LECs (Figure 1B). BECs, in comparison, did not show the same regulation of the Notch pathway (Supplemental Figure 1C), possibly because the applied shear force (~2 dyn/cm²) was much lower than the physiological levels in blood vessels (10–20 dyn/cm²). Moreover, whereas the mRNA level of NOTCH1 was not altered (Supplemental Figure 1D), the protein level of the NOTCH1 intracellular domain (NICD1) was significantly reduced in LECs, but not in BECs, by the laminar flow (Figure 1C and Supplemental Figure 1E). In comparison, NICD4 protein level was not changed in either cell type by laminar flow (Supplemental Figure 1, F and G). Consistent with these findings, a Notch activity reporter assay using an RBP-JK-responsive luciferase vector confirmed that the steady laminar flow decreased Notch activity in LECs (Figure 1D). Notably, the PROX1 protein level was not changed by this experimental condition (Supplemental Figure 1H), although a higher flow rate (20 dyn/cm²) downregulated PROX1 with loss of the LEC identity (18).

Because Notch activity has been shown to be a key regulator of lymphatic sprouting (19–23), we next evaluated the effect of the low-rate laminar flow on the in vitro sprouting potential of LECs by spheroid-based sprouting and microfluidic vascular mimetic assays (24–27). In spheroid-based sprouting assays (24, 25), flow-exposed LECs displayed increased sprout-forming capacity, whereas the same treatment in BECs did not show the same phenotype (Figure 1E). We next created a 3D vascular mimetic model by lining microfluidic channels with single-donor-derived BECs and LECs and subsequently subjected them to steady intraluminal laminar flow (26, 27). Consistent with the spheroid-based sprouting assays, laminar flow strongly enhanced LEC sprouting, but did not induce the same response in BECs (Figure 1F and Supplemental Figure 1I). These data show that although LECs and BECs similarly exhibit the conventional shear stress responses to the low-rate steady laminar flow, only LECs increase their sprouting capability by suppressing Notch.

Calcium influx through ORAI1 is essential for the laminar flow–induced suppression of Notch activity and enhanced sprouting in LECs. As intracellular calcium mobilization is a hallmark immediate response to shear stress in endothelial cells, we next studied the dynamics of laminar flow–induced calcium influx in LECs. The calcium signal was activated in LECs within the first minute of the onset of laminar flow, after which it gradually decreased despite the continuous presence of laminar flow (Figure 2, A and B), consistent with a previous study (28). Since the calcium channel responsible for the flow-induced intracellular calcium increase has not been identified in LECs, we searched for the key calcium channel protein that may control the downstream shear stress responses in LECs, particularly Notch downregulation. Our search found that inhibition of store-operated calcium entry (SOCE) (29) with low concentrations of SKF–96365 (a nonspecific inhibitor of SOCE) could efficiently block the laminar flow–induced calcium mobilization in LECs (Figure 2, A and B). More specifically, when we knocked down ORAI1, a pore subunit of the CRAC channel that is involved in the SOCE process (30), the flow-mediated reduction of NICD1 as well as the increased calcium influx in LECs was completely abrogated (Figure 2C and Supplemental Figure 2), suggesting that ORAI1 is responsible for the laminar flow–induced calcium mobilization and NOTCH1 downregulation in LECs. Moreover, ORAI1 knockdown also significantly reversed the flow–induced downregulation of Notch pathway genes in LECs, but did not yield any effects in BECs (Figure 2D). In addition, ORAI1 knockdown abolished the in vitro sprouting capacity of LECs stimulated by laminar flow, while not altering BEC sprouting (Figure 2E). These data imply that ORAI1, responsible for the laminar flow–induced calcium entry, is essential for the NOTCH1 suppression and enhanced sprouting in LECs.

ORAI1 function is required for lymphatic sprouting during development. We next investigated the vascular phenotypes in Orai1 KO mice (31). Conventional Orai1 KO embryos and rarely surviving postnatal mice displayed abnormally enlarged lymphatic vessels with reduced number of sprouts and branches in their back skins and ears, respectively (Figure 3, A and B, and Supplemental Figure 3). Morphometric analyses revealed that Orai1 knockout caused defective lymphatic development, characterized by reduced number (~50%) of lymphatic branching points and increased distance.
Figure 1. Laminar flow selectively suppresses NOTCH1 activity in LECs. (A and B) Real-time quantitative reverse transcription PCR (qRT-PCR) data showing the mRNA levels of KLF2 in LECs and BECs (A) and those of Notch target genes in LECs (B) in response to steady laminar flow (2 dyn/cm²). Expression of the Notch target genes in BECs by laminar flow is shown in Supplemental Figure 1C. (C) Protein levels of NICD1 in LECs and BECs in response to laminar flow (2 dyn/cm²). The intensity of the Western blotting bands is quantitated in Supplemental Figure 1E. A monoclonal anti-NOTCH1 antibody that specifically detects the cleaved form of NOTCH1 at Val1744 was used. Blots presented are derived from replicate samples run on parallel gels. (D) Luciferase assay showing the flow-mediated suppression of Notch activity in LECs. LECs were transfected with a Notch activity reporter (pGa981-6) (60) and exposed to laminar flow (2 dyn/cm²) for 24 or 48 hours before measurement of luciferase activity. (E) Spheroid-based sprouting assays. Cells were exposed or not exposed to laminar flow (2 dyn/cm²) for 24 hours, stained with a CellTracker dye, aggregated in methylcellulose polymers, and then embedded in Matrigel. After 24 hours, images of more than 20 spheroids were taken for analyses, and relative sprout numbers were quantified in the graph. (F) Biomimetic sprouting assay. Intraluminal laminar flow (5 dyn/cm²) was applied onto a layer of LECs lining the inner wall of the vascular mimetic channels made in collagen gel. Scale bars: 100 μm. Relative sprout length and number were graphed. Each experiment was independently performed at least 3 times with consistent results. Data are expressed as SEM and SD from 1 representative data set. *P < 0.05; **P < 0.01; ***P < 0.001; t test.
Figure 2. ORAI1 is essential for the laminar flow–induced NOTCH1 suppression in LECs. (A and B) Activation of Ca\(^{2+}\) mobilization in LECs by laminar flow:
Fluo-4–loaded LECs were pretreated with PBS (CTR) or SKF-96365 (SKF), an inhibitor of store-operated Ca\(^{2+}\) entry (SOCE), for 10 minutes, and subjected to laminar flow (2 dyn/cm\(^2\)). Calcium signals were captured by a time-lapse microscope (A). Relative signal intensity was plotted in the graph (B). (C) NICD1 protein level in LECs and BECs that were transfected with control siRNA (siCTR) or ORAI1 siRNA (siORAI1) for 24 hours, then subjected to laminar flow (2 dyn/cm\(^2\)). The vertical line marks a boundary between 2 different areas in the same gel. Blots presented are derived from replicate samples run on parallel gels. (D) qRT-PCR data showing the mRNA level of NRARP, HEY1, and HEY2 in ORAI1-inhibited LECs and BECs. Statistical comparison was made between control siRNA and ORAI1 siRNA samples at each time point to assess the reversal of the laminar flow–mediated suppression of the genes. (E) Effect of ORAI1 knockdown on the flow-induced sprouting of LECs and BECs. Cells were transfected with control or ORAI1 siRNA for 24 hours, exposed to laminar flow (2 dyn/cm\(^2\)) for 24 hours, stained with a CellTracker dye, aggregated in methylcellulose polymers, and embedded in Matrigel. After 24 hours, spheroid images (>20) were taken and relative sprout numbers were quantified by NIH ImageJ. Scale bars: 50 \(\mu\)m. Data are expressed as SEM and SD of a representative of 3 independent experiments. *P < 0.05; **P < 0.01; ***P < 0.001; t test.
performed high-resolution NMR spectroscopy on the interaction between PROX substitution mutant fragments, and found that the Vhydrophobic amino acid residues in the predicted CaM-binding abolished by a calcium chelator, EGTA and CaM. Indeed, the PROX1/CEPT1-interacting proteins, we fortuitously identified KLF2 as a PROX1 binding protein (Figure 5A). Because KLF2 is the master regulator for shear stress responses (37) and is dramatically upregulated by steady laminar flow in LECs (Figure 1A), we asked whether KLF2 may be involved in the flow-induced Notch downregulation. Supporting this notion, the PROX1/KLF2 interaction was decreased by calcium chelation, but enhanced by ionomycin, in HEK293T cells (Figure 5B and Supplemental Figure 5C), indicating the dependence of the PROX1/KLF2 interaction on the presence of calcium. Moreover, the PROX1/KLF2 interaction was enhanced by ectopic expression of HA-tagged CaM (Figure 5C and Supplemental Figure 5D). Although endogenous CaM proteins may be abundantly present in the cells, an additional expression of CaM could further enhance the PROX1/KLF2 interaction.

