
Non-orthogonal bases

Although orthogonal bases have many useful properties, it is possi-
ble (and sometimes desirable) to use a set of non-orthogonal basis
functions for discretization.

The main property we want from a basis is that the mapping from
signal space to coefficient space is a stable bijection — each signal
should have a different set of expansion coefficients, and each set of
expansion coefficients should correspond to a different signal. Small
changes in the expansion coefficients should not lead to large changes
in the re-synthesized signal. We also want a concrete method for
calculating the coefficients in a basis expansion.

We start our discussion in the familiar setting of RN .

Bases in RN

Let ψ1, . . . ,ψN ∈ RN be a basis for RN . We know from basic linear
algebra that these vectors form a basis if and only if they are linearly
independent. For any x ∈ RN , we have

x =
N∑
n=1

αnψn, (1)

for some coefficient sequence

α =


α1

α2
...
αN

 .
How do we compute the αn?
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The answer to this turns out to be straightforward as soon as we
have everything written down the right way. We can write the de-
composition in (1) as

x = α1ψ1 + · · · + αNψN =


| | |

ψ1 ψ2 · · · ψN

| | |



α1

α2
...
αN


= Ψα

That is, the basis vectors are concatenated as columns in the N ×N
matrix Ψ. Since its columns are linearly independent, Ψ is invertible,
and so we have the reproducing formula

x = ΨΨ−1x

=
N∑
n=1

〈x, ψ̃n〉ψn,

where ψ̃n is the nth row of the inverse of Ψ:

Ψ−1 =


− ψ̃

T

1 −
− ψ̃

T

2 −
...

− ψ̃
T

N −


We have

Transform: αn = 〈x, ψ̃n〉, n = 1, . . . , N ;

Inverse transform (synthesis): x =
N∑
n=1

αnψn
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So we compute the expansion coefficients by taking inner products
against basis signals, just not the same basis signals as we are using
to re-synthesize x. The ψ̃1, . . . , ψ̃N themselves are linearly indepen-
dent, and are called the dual basis for ψ1, . . . ,ψN .

Also note that while the {ψn} are not orthonormal and the {ψ̃n}
are not orthonormal, jointly they obey the realtion

〈ψn, ψ̃`〉 =

{
1, n = `,

0, n 6= `.

(This follows simply from the fact that ΨΨ−1 = I.) For this reason,

{ψn} and {ψ̃n} are called biorthogonal bases.

Bases for subspaces of RN

Suppose that T is a M -dimensional (M < N) subspace of RN , and
ψ1, . . . ,ψM ∈ T is a basis for this space. Now

Ψ =


| |

ψ1 · · · ψM

| |


is N×M — it is not square, and so it is not invertible. But since the
ψm are linearly independent, it does have a left inverse, and hence
we can derive a reproducing formula.

Let x ∈ T , so there exists an α ∈ RM such that x = Ψα. Then
the reproducing formula is

x = Ψ(ΨTΨ)−1ΨTx.
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(The M ×M matrix ΨTΨ is invertible by the linear independence
of ψ1, . . . ,ψM .) To see that the formula above holds, simply plug
x = Ψα into the expression on the right hand side.

We can write

x =
M∑
m=1

〈x, ψ̃m〉ψm,

where

ψ̃m = mth row of the M ×N matrix (ΨTΨ)−1ΨT.

Notice that when M = N (and so Ψ is square and invertible), this
agrees with the result in the previous section, as in this case

(ΨTΨ)−1ΨT = Ψ−1(ΨT)−1ΨT = Ψ−1.

Bases in finite dimensional spaces

The construction of the dual basis (which tells us how to compute
the expansion coefficients for a basis) in RN relied on manipulating
matrices that contained the basis vectors. If our signals of interest
are not length N vectors, but still live in a finite dimensional Hilbert
space S , then we can proceed in a similar manner.

Let ψ1(t), . . . , ψN(t) be a basis for an N -dimensional inner product
space S . Let x(t) ∈ S be another arbitrary signal in this space. We
know that the closest point to x in S is x itself, and from our work
on the closest point problem, we know that we can write

x(t) =
N∑
n=1

αnψn(t),
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where
α1

α2
...
αN

 =


〈ψ1,ψ1〉 〈ψ2,ψ1〉 · · · 〈ψN ,ψ1〉
〈ψ1,ψ2〉 〈ψ2,ψ2〉 · · · 〈ψN ,ψ2〉

... . . .
〈ψ1,ψN〉 〈ψ2,ψN〉 · · · 〈ψN ,ψN〉


−1 
〈x,ψ1〉
〈x,ψ2〉

...
〈x,ψN〉

 .
Use H to denote the inverse Gram matrix above. Then

αn =
N∑
`=1

Hn,`〈x,ψ`〉 =

〈
x,

N∑
`=1

Hn,`ψ`

〉
.

Thus

x(t) =
N∑
n=1

〈x, ψ̃n〉ψn(t),

where

ψ̃n(t) =
N∑
`=1

Hn,` ψ`(t).
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Example: Let S be the space of all second-order polynomials on
[0, 1]. Set

ψ1(t) = 1, ψ2(t) = t, ψ3(t) = t2.

