Continuous Zeolite MFI membranes from 2D MFI Nanosheets on Ceramic Hollow Fibers: Fabrication Processes and Hydrocarbon Separation Properties

Byunghyun Min, Shaowei Yang, Akshay Korde, Yeon Hye Kwon, Christopher W. Jones* and Sankar Nair*

School of Chemical & Biomolecular Engineering
Georgia Institute of Technology, Atlanta, GA

NSF-DMREF #1534179

AIChE Fall Meeting
November 13th, 2019
High-aspect-ratio 2D zeolite nanosheets for membrane applications

- 2D zeolite nanosheets with high aspect ratio and flexibility
- Preferred orientation and reduced thickness of MFI zeolite membranes

Thin and oriented membrane

High flux and high p-xylene selectivity

Reference work
Jeon MY, et al., Nature 2017 (543), 690-694
Key challenges and motivation

• **2D MFI membrane technology faces challenge of scalability**

 Current demonstration of 2D MFI membranes is only possible on small ceramic disks, and requires multiple steps using specialty silica materials

Scale-up

• Low-cost, scalable, robust membrane supports needed
• Hollow fiber membranes desirable (> 1000 m²/m³)
• Simple and scalable coating method needed

Quality

• Preparation of defect-free nanosheet coatings
• Sealing the non-selective gaps between the nanosheets
• Improve adhesion between nanosheets and the support
• Maintain $b (0k0)$ out-of-plane orientation of pore channels
Topics in this talk

1. **2D MFI Membrane synthesis and characterizations of microstructures**
 - 2D MFI nanosheet coatings on hollow fibers
 - Sequential macro/nanoscale gap sealing via hydrothermal treatments

2. **Assessment of membrane quality with separation properties**
 - Molecular sieving separation of butane isomer

3. **Extending the applications to removal of C\textsubscript{2+} hydrocarbon from methane**
 - Adsorption dominated separation
 - Multicomponent mixture separation
 - Pressure dependence

3: B. Min, et al., In preparation
2D MFI membranes on hollow fibers: our fabrication process

- Alumina hollow fiber support
- 2D MFI nanosheets coating
- Continuous oriented, thin MFI film

i. MFI nanosheets coating
ii. (TPA + F) Secondary growth
iii. (TEA) Tertiary growth
Characterizations of 2D MFI nanosheets

~0.5 nm MFI pores are visible

High-aspect-ratio

MFI characteristic XRD patterns

(a) SEM
(b) Electron diffraction pattern
(c) HRTEM
(d) TEM

Randomly packed MFI nanosheets
Simulated MFI
Uniform 2D MFI nanosheet coatings on hollow fibers

Top View

Side View

Bare fiber support

- Dense, uniform coating
- ~ 500 nm thin
MFI membrane synthesis for maintaining \(b\)-orientation

Key Idea: Exploit differences in anisotropic crystal growth seen in TPA-Fluoride and TEAOH media

Tetrapropylammonium (TPA) hydroxide media
- Irregular surface
- Abundant twinning and secondary nucleation

TPA-Fluoride or Tetraethylammonium (TEA) hydroxide media
- Smooth and flat crystals
- Delay nucleation and suppress surface roughening
- In-plane growth rate can be faster

Selective sealing of microscale/nanoscale gaps by sequential hydrothermal treatments

Top View

Side View

2nd growth: TPA fluoride media
- Selectively sealed the gaps without much overgrowth

3rd growth: TEAOH media
- Laterally well-intergrown
- Final closure of small defects
- Good adhesion
Pore orientation: XRD pattern at each stage

- Strong (0k0) peaks correspond to out-of-plane pore orientation
- TPA-Fluoride and TEAOH treatments are effective for preserving the (0k0) peak
Quantification of pore orientation and thickness changes at each stage

TPA-Fluoride and TEAOH media growth effectively preserves out-of-plane pore orientation while maintaining low membrane thickness (< 1 µm)

Gradual Interpenetration with the support (better adhesion): 2D coating layer < 2nd growth < 3rd growth
Butane isomer separation provides good indication of the membrane quality