These data raised a possibility that CaM may facilitate the interaction between PROX1 and KLF2 and form a triple protein complex in the presence of increased intracellular calcium. In
Figure 3. Orai1 is required for normal lymphatic sprouting during development. (A) Immunofluorescence images of lymphatic and blood vessels in the back skins of WT and Orai1 KO embryos (E15.5). Lymphatics were stained for LYVE-1, and blood vessels were visualized by anti-CD31 staining. The graph shows the relative number of branching points (BP no.) and average distance between the branching points (BP-BP dis.). Scale bars: 100 μm. (B) The ear vasculature of 3-week-old WT and Orai1 KO mice was similarly visualized and analyzed. Scale bars: 250 μm. (C–E) Endothelial-specific deletion of Orai1 (Orai1ECKO) was induced in pregnant females by peritoneal injection of tamoxifen (1.5 mg) at E11.5 and 13.5. At E15.5, the embryos were harvested and genotyped. Lymphatics and blood vessels of the control (CTR) embryos [Orai1+/+ Cdh5(Pac)-CreERt2 Prox1-EGFP] and Orai1ECKO embryos [Orai1fl/fl Cdh5(Pac)-CreERt2 Prox1-EGFP] were visualized by lymphatic-specific EGFP signals (C) and anti-CD31 staining (D), respectively. Scale bars: 250 μm (C), 100 μm (D). (E) Vascular analyses were performed as described above. For all studies, a total of more than 6 embryos or postnatal mice per genotype collected from at least 3 independent litters were analyzed. The dorsal midline areas of the embryos were chosen as the sites for vascular analyses. Data are expressed as SEM and SD. *P < 0.05; **P < 0.01; ***P < 0.001.
Figure 4. CaM physically interacts with PROX1 and regulates lymphatic sprouting. (A) CaM overlay assays. Top: Western analysis showing the quantity and quality of recombinant GST-PROX1 fragments (D1–D7; Supplemental Figure 4B). Middle and bottom: CaM overlay assays were performed on duplicate blots using the CaM::HRP conjugate protein in the presence of CaCl$_2$ (1 mM, middle) or EGTA (5 mM, bottom). (B) Substitution mutations in the predicted CaM-binding site of PROX1: uncharged residues (V19, I21, V23, V27, A30, A32, F33, and F34) were replaced with aspartic acid, D. (C) CaM overlay assays performed against the PROX1 mutant fragments identified 2 residues (V23, V27) as essential for the CaM/PROX1 binding. (D) Superposed 1H, 1N heteronuclear single quantum coherence spectra of Ca$^{2+}$-saturated CaM recorded with 0 (black), 0.5 (red), 1.0 (green), and 1.5 (blue) molar equivalents of PROX1 peptide (aa 15–35). The assignments for separated signals are shown. Signals from the N-domain of CaM were perturbed in slow exchange on the NMR timescale, whereas the perturbations of the signals from the C-domain were relatively small and in fast exchange. (E) Co-IP assay demonstrating calcium-dependent interaction of PROX1 and CaM. HEK293 cells were transfected with vectors expressing FLAG-tagged PROX1 and/or HA-tagged CaM, treated with Bapta-AM (Bapta, 3 μM), ionomycin (Iono, 1 μM), and KCl (40 mM), and co-IP was performed. Band intensity is quantitated in Supplemental Figure 5A. (F) Co-IP assay demonstrating that laminar flow (LF, 2 dynes/cm2) enhanced the interaction between PROX1 and CaM in LECs. LECs were treated with Bapta-AM (3 μM, Bapta) for 10 minutes, followed by laminar flow for 4 hours. Two CaM blots from a short or long exposure are shown. Band intensity is quantitated in Supplemental Figure 5B. (G) Whole-mount LVE-1 staining of the back skin of embryos (E15.5) having LSL-GCaMP3, Tie2-Cre LSL-GCaMP3, or Prox1-CreERT2 LSL-GCaMP3 transgenes. Pregnant mice were injected i.p. with tamoxifen (1.5 mg) at E11.5 and E13.5, and the embryos of each genotype were harvested at E15.5 for lymphatic analyses. More than 5 embryos total per genotype collected from at least 3 independent litters were analyzed. Scale bars: 100 μm. For in vitro experiments, data are expressed as SEM and SD from a representative of 3 independent experiments.
order to address this hypothesis, we asked whether these 3 proteins can be found in a complex at the same time, and thus performed a serial co-IP assay. Myc-PROX1, FLAG-KLF2, and HACA-M were expressed in HEK293 cells. A negative control was also prepared without FLAG-KLF2. We first set up an immunoprecipitation of the KLF2-containing complexes from both cell lysates. From the KLF2 precipitates obtained from the KLF2-expressing cells, we next performed an immunoprecipitation of CaM protein. In this serially precipitated CaM-containing protein complex, we checked the presence or absence of PROX1 protein by Western blotting for PROX1 (Figure S5D). Indeed, PROX1 protein was found in the protein complex that was immunoprecipitated sequentially by KLF2 and CaM, suggesting that the 3 proteins form a stable multiprotein complex. Notably, the PROX1/KLF2 interaction was undetectable in the statically cultured LECs, but was strongly enhanced in LECs that were pre-exposed to laminar flow for 3 hours (Figure S5E). Importantly, calcium was required for the initial formation, but not for the maintenance, of the PROX1/KLF2 complex by laminar flow, because pretreatment of LECs with Ba-AM prior to the onset of fluid flow efficiently blocked the flow-induced formation of the complex, whereas treatment of LECs after laminar flow exposure did not disrupt the already formed complex (Figure S5F). In sum, these studies suggest that laminar flow activates KLF2, PROX1, and CaM proteins to form a multi-protein complex in LECs in a calcium-dependent manner.

KLF2 is essential for flow-induced NICD1 downregulation and lymphatic sprouting. Moreover, chemical inhibition of ORAI1 significantly suppressed the laminar flow–induced KLF2 upregulation in LECs (Figure 5G). In turn, when the flow-induced KLF2 expression was inhibited by siRNA-mediated knockdown in LECs, the laminar flow could no longer decrease the NICD1 protein level, indicating the essential role of KLF2 in the flow-mediated downregulation of NOTCH1 (Figure 5H). We next studied the in vivo effect of KLF2 inhibition on lymphatic development by inducing endothelial-specific knockout of KLF2 (KLF2cre/cre). For this, we intercrossed Cdh5(PAC)-CreER12 mice (33), KLF2fl/fl mice (38), and Prox1-EGFP mice (32), and then compared the developing vascular phenotypes between the control embryos [Cdh5(PAC)-CreER12, KLF2+/+ Prox1-EGFP] and KLF2cre/cre embryos [Cdh5(PAC)-CreER12, KLF2fl/fl Prox1-EGFP]. Indeed, the majority of KLF2cre/cre embryos (E15.5, n > 6) developed severe nuchal edema, often displaying blood-filled lymphatics (Supplemental Figure 7). KLF2cre/cre embryos displayed profoundly enlarged lymphatic vessels and impaired lymphatic sprouting, determined by a reduced number of branching points and an increased distance between the branching points, compared with WT controls (Figure 5, I and J, and Supplemental Figure 8). Together, our data show that KLF2 is required for the laminar flow to downregulate NICD1, and also that KLF2 ablation causes abnormally enlarged lymphatic vessels with defective lymphatic sprouting.

PROX1/KLF2 selectively suppresses Notch by upregulation of DTX1 and DTX3L in LECs. The finding of LEC-specific suppression of Notch activity directed us to hypothesize that there may be Notch activity modifiers acting selectively in LECs. We thus searched for putative modifiers that were differentially expressed in LECs and BECs under the laminar flow conditions. DTX1 and DTX3L were identified from our transcriptional profiling analyses as the candidates based on their previous association with Notch signaling as a heterodimeric E3 ligase (39–42). While DTX3L mRNA was upregulated specifically in LECs in response to laminar flow, DTX1 mRNA was commonly upregulated in LECs and BECs (Figure 6, A and B). This finding was also confirmed by the protein levels (Supplemental Figure 9). ChiP assays revealed that PROX1 and KLF2 proteins were physically associated with the promoters of the DTX1 and DTX3L genes, and that their promoter occupancies were significantly increased by laminar flow. Notably, these flow-increased promoter occupancies were reversed by an inhibitor of SOCE (SKF-96365) (Figure 6, C and D), indicating that the flow-induced bindings of PROX1 and KLF2 to the promoters of DTX1 and DTX3L are dependent on ORAI1 function. Functionally, DTX1 and DTX3L proteins were found to synergistically reduce the endogenous NICD1 level in HEK293 cells and LECs (Figure 6, E and F, and Supplemental Figure 10, A and B). Simultaneous knockdown of DTX1 and DTX3L showed a synergy in reversing the flow-mediated decrease of NICD1 level in LECs (Figure 6G and Supplemental Figure 10C). Moreover, the flow-induced increase in sprouting capacity was significantly reduced by knockdown of DTX1 or DTX3L in LECs (Figure 6H), indicating the critical role of DTX1 and DTX3L in the flow-mediated promotion of lymphatic sprouting.

Since DTX3L was uniquely upregulated in LECs after exposure to laminar flow, we generated Dtx3lKO mice using Cas9 tech-
Figure 6. PROX1/KLF2 complex promotes lymphatic sprouting by upregulating DTX1 and DTX3L. (A and B) qRT-PCR analyses showing the expression of DTX1 (A) and DTX3L (B) in LECs and BECs exposed to laminar flow (2 dyne/cm²) for 0 (static), 3, 6, 12, and 24 hours. Protein expression is shown in Supplemental Figure 9. (C and D) ChIP assays demonstrating the binding of PROX1 and KLF2 to the promoters of the DTX1 (C) and DTX3L (D) genes in LECs, which were exposed to laminar flow for 0 (static) or 3 hours in the presence of vehicle (DMSO) or SKF-96365 (SKF, 3 μM). (E and F) Western blot assays showing a synergistic degradation of NICD1 by DTX1 and/or DTX3L in HEK293 cells (E) and LECs (F). Band intensities are graphed in Supplemental Figure 10, A and B. (G) Western blot assays showing the knockdown effect of DTX1 and/or DTX3L on the flow-induced downregulation of NICD1. LECs were transfected with siRNA for DTX1 and/or DTX3L for 24 hours, followed by laminar flow for 0 (static), 12, or 24 hours, and subjected to immunoblotting for NICD1 and β-actin. Band intensities were measured and are graphed in Supplemental Figure 10C. (H) Spheroid-based sprouting assay showing that sprouting capability was significantly reduced by knockdown of DTX1 or DTX3L. LECs were transfected with control siRNA (siCTR), siRNA for DTX1 (siDTX1), or siRNA for DTX3L (siDTX3L) for 12 hours, exposed to laminar flow (2 dyn/cm²) for 24 hours, and subjected to sprouting assays as described in Figure 1E (n > 20 spheroids). (I) Lymphatics and blood vessels were visualized by LYVE-1 and CD31 staining, respectively, in the back skins of WT and Dtx3l KO embryos (E15.5). Boxed areas are enlarged at right. Scale bars: 100 μm. (J) The number of branching points (BP no.) and distance between the branching points (BP-BP dis.) of lymphatic vessels (LV) and blood vessels (BV) were quantified and graphed. More than 4 embryos per genotype harvested from at least 3 independent litters were analyzed. Data are expressed as SEM and SD. *P < 0.01; **P < 0.001.
injected with tamoxifen at E\textsubscript{5} to slightly increase blood vessel sprouting. We next intercrossed A and B, resulting in a transgenic mouse line, which harbors a transgene cassette consisting of the KLF\textsubscript{14} and DTX\textsubscript{3} alleles. For this purpose, we determined the mRNA levels of Klf\textsubscript{14} and DTX\textsubscript{3} in embryonic LECs, presumably by functional fluid drainage. Together, these results suggest that laminar flow upregulates a NOTCH signaling pathway, which were established based on the above in vitro experiments, using ORAI\textsubscript{1}, KLF\textsubscript{2}, and DTX\textsubscript{3} mutant embryos. For this purpose, we determined the mRNA levels of Klf\textsubscript{14}, Dtx\textsubscript{3}, Nrarp, Hey\textsubscript{1}, and/or Hey\textsubscript{2} in primary dural LECs freshly isolated from the WT and mutant embryos. In LECs from Orai\textsubscript{1} KO embryos, Klf\textsubscript{14} and Dtx\textsubscript{3} were found to be downregulated, while Nrarp, Hey\textsubscript{1}, and Hey\textsubscript{2} were upregulated, compared with those in LECs from the WT litter embryos (Figure 7A). Moreover, the Notch pathway genes were upregulated in LECs freshly isolated from Dtx\textsubscript{3} KO embryos, compared with those in the WT LECs (Figure 7B). Consistent with these mRNA expression patterns, the protein levels of NICD1 were increased in the back skins and intestines of Orai\textsubscript{1} KO (Figure 7C) and Dtx\textsubscript{3} KO (Figure 7D) embryos. These data imply that ORAI\textsubscript{1} and DTX\textsubscript{3} are required for the suppression of Notch signal in embryonic LECs, presumably by functional fluid drainage during embryonic development.

DTX3L overexpression rescues lymphatic sprouting defects of Orai\textsubscript{1} KO mouse. We next asked whether ectopic expression of DTX3L could rescue the defective lymphatic sprouting caused by genetic deletion of Orai\textsubscript{1}. For this, we generated an inducible Orai\textsubscript{1}\textsubscript{fl/fl} mice. The resulting pregnant females were injected with tamoxifen at E\textsubscript{5}, followed by embryo harvest at E\textsubscript{11.5} (LSL-Dtx3L Cdh5(PAC)-CreER2 mice, where the lymphatic sprouting and branching morphogenesis, determined by the number of branching points and the distance between the branching points, appeared to be comparable to those in the control embryos (Orai\textsubscript{1}fl/fl and Orai\textsubscript{1}fl/fl LSL-Dtx3L). Together, these data suggest that ORAI\textsubscript{1} is essential for normal lymphatic sprouting by suppressing Notch activity via upregulation of DTX1 and DTX3L. Additionally, the defective lymphatic sprouting caused by Orai deletion could be rescued by ectopic expression of Dtx3L.