- Higher intracrystalline diffusivity of n-butane
- n-butane: petrochemical feedstock, blending with propane or gasoline
- i-butane: refinery feedstock, petrochemical feedstock
Tertiary growth showed high permeance (~ 400 GPU) and high selectivity (~ 42)

- Fluoride media intergrowth produces highly b-oriented high flux selective membrane
- Additional intergrowth by TEAOH silica sol reduces non-selective transport pathways
- Reduction in permeance can be minimized by twinning-free intergrowth
Single-component permeation data: a cleaner indication of microstructural quality

- Single-component \(n \)-butane permeances and selectivities are considerably higher than binary values
 - \(i \)-butane competes to a certain extent with \(n \)-butane for permeation in the straight channels of MFI
 - The difference is much more pronounced after tertiary growth than secondary growth: indication of high quality intergrown film with less defects
Removal of C\textsubscript{2-4} hydrocarbons from methane

‘Dry’ natural gas contains mostly methane and a small amount of other hydrocarbons

‘Wet’ natural gas possesses higher amounts of alkanes like propane, butanes and pentanes

- n-\text{C}_4\text{H}_{10} (< 11 \%), \text{C}_3\text{H}_8 (< 20 \%), \text{C}_2\text{H}_6 (< 25 \%)$ at ambient temperature

- To reduce soot and coke formation if the gas is used as fuel
- To avoid problems with condensing liquids if the gas is to be compressed and transported in pipelines (max C_3+ content of 4.5\% at ambient conditions)
- To increase the methane number
- The higher hydrocarbons also have commercial value if separated
Removal of hydrocarbons from natural gas: adsorption-dominated separation in MFI membranes

Some hydrocarbons present in “wet” natural gas

- Smaller than MFI pore size
- Molecular sieving is not applicable

- Adsorption enthalpy increases as length of the carbon chain of the alkane increases

- Adsorption-dominated separation is possible

Bakker W. J. W., et al., AIChE Journal. 1997 (43) 9, 2203-2214
Separation performance of MFI membranes for quaternary mixture: pressure dependence

Feed composition \(n-C_4H_{10} / C_3H_8 / C_2H_6 / CH_4 \ (8/8/8/76) \)

- Permeance decreases with increasing feed pressure
 - characteristic for microporous diffusion
 - negligible amount of high-pressure induced defects in the membrane
- Promising for butane, propane, and ethane removal from methane
Comparison of permeation properties at different feed compositions

1) **Binary** \(n-C_4H_{10}/CH_4\) (10/90), \(C_3H_8/CH_4\) (10/90)
2) **Ternary** \(n-C_4H_{10}/C_3H_8/CH_4\) (9/9/82)
3) **Quaternary** \(n-C_4H_{10}/C_3H_8/C_2H_6/CH_4\) (8/8/8/76)

- A significant reduction in permeance of \(C_3H_8\) in the presence of \(n-C_4H_{10}\)
- Separation factor gradually increases as 3rd or 4th components are introduced
IAST prediction for multicomponent mixture

- Existing literature unary isotherms of C₁-C₄ in MFI are fitted and used for IAST predictions
- Loading of weakly absorbing components is significantly suppressed in quaternary mixture conditions
- Trends observed in IAST simulation are consistent with the experimental results
- **Adsorption dominates the separation mechanism**
Key conclusions and ongoing work

A new fabrication process for thin, 2D MFI-based hollow fiber membranes has been developed

- Dense and uniform 2D MFI nanosheet coating on alumina hollow fibers by vacuum filtration
- Fluoride-media secondary growth yields highly b-oriented high flux membranes
- Tertiary TEAOH silica sol growth improved selectivity with minimal reduction in the permeance
- Excellent fluxes and high separation performance for both molecular sieving and adsorption-controlled separation of hydrocarbon mixtures
- Currently developing detailed multicomponent Maxwell-Stefan modeling approach to predict quaternary separation in a wide range of conditions (compositions, sweep/no sweep, temperatures)