Discussion

Considering interstitial fluid drainage as the major function of the lymphatics, the basal-to-apical interstitial flow and the subsequent intraluminal flow caused by an overwhelming volume of tissue fluid could serve as an important expansion signal that triggers embryonic and postnatal lymphangiogenesis. This kind of fluid flow–driven lymphangiogenesis may be conceptually similar to hypoxia-activated angiogenesis in purpose to execute their physiological function. Fluid flow resulting from the functional drainage of embryonic fluid imposes shear stress on LECs in the lumen of developing lymphatic vessels. In this study, we investigated how laminar fluid flow activates lymphatic expansion during embryonic lymphatic development. Our in vitro and animal-based findings of this study allow us to build a working model for the molecular mechanism by which steady laminar flow induces lymphatic sprouting (Figure 8E). In our proposed model, steady laminar flow activates calcium influx in LECs through the ORAI-containing calcium channel and thus increases the concentration of calcium-loaded CaM. Increased Ca2+/CaM, in turn, facilitates a complex formation between PROX1, CaM, and KLF2 proteins, which binds to the promoters of the DTX1 and DTX3L genes and activates their gene expression. Subsequently, upregulated DTX1 and DTX3L proteins form a heterodimeric NOTCH1 E3 ligase that degrades NICD1 protein, leading to activation of lymphatic sprouting. We propose that this mechanism, uniquely operating in lymphatic vessels, presents a key mechanotransduction pathway, through which LECs translate the hemodynamic force to a biological response, specifically, sprouting. In addition, we found in a separate study that steady laminar flow also enhances cell proliferation of LECs by upregulating VEGF-A, VEGF-C, and FGFR3 through the ORAI1/KLF2 pathway (44).

A previous study has nicely demonstrated the presence of embryonic fluid drainage and flow as early as mouse E11.5 and established the interrelationship among embryonic tissue fluid accumulation, fluid pressure increase, elongation and stretching of LECs, VEGFR-3 activation, LEC proliferation, and fluid drainage (6). Despite the convincing presence of lymphatic fluid flow at this developmental stage, however, the precise shear force level in developing embryonic lymphatic networks remains unknown and is thought to be experimentally challenging to measure. On the other hand, shear force levels in other postnatal lymphatics have been previously estimated. Under a basal physiological condition, the shear force level was approximately 0.64 dyn/cm2 in a collecting lymphatic vessel (45), 0.001 dyn/cm2 in mouse tail capillaries (46), and 0.003 dyn/cm2 in human skin capillaries (47). Compared with these very low shear force levels, however, conceptual predic-
A monochromatic anti-NOTCH1 antibody that specifically detects the cleaved form of NOTCH1 at Val1744 was used to detect the NICD1 protein. Ratios of band intensities of NICD1, DTX3L, and DTX1 normalized against β-actin are graphed (n > 4 per genotype). Data are expressed as mean ± SEM. Each data point represents an individual embryo (n > 3 per genotype). *P < 0.05; **P < 0.01; ***P < 0.001.
Figure 8. Overexpression of DTX3L rescues the defective lymphatic sprouting of Orai1 KO mice. (A and B) Lymphatic and blood vessels were visualized in control embryos (Prox1-EGFP) or Dtx3lTG transgenic embryos [Prox1-EGFP Cdh5(PAC)-CreER2 LSL-Dtx3l]. (A) Pregnant females were injected with tamoxifen at E11.5 and E13.5. At E15.5, dermal lymphatic and blood vessels were visualized by EGFP and CD31 staining, respectively. Panels i and ii display lymphatic vessels growing into the dorsal midline region. Boxed areas are enlarged in panels iii and iv, respectively. Arrows indicate distance between front lines of lymphatic vessels growing from the lateral areas into the midline. Panels v and vi highlight the dorsal midline area. Blood vessels in the corresponding area are shown in panels vii and viii, respectively. (B) Vascular analyses were performed and graphed to show branching point numbers (BP no.) and distance between the branching points (BP-BP dis.) of lymphatic vessels (LV) and blood vessels (BV). More than 5 embryos total per genotype obtained from 3 independent litters were analyzed. The dorsal midline regions were imaged for the vascular analyses. (C and D) Ectopic expression of DTX3L rescues the lymphatic sprouting defects in Orai1 KO embryos. (C) Endothelial-specific Orai1ECKO and/or Dtx3l ectopic expression were induced in pregnant females at E11.5 and E13.5 by i.p. tamoxifen injection. Lymphatic and blood vessels were detected by LYVE-1 and CD31 staining, respectively, in the back skins of embryos with indicated genotypes at E15.5. (D) Vascular analyses were performed to determine the number of branching points (BP no.) and distance between the branching points (BP-BP dis.) of lymphatic vessels. (E) Schematic illustration showing a current working model of laminar flow–induced lymphatic sprouting. More than 4 embryos total per genotype were harvested from at least 3 independent litters and analyzed. The dorsal midline areas of the embryos were imaged for the vascular analyses. Scale bars: 100 μm (A, iii–viii; C); 1 mm (A, i, ii). *P < 0.05; **P < 0.01; ***P < 0.001.
shear stress responses, such as cellular elongation, upregulation of KLF2 and endothelial NOS, and calcium influx (44), suggesting this range of fluid shear stress as a threshold shear force to trigger vascular remodeling phenotypes in vitro. In this study, we thus applied a shear force at approximately 2 dyn/cm² to cultured LECs for all our experiments, except for the 3D biomimetic model (Figure 1F and Supplemental Figure 1I), where approximately 5 dyn/cm² was applied to activate an efficient blood vessel growth. This minimum force level, similarly termed as a “set point” (48), for cultured LECs is consistent with an elegant study by Baeyens et al. (49), which demonstrated that the set point in LECs for the flow-induced cellular elongation and reorientation is much lower than that in HUVECs (10–20 dyn/cm²) because of the presence of VEGFR-3 in LECs. Moreover, separate studies have shown that flow-activated calcium influx in LECs reaches its maximum level at approximately 3 dyn/cm² (28), whereas the half-maximal activation in HUVECs occurred at a shear stress of 30 dyn/cm² (50).

LECs in developing, immature lymphatic vessels during embryogenesis appear to experience steady laminar flow, especially when the interstitial fluid load rapidly increases (6). Given the dynamics of embryonic interstitial fluid, we hypothesize that our working model for the laminar flow–induced lymphatic sprouting may be best applicable to early lymphatic capillaries during development, rather than more matured and large-caliber collecting lymphatics, where PROX1 expression is downregulated and oscillatory flow is the dominant pattern (51). It is important to note that the 2 flow patterns, laminar versus oscillatory, induce somewhat different shear stress transcriptional signatures in LECs. While laminar flow (0.25–5 dyn/cm²) profoundly induces KLF2 in LECs (Figure 1A), oscillatory flow (~4 dyn/cm²) augments the valve-forming cell characteristics in LECs without upregulation of KLF2 (8). Moreover, steady laminar flow condition did not change the expression of FOXC2, GATA2, and GJA4 (also known as CX37), which have been shown to be upregulated by oscillatory flow and to play key roles in lymphatic valve formation (8, 52–54). On the other hand, laminar flow was found to promote maturation of collecting lymphatic vessels during development (7), and laminar flow at the blood flow rate downregulates PROX1 and reprograms collecting lymphatics to adopt blood vessel phenotypes (18). Thus, fluid flow at different strengths and patterns may induce different responses in endothelial cells apparently through distinct mechanisms.

Notch signal plays a critical role in controlling vascular expansion and remodeling (19–23). Importantly, a reduction or loss of Notch signaling activates both blood vascular and lymphatic sprouting during development. Deltex (Dtx) proteins were originally isolated as a regulator of Notch signaling in Drosophila. Deltex and its mammalian homolog DTXI can either promote or inhibit Notch signaling depending on the cellular context. While deltex and DTX1 can promote Notch-dependent transcriptional activity, they also function as an E3 ligase that targets Notch protein for ubiquitination and degradation (40, 41, 55, 56). Notably, DTX3L interacts with DTX1 to form a more active heterodimeric E3 ligase (39, 42). Our study shows that DTX3L knockout phenocopied ORAI1 knockout in cultured LECs, abrogating flow-induced Notch downregulation (Figure 2C and Figure 6G). These in vitro data were further confirmed in animal models: Both Dtx3l knockout and Orail1 knockout increased NICD1 levels and upregulated the Notch target genes (Figure 7). An equally important finding is that both mRNA and protein levels of DTX3L were upregulated by laminar flow selectively in LECs but not in BECs (Figure 6B and Supplemental Figure 9). This implies that DTX3L is a critical player in the laminar flow–induced Notch downregulation in LECs. Supporting this notion, ectopic expression of DTX3L is sufficient to promote sprouting of both blood and lymphatic vessels (Figure 8, A and B). Together, a cooperative upregulation of DTX3L by PROX1, CaM, and KLF2 accounts for Notch downregulation in LECs and increased lymphatic sprouting in response to low-rate steady laminar flow.

Although both LECs and BECs display the classic responses to shear stress, only LECs downregulated Notch activity and enhanced sprouting, when exposed to low-rate steady laminar flow. In comparison, the same experimental condition did not trigger comparable phenotypes in BECs. It is necessary to exert caution in interpreting these data in BECs, because our shear force level was much lower than the physiological levels that BECs may experience in vivo. Nonetheless, Notch signal suppression through NICD1 downregulation may be a unique event that requires a lymphatic-specific mechanism. Indeed, NICD1 down-regulation was found to be orchestrated by the lymphatic-specific protein PROX1 that interplays with the master regulator of the shear stress response, KLF2, and the Ca²⁺ signal mediator, CaM. Despite the clear presence of KLF2 upregulation and increased Ca²⁺ entry, laminar flow did not alter Notch activity in BECs, presumably because of the absence of PROX1. Therefore, we propose that the shear stress phenotype of BECs may be the “default” endothelial response, produced by KLF2 and CaM in the absence of the lymphatic-specific factor PROX1. In comparison, because BECs differentiate into LECs through the expression of PROX1, the unique shear stress phenotypes of LECs may be a “newly acquired” response choreographed by the lymphatic-specific PROX1 in collaboration with the 2 “old” players, KLF2 and CaM. Therefore, it would be very interesting to define how PROX1 can modify the collaborative function of KLF2 and CaM by comparing their functional interplays in LECs versus BECs. Moreover, it will be intriguing to define the molecular basis for the increased blood vessel network formation in Ora1 KO embryos.

In summary, fluid flow has long been thought to be a key nonbiological growth stimulus for lymphatic expansion. This is in agreement with the major function of the lymphatics, that is, draining interstitial fluid. Here, our working model illustrates a molecular mechanism underlying the lymphatic-specific activation of sprouting by laminar flow, underscoring the differential responses of the 2 vascular systems. Our study not only offers a better understanding of flow-induced lymphatic expansion, but also provides significant insight into other mechanotransduction pathways in endothelial cells.

Methods

Cell culture-related reagents and assays. Human primary endothelial cells (LECs and BECs) were cultured in media based on Endothelial Basal Media (EBM, Lonza) as previously described (57, 58). Primary cells under seventh population doublings (passage) were used for this study. HEK293 cells were obtained from American Type Culture Collection and cultured in DMEM (Genesee Scientific) supplemented

The Journal of Clinical Investigation
with 10% calf serum and antibiotics (Invitrogen). Continuous laminar flow was generated based on the orbital rotation of culture medium over a monolayer of endothelial cells in a standard CO₂ incubator as previously reported (15). Steady laminar flow was applied at 2 dyn/cm² for all experiments in this study, except for Figure 1F and Supplemental Table 1 (5 dyn/cm²), as previously described (15). Spheroid-based sprouting assay was performed as described (25). Briefly, cells were exposed to laminar flow for 24 hours and then treated with a Cell-Tracker (Molecular Probes; C7025, 1.5 μM) dye for 0.5 hours. If necessary, cells were transfected with siRNA for 24 hours before the onset of laminar flow. The cells were mixed with Methocel (20%; Dow Chemical Co.), aggregated in hanging drops for 24 hours, and then embedded in Matrigel for 24 hours before imaging. Sources of antibodies for Western blot analyses and immunostaining are listed in Supplemental Table 1. See complete unedited blots in the supplemental material.

The sources of reagents used in this study are: SKF-96365 hydrochloride, Tocris Bioscience; Tamoxifen Free Base, MP Biomedicals; and Baptist-AM, Sigma-Aldrich.

Animal-related studies. All mice were maintained and used for experiments in mixed backgrounds, except for Orai1 conventional KO mice, which were maintained in the C57BL/6 background. Sources of mice are: PROXI-EGFP, Jackson Laboratory [Tg(Prox1-EGFP)KY221Gsat] (32); LSL-GCaMP3, Jackson Laboratory [B6;129S-Gt(Rosa26)Sor1(CAG-GCaMP3)Hze/J]; Tic2-Cre, Jackson Laboratory; Cdhs5(PAC)-CreERT², Ralf Adams, University of Münster (33); floxed Klf2(Klf2 Δ/Δ), Jerry Lingrel, University of Cincinnati (Cincinnati, Ohio, USA) (38); Prox1-CreERT², Taija Mäkinen, Uppsala University (Uppsala, Sweden) (52); and Orai KO (31, 59) and floxed Orai1 (Orai1 Δ/Δ), Younsang Gwack, UCLA. Dtx3l transgenic and KO mice were newly developed for this study in the University of Southern California Norris Comprehensive Cancer Center Transgenic/Knockout Rodent Core as described below. Orai1 Δ/Δ mice were generated in Younsang Gwack’s laboratory by flanking of exon 2 of mouse Orai1 with LoxP sites by homologous recombination in AB2.2 (129SvEv) embryonic stem cells. Exon 2 encodes more than 50% of the protein, and its deletion results in loss of expression of Orai1. G418-resistant clones were screened by PCR for homologous recombination at both homology arms. Chimeric mice with floxed Orai1 alleles were generated by blastocyst injection of heterozygous Orai1 Δ/Δ embryonic stem cell clones. Founder Orai1 Δ/Δ chimeric mice were bred with Fp-deleter mice (Jackson Laboratory) to remove the neomycin resistance gene cassette. Deletion of Orai1 protein was validated by immunoblotting and measurement of SOCE. The Dtx3l conditional transgenic mouse line was generated by micro-injection of the gel-purified SaII/PacI fragment from the Dtx3l transgenic vector (YH3004; see below for detailed information). Dtx3l KO mice were generated by pronuclear injection of recombinant Cas9 protein and 2 guide RNAs (AACUAUAAAGCCGAGGAGG and UUGUGAUGACAUACUCCCGAGG) for Dtx3l (PNA Bio) in the University of Southern California Norris Comprehensive Cancer Center Transgenic/Knockout Rodent Core.

Cellular, molecular, and biochemical assays. Detailed information on isolation of mouse embryonic dermal LECs, gene and protein expression, plasmids and vectors, mutagenesis, Notch activity reporter assay, confocal laser-scanning fluorescence microscopy for calcium imaging, CaM overlay assay, NMR study, co-IP, and 3D microfluidic sprouting assay is available in Supplemental Methods. Sequences of all the primers and siRNAs are listed in Supplemental Table 2.

Statistics. Student’s t test (2-tailed) was used to determine whether the differences between the experimental and control groups were statistically significant. A P value less than 0.05 was considered to be statistically significant. The analyses were performed using Microsoft Excel (Microsoft Office) and GraphPad Prism 6 (GraphPad Software Inc.).

Study approval. Human primary BECs and LECs were isolated and cultured from deidentified human neonatal foreskins with approval by the Institutional Review Board of the University of Southern California (principal investigator, YK Hong). Animal-related studies were approved by the University of Southern California Institutional Animal Care and Use Committee (principal investigator, YK Hong).

Author contributions

DC, EP, EJ, JYS, JI, EL, MH, SI, HI, and JB performed experiments and collected data. JPP, SS, YG, CSC, HV, AKW, and YKH designed and supervised the research. RHA and CJK provided the resources.

Acknowledgments

We thank Jerry Lingrel and Taija Mäkinen for sharing floxed Klf2 and Prox1-CreERT² mice, respectively. This study was supported by NIH grants (EY026260 to YKH, HL121036 to YKH, HL119583 to YKH, EB00262 to CSC, and EB017103 to CSC), an American Heart Association Grant-in-Aid (13GRTNT17060131 to YKH), and the L.K. Whittier Foundation (to YKH and AKW).

Address correspondence to: Young-Kwon Hong, Department of Surgery, University of Southern California, Norris Comprehensive Cancer Center, 1450 Biggy Street NRT6501, Los Angeles, California 90033, USA. E-mail: young.hong@usc.edu.

12. Levesque MJ, Nerem RM, Sprague EA. Vascular endothelial cell proliferation in culture and the...
SUPPLEMENTAL INFORMATION

SUPPLEMENTAL METHODS

Isolation of Mouse Embryonic Dermal LECs

Embryo back skins with proper genotypes were harvested, chopped into small pieces, and then treated with dispase and collagenase (1mg/mL, Hoffmann-La Roche, Ltd), collagenase II (50 U/mL, Worthington Biochemical, Lakewood, NJ) and DNase I (1,000 U/mL, New England Biolabs, Ipswich, MA) in phosphate buffered saline (PBS) at 37 °C for 1 hr. Dermal cell mixtures were isolated by triturating enzymatically treated back skins through a needle (18.5G) and filtering through a cell strainer. Cells were then centrifuged, resuspended in EBM-based media, seeded on a culture dish, and incubated 37 °C for 4 hr. The cultures were washed with PBS twice, trypsinized, and then incubated with LYVE1 antibody (Angiobio, 11-034) at 4 °C for 1 hr. Concurrently, biotinylated goat anti-rabbit IgG antibody (Vector Laboratories, BA-1000) and Dynabeads Biotin Binder (Invitrogen, 11047) were separately incubated at 4 °C for 1 hr. and then finally mixed with the cells incubated with the LYVE1 antibody at 4 °C for 1 hr., followed by RNA isolation processes using Trizol solution (Thermo Fisher Scientific).

Gene and Protein Expression, Plasmids and Vectors, Mutagenesis

Standard protocols were employed for quantitative real-time RT-PCR and western blotting. Plasmids and siRNAs were transfected into target cells using HMEC-L Nucleofector Kit (Lonza, VPB1003) or PBS (1), respectively. Immunofluorescent staining for whole-mount/tissue sections was performed as previously described (2). Sources of expression vectors are as follows: Myc-tag PROX1 (Dr. Paul A. Overbeek, Baylor College of Medicine, Houston, TX) (3), FLAG-tag KLF2 (Dr. Hiroaki Taniguchi, University of Tokyo, Tokyo, Japan) (4), Myc-tag DTX1 and HA-tag DTX3L (Dr. Margaret A. Shipp, Harvard Medical School, Boston, MA) (5), and pGa981-6/TP1-luc (Dr. Hua Han, Fourth Military Medical University, Xi’an, China) (6). The following are the vectors that were generated for this study: For pcDNA3-HA-CaM (YH2307), human CaM fragment was constructed by PCR using a EcoRV site-containing forward primer and a Xhol site-harboring reverse primer, and cloned into EcoRV/Xhol sites of pcDNA3 (Life Technologies). The primer sequences are listed in Supplemental Table2. We constructed recombinant GST-PROX1 fusion
vectors as follows. Human PROX1 fragment (1-546 a.a.) was PCR-amplified from a human cDNA library using a primer set (Supplemental Table2) and cloned in EcoRI/Sall sites of pGEX-5X-1. The resulting vector (YH2012) was digested with EcoRI/Smal and the insert was transferred to EcoRI/Smal sites of pGEX-5X-1 to generate PROX1-D1 (YH2722). For PROX1-D2 to PROX1-D7, PROX1 fragments were PCR-amplified against human PROX1 cDNA with forward and reverse primers harboring a EcoRI site and a Sall site, respectively, and cloned into EcoRI/Sall sites of pGEX-5X-1 (GE Healthcare Life Sciences). Their sequences are listed in Supplemental Table2. These GST-PROX1 fusion vectors were transformed into BL21 bacterial strain and recombinant GST-PROX1 fusion fragments were produced and purified as described previously (7). For Dtx3L-transgenic vector (YH3004), mouse Dtx3L was PCR-amplified from pCR4-TOPO-mDtx3L (Source Bioscience, Santa Fe Springs, CA) and cloned into NotI/EcoRI site of pcDNA3. The resulting construct was then PCR-amplified, digested with BamHI and PacI and cloned into BglII/PacI sites of a LoxP-Stop-LoxP-containing conditional expression vector, pCAG-sGFP-4X L2 Pac (kindly provided by Dr. Jeong K. Yoon, Maine Medical Center Research Institute, Scarborough, ME) (8). Substitution mutagenesis to aspartic acid (D) in human PROX1 protein was performed using corresponding mutagenesis primers as previously described (9). Sequences of all the primers are listed in Supplemental Table2.

Notch Activity Reporter Assay

Human primary LECs were transfected with a RBP-JK reporter luciferase vector, pGa981-6/TP1-luc (6), or the parental vector (pGL3-Basic, Promega Corporation, Madison, WI) for 24 hr. The cells were then subjected to steady laminar flow at 2 dyne/cm² for 24 or 48 hr., followed by a standard luciferase assay using Bright-Glo™ Luciferase Assay System (Promega). Total cell lysate was quantified by the Bradford assay (Sigma-Aldrich) and equal amount of the lysates was used for the luciferase assay.

Confocal Laser-Scanning Fluorescence Microscopy for Calcium Imaging

Primary LECs were seeded and preloaded with Fluo-4 on µ-Slides and unidirectional laminar flow (2 dyne/cm²) was applied using a pump that was connected to the slide. Calcium releasing signals were
captured with a Leica TCS SP5 AOTF MP confocal microscope system (Leica Microsystems, Heidelberg, Germany). A Leica DMI6000 inverted microscope with 20X 0.7NA objective (Leica Microsystems) was powered by an Argon 488-nm for these studies. Images were collected in time series (xyt, 1 s per frame) with the Leica LAS AF imaging software, and excitation at 488 nm, emission at 520 ± 50 nm was used. All experiments were performed with the same instrument settings (laser power, offset, gain of both detector channels). Fluorescence intensity (8 bit) was measured with the Leica LAS lite imaging software’s Quantification Tools.

CaM Overlay Assay

CaM overlay assays were performed to determine *in vitro* protein-protein interaction between PROX1 protein fragments and HRP-conjugated CaM protein on western membranes. Western blotting assay was first performed to detect the quantity and quality of GST-PROX1 fusion fragments that were produced in bacteria (top panel, Fig.4A). CaM overlay assays were then performed as previously described (7). Briefly, duplicate GST-PROX1 fragment blots were probed with GmCaM1::HRP and GmCaM4::HRP conjugates in the presence of CaCl$_2$ (1 mM) or EGTA (5 mM) (middle and bottom panels, respectively, Fig.4A). The bound HRP-conjugated CaM protein was visualized using ECL detection system (GE Healthcare Life Sciences).

NMR Study

The NMR sample contained 0.5 mM 15N-labeled CaM, 100 mM KCl, 20 mM Bis-Tris (pH 6.8), 5 mM CaCl$_2$, 0.5 mM 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) in 10%D$_2$O/90%H$_2$O. A stock solution of 5 mM PROX1 peptide in the same buffer was titrated into the NMR sample. The titration was monitored through HSQC experiments acquired on a Bruker Avance 700 MHz NMR spectrometer at 30 °C. DSS was used as a reference to obtain the 1H and 15N chemical shifts. The spectra were processed with NMRPipe (10) and analyzed using NMRView (11). The chemical shift assignment for Ca$^{2+}$-CaM was obtained from Gifford *et al* (11).
Co-Immunoprecipitation

The standard co-immunoprecipitation protocol was used to show a direct protein-protein interaction as previously described (12). For the serial co-IP, plasmid vectors expressing Myc-PROX1 and HA-CaM were co-transfected in HEK293 cells with or without a FLAG-KLF2-expressing vector for 48 hr. Cell were lysed in PBS containing NP-40 (0.5%) to harvest whole cell lysates (WCL), which were then incubated with FLAG-antibody beads to precipitate KLF2 by centrifugation at 4 °C. The KLF2-containing precipitants were eluted into the same lysis buffer (PBS with NP-40, 0.5%) from the FLAG-beads using FLAG peptide (0.5 mg/mL, LifeTein, LLC). Elutes from the KLF2-expressing cell lysates (+KLF2) were again precipitated using normal IgG or anti-HA antibody, followed by incubation with Protein-A/G beads (Pierce) to precipitate HA-CaM. The resulting isolates from both rounds of co-IPs were blotted with anti-FLAG, anti-HA, and anti-Myc antibodies.

3-D Microfluidic Sprouting Assay

A microfluidic device was used to assemble vessel-like structures that are lined with BECs or LECs as described previously (13). Briefly, collagen 1 (2.5 mg/mL) was polymerized in the device around two 400-μm-diameter needles. After removing the needles, BECs or LECs were seeded (4 million/mL) into one channel, and we allowed them to form a confluent monolayer overnight. Devices were placed on a platform rocker to generate gravity-driven flow (5 dyne/cm²) or placed on a static incubator. Growth factors were added to the opposite channel to induce sprouting as described previously (13).

Supplemental References

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure 1. Laminar flow selectively suppresses NOTCH1 activity in LECs

(A) Cell morphology of LECs and BECs in response to low-rate steady laminar flow (LF) at 2 dyne/cm² for 0 (static), 12, 24, and 48 hr. Scale bars: 50 µm.

(B-D) Real-time RT-PCR (qRT-PCR) data showing the mRNA levels of eNOS in LECs and BECs (B), Notch target genes in BECs (C), and NOTCH1 in LECs (D) in response to steady laminar flow at 2 dyne/cm² for the indicated time.

(E) Western blot bands of NICD-1 in Fig.1C in the main text were quantitated and charted.

(F,G) Protein levels (F) and their band intensity (G) of NICD-4 in LECs and BECs in response to laminar flow at 2 dyne/cm² for the indicated time.

(H) Prox1 protein level was not altered in LECs that were exposed to laminar flow (2 dyne/cm²).

(I) The biomimetic sprouting assay shown in Fig.1F was performed on BECs. Intraluminal laminar flow (5 dyne/cm²) was applied onto a layer of BECs lining the inner wall of the vascular-mimetic channels made in collagen gel. Scale bars: 100 µm. Relative sprout number and length were graphed.

Error bars represent standard deviation (SD). Statistical values: n.s., not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Supplemental Figure 2. Quantitation of the effect of siRNA-mediated knockdown of ORAI1.

Intensity of NICD-1 bands in LECs (A) and BECs (B) after siRNA-mediated knockdown of ORAI1 shown in Fig.2C was quantified and charted. (C) Laminar flow-induced calcium influx was measured in LECs transfected with either scrambled siRNA (siCTR) or ORAI1 siRNA (siOrai1) for 24 hr., followed by laminar flow (2 dyne/cm²). Calcium signals were captured by a time-lapse microscope and the relative signal intensity was plotted. Error bars represent standard deviation (SD). Statistical values: **, p < 0.01; ***, p < 0.001.

Supplemental Figure 3. Defective lymphatic development in Orai1 KO embryo. (A-H) Low magnification images of the Cd31/Lyve1-stained back skins of Orai1 wild type (+/+), KO (−/−) embryos
Two sets (#1 and #2) of wild type (A-D) and KO (E-H) embryos from two different litters are shown. Scale bars: 200 µm. (I) Relative calibers of lymphatic vessels in Orai1 wild type vs. KO embryos. Error bars represent standard deviation (SD). Statistical values: *, p < 0.05; **, p < 0.01; ***, p < 0.001

Supplemental Figure 4. Sequence-based prediction of a putative CaM-binding site in the N-terminus of PROX1 (A) A potential CaM binding site was identified in the N-terminal area of PROX1 by the Camodulin Target Database Binding Site Search algorithm, established by the Mitsu Ikura Lab (Ontario Cancer Institute, Canada). Probability scores (from 0 to 9) were shown below each amino acid residue. The putative CaM binding site mapped between 5th and 37th amino acid in PROX1 is underlined. (B) Diagram of GST-PROX1 fragments. The N-terminus of each PROX1 fragment was fused to GST protein (empty circle) for bacterial expression and purification. The location of each end is shown. NR, nuclear receptor binding motif; Homeo, homeodomain.

Supplemental Figure 5. Quantitation of western blot bands. Intensity of western blot bands in Figs.4 and 5 was measured, normalized and graphed. (A) Band intensity of Prox1 proteins that were immunoprecipitated by anti-HA antibody in Fig.4E was quantitated. (B) Band intensity of CaM proteins that were co-precipitated with Prox1 in Fig.4F was quantitated using the short exposure. (C) Band intensity of Myc-Prox1 proteins that were co-precipitated with FLAG-KLF2 in Fig.5B was quantitated. (D) Band intensity of Myc-Prox1 proteins that were co-precipitated with FLAG-KLF2 in the absence (Empty) or presence (HA-CaM) of CaM protein in Fig.5C was quantitated.

Supplemental Figure 6. PROX1 binds with GCaMP3, but with GFP. An expression vector encoding GCaMP3 or GFP was co-transfected with a vector expressing Myc-PROX1 into HEK293 cells. After 48 hours, GFP or GCaMP3 was immunoprecipitated from the cell lysates using anti-GFP antibody or normal rabbit IgG as a negative control, which were then blotted with anti-Myc or anti-GFP antibody. Note that only GCaMP3, not GFP, was immunoprecipitated with PROX1.
Supplemental Figure 7. Nuchal edema in endothelial-specific Klf2 KO embryos. Wild type and endothelial-specific Klf2 KO embryos (Klf2^{ECKO}) resulted from crossing the Cdh5(PAC)-CreER^{T2} mice and Klf2^{fl/fl} mice are shown at E15.5. Two different litters are shown (#1 and #2). Klf2^{ECKO} was induced in pregnant females by intraperitoneal injection of tamoxifen (1.5 mg) at E11.5 and E13.5. Arrowheads mark nuchal edema. Dermal lymphatics were often filled with blood as shown in the white box.

Supplemental Figure 8. Low-power images of the back skins of wild type and Klf2^{ECKO} embryos of Fig.5I. Overview low-magnification images of lymphatic vessels (shown by EGFP) and blood vessels (stained with Cd31) demonstrate the vascular defects caused by genetic ablation of Klf2 in endothelial cells.

Supplemental Figure 9. Regulation of DTX1 and DTX3L protein expression in LECs vs. BECs by laminar flow. Western blot assays showing the regulation of protein expression of DTX1 (A) and DTX3L (B) in LECs and BECs after exposure to laminar flow (2 dyne/cm²) for 0 (Static), 12 or 24 hr.. These protein expression data are consistent with their mRNA expression patterns shown in Fig.6 A and B, respectively.

Supplemental Figure 10. Synergistic downregulation of NICD-1 by DTX1 and DTX3L. Western blot bands for NICD-1 shown in Fig.6 E, F, and G were quantified and charted in panels A, B, and C, respectively. Statistical values: *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Supplemental Figure 11. Low-power images of the back skins of wild type vs. Dtx3L knockout embryos. Overview low-magnification images for Lyve1 show defective lymphatic sprouting in Dtx3L KO embryos at E15.5. Total > 4 embryos per genotype harvested from at least 3 independent litters were analyzed for the study.
Supplemental Figure 1 (Part 1)
Supplemental Figure 1 (Part 2)
Supplemental Figure 2

A

LEC

- **siCTR**
- **siOrai1**

NCD-1 Expression (%) vs. Time (hr)

B

BEC

- **siCTR**
- **siOrai1**

NCD-1 Expression (%) vs. Time (hr)

C

Relative fluorescence intensity (%) vs. Time (sec)

- **siCTR**
- **siOrai1**
Supplemental Figure 3 (Part2)
Supplemental Figure 4
Supplemental Figure 6
Supplemental Figure 7
Supplemental Figure 10
<table>
<thead>
<tr>
<th>Antibody</th>
<th>Source/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-PROX1</td>
<td>Rabbit polyclonal antibody was generated by the authors using a peptide (AGKVDPSWKKAYK), followed by affinity purification.</td>
</tr>
<tr>
<td>anti-β-actin</td>
<td>Sigma-Aldrich, AC-15</td>
</tr>
<tr>
<td>anti-CD31</td>
<td>BD Biosciences, MEC13.3</td>
</tr>
<tr>
<td>anti-LYVE-1</td>
<td>Biotinylated goat anti-rabbit IgG Anticor, SC-805</td>
</tr>
<tr>
<td>anti-Notch1</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-Notch1 (cleaved at Val1744)</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-HA tag</td>
<td>Santa Cruz Biotechnology, SC-40</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, F7425, F1804</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-HA tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
<tr>
<td>anti-FLAG tag</td>
<td>Sigma-Aldrich, SC-594</td>
</tr>
<tr>
<td>anti-Myc tag</td>
<td>Cell Signaling, Cal. No. 2272</td>
</tr>
</tbody>
</table>
Supplemental Table 2. Sequences of primers and siRNA used for this study

Human CaM fragment
- Forward Primer: AAA GAT ATC ATG TAC CCA TAC GAT GTT CCA GAT TAC GCT ATG GCT GAT CAG CTG ACC GAA GAA
- Reverse Primer: AAA CTC GAG TCA TTT TGC AGT CAT CAT CTG TAC

PROX1-D1 (YH2722)
- Forward Primer: AA GAA TTC ATG CCT GAC CAT GAC AGC ACA
- Reverse Primer: AA GTC GAC GGT GCT GGG CGG GTG TGC TGG

PROX1-D2 (YH2075)
- Forward Primer: AA GAA TTC ATG AAC AAA AAT GGT GGC ACG
- Reverse Primer: AA GTC GAC GGG ACT CAC AGA CTG CGG GGC

PROX1-D3 (YH2076)
- Forward Primer: AA GAA TTC CGA GAA AGT TAC AGA GAA AAC
- Reverse Primer: AA GTC GAC GCA CAT CTC ATT ATC TGA CCT

PROX1-D4 (YH2077)
- Forward Primer: AA GAA TTC GAG CTA GAC CCA GGA CAG TTT
- Reverse Primer: AA GTC GAC GTG GTT TTC CCC ATT GAC TGC

PROX1-D5 (YH2078)
- Forward Primer: AA GAA TTC AAT TTC CAC ACC GCC AAC CAG
- Reverse Primer: AA GTC GAC GGG AGC ACC TAA TGG GCT CTG

PROX1-D6 (YH2079)
- Forward Primer: AA GAA TTC TCC GGC TCC TTC TCT GGA AAA
- Reverse Primer: AA GTC GAC GGA GCT GGG ATA ACG GGT ATA

PROX1-D7 (YH2080)
- Forward Primer: AA GAA TTC AAT ATG CTG AAG ACC TAC TTC
- Reverse Primer: AA GTC GAC CTA CTC ATG AAG CAG CTC TTG

Mouse Dtx3L
- Forward Primer: TTC ACC ATG GAC TAC AAA GAC GAT GAC GAC AAG GCT TCC AGT CCC GAC CCG CCG
- Reverse Primer: TAT GCG GCC GCT TAC TCA ATG CCT TTT GCT TTCA
Dtx3L-transgenic vector (YH3004)
Forward Primer GGC GTG TAC GGT GGG AGG
Reverse Primer GCT TTA ATT AAG GTT CTT TCC GCC TCA GAAG

PROX1 V19D Mutagenesis
Forward Primer CAA ACC AAG AGG AGA AGA GAT GAC ATT GGA GTG
Reverse Primer CCC TAC CGT CCT TTT CAC TCC AAT GTC ATC TCT

PROX1 I21D Mutagenesis
Forward Primer AAG AGG AGA AGA GTT GAC GAT GGA GTG AAA AGG
Reverse Primer TGC TGT CCC TAC CGT CCT TTT CAC TCC ATC GTC

PROX1 V23D Mutagenesis
Forward Primer AGA AGA GTT GAC ATT GGA GAT AAA AGG ACG GTA
Reverse Primer TGC AGA TGC TGT CCC TAC CGT CCT TTT ATC CGT

PROX1 V27D Mutagenesis
Forward Primer ATT GGA GTG AAA AGG ACG GAT GGG ACA GCA TCT
Reverse Primer CTT AGC AAA AAA TGC AGA TGC TGT CCC ATC CGT

PROX1 A30D Mutagenesis
Forward Primer AAA AGG ACG GTA GGG ACA GAT TCT GCA TTT TTT
Reverse Primer TGC TCT TGC CTT AGC AAA AAA TGC AGA ATC TGT

PROX1 A32D Mutagenesis
Forward Primer ACG GTA GGG ACA GCA TCT GAT TTT TTT GCT AAG
Reverse Primer AAA CGT TGC TCT TGC CTT AGC AAA AAA ATC AGA

PROX1 A33D Mutagenesis
Forward Primer GTA GGG ACA GCA TCT GCA GAT TTT GCT AAG GCA
Reverse Primer AAA AAA CGT TGC TCT TGC TGT AGC AAA ATC TGC

PROX1 A34D Mutagenesis
Forward Primer GGG ACA GCA TCT GCA TTT GAT GCT AAG GCA AGA
Reverse Primer ACT AAA AAA CGT TGC TCT TGC CTT AGC GAT AAA

siRNA for human ORAI1
UCACUGGUUAGCCAUAAAGA
siRNA for human KLF2
 CCAAGAGUUCGCAUCUGAA\text{dTdT}

siRNA for human DTX1
 CCAAGAAGAAGCACC\text{UUA}d\text{TdT}

siRNA for human DTX3L
 GCCAAG\text{C}AUUGGAGAAGU\text{dTdT}
Full unedited gel for Figure 4C
4E: Prox1

4E: HA(CaM)

Full unedited gel for Figure 4E
5A: Myc (first line)

5A: Flag (second line)

5A: Flag (third line)

5A: Myc (fourth line)

Full unedited gel for Figure 5A
Full unedited gel for Figure 6E
7C: Back skin; NICD-1
7C: Back skin; Dtx3L
7C: Back skin; Dtx1
7C: Back skin; β-actin
7C: Intestine; NICD-1
7C: Intestine; Dtx3L
7C: Intestine; Dtx1
7C: Intestine; β-actin

Full unedited gel for Figure 7C
Supplemental-1H: Prox1

Supplemental-1H: β-actin

Full unedited gel for Supplemental Figure 1H
Supplemental-9B: LEC; DTX3L
Supplemental-9B: LEC; β-actin
Supplemental-9B: BEC; DTX3L
Supplemental-9B: BEC; β-actin

Full unedited gel for Supplemental Figure 9B