Then

H =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

−1 =

 9 −36 30
−36 192 −180
30 −180 180

 ,
and

ψ̃1(t) = 30t2−36t+9, ψ̃2(t) = −180t2+192t−36, ψ̃3(t) = 180t2−180t+30
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Non-orthogonal basis in infinite dimensions: Riesz Bases

When S is infinite dimensional, we have to proceed with a little
more caution. It is possible that we have a infinite set of vectors
which are linearly independent and span S (after closure), but the
representation is completely unstable.

Recall that a (possibly infinite) set of vectors is called linearly inde-
pendent if no finite subset is linearly dependent. Trouble can come
when larger and larger sets are coming closer and closer to being
linearly dependent. That is, if {ψn, 1 ≤ n ≤ ∞} is a set of vectors,
there might be no α2, . . . , αL such that

ψ1 =
L∑
`=2

α`ψ`,

exactly, no matter how large L is. But there could be an infinite
sequence {α`} such that

lim
L→∞
‖ψ1 −

L∑
`=2

α`ψ`‖ = 0.

We will see an example of this below.

Our definition of basis prevents sequences like the above from occur-
ring.

Definition. We say1 {ψn}∞n=1 is a Riesz basis if there exists
constants A,B > 0 such that

A
∞∑
n=1

|αn|2 ≤
∥∥∥∥∥
∞∑
n=1

αnψn

∥∥∥∥∥
2

≤ B
∞∑
n=1

|αn|2

1This definition uses the natural numbers to index the set of basis functions,
but of course it applies equally to any countably infinite sequence.
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uniformly for all sequences {αn} with
∑∞

n=1 |αn|2 <∞.

Note that if {ψn} is an orthonormal basis, then it is a Riesz basis
with A = B = 1 (Parseval theorem).

Our first example is something which is not a Riesz basis.

Example: Multiscale Tent Functions

Consider this set of continuous-time signals on [0, 1].

φ0(t) =
√

2(1− t), φ1(t) =
√

2t,

ψ0(t) =

{√
3t, 0 ≤ t ≤ 1/2,√
3(1/2− t), 1/2 ≤ t ≤ 1.

ψj,n(t) = 2j/2ψ0(2
jt− n), j ≥ 1, n = 0, . . . , 2j − 1.

Sketch:

From your sketch above, it should be clear that

Span({φ0,φ1,ψ0,ψj,n, 1 ≤ j ≤ J, n = 0, . . . , 2j − 1})

is the set of all continuous piecewise-linear functions on dyadic in-
tervals of length 2−J . Since this set is dense in L2([0, 1]), we can

156

Georgia Tech ECE 6250 Fall 2016; Notes by J. Romberg. Last updated 11:51, October 5, 2016



write
x(t) = b0φ0(t) + b1φ1(t) +

∑
j,n

cj,nψj,n(t)

for some sequence of numbers {b0, b1, cj,n}. The problem is that this
sequence of numbers might not be well-behaved.

To see that this collection of functions cannot be a Riesz basis, notice
that using the functions with 1 ≤ j ≤ J , we can match the samples
of any function on the grid with spacing 2−J , with linear interpola-
tion in between these samples. From this, we see that φ0(t) can be
matched exactly on the interval [2−J−1, 1] with a linear combination
of ψj,n, 0 ≤ j ≤ J . This means that there is a sequence of numbers
{βj,n} such that

φ0(t) =
∑
j≥0

2j−1∑
n=0

βj,nψj,n(t).

This means that the non-zero sequence of numbers {1, 0, βj,n, j ≥
0, n = 0, . . . , 2j − 1} synthesizes the 0 signal, thus violating the
condition that A > 0 uniformly.

Example: Non-harmonic sinusoids

Consider the set of signals on [0, 1]

ψk(t) = ej2πγkt, k ∈ Z

where the frequencies γk are a sequence of numbers obeying

γk < γk+1, γk → −∞ as k → −∞, γk → +∞ as k → +∞.

Of course, if γk = k, this is the classical Fourier Series basis, and
the {ψk} form an orthobasis. If the γk are no longer equally spaced
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by an integer multiple, these signals are not orthogonal. However,
if they are not too far from being uniformly spaced, they still form
a Riesz basis. “Kadec’s 1/4-Theorem” is a result from harmonic
analysis that says: If there exists a δ < 1/4 such that

|γk − k| ≤ δ for all k,

then {ψk} is a Riesz basis with

A = (cos(πδ)− sin(πδ))2, B = (2− cos(πδ) + sin(πδ))2.

Example: Modulated Bumps

In a previous lecture, we saw that signals of the form

ψn,k(t) = g(t− n) cos((k + 1/2)πt), k ≥ 0, n ∈ Z,

formed an orthobasis if the windowing function g(t) was chosen care-
fully (this was called the Lapped Orthogonal Transform). If we are
not so concerned with orthogonality, we can use many different kinds
of windows. For example, the set

ψn,k(t) = e−(t−n−1/2)
2/2 sin((k + 1/2)πt), k ≥ 1, n ∈ Z,

is a Riesz basis for L2(R). The basis functions are essentially a bell
curve centered on the half integers modulated by sinusoids of different
frequencies. (Using sin in the expression above instead of cos makes
the symmetries work out the way they need to.) In this case, the
Riesz constants A,B and the dual basis can be computed explicitly2.

2R. R. Coifman and Y. Meyer, “Gaussian Bases,” Applied and Computa-
tional Harmonic Analysis, vol. 2, pp. 299–302, 1995.
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Riesz representation

If {ψn} is a Riesz basis for a Hilbert space S , then there is a dual

basis {ψ̃n} such that for all x ∈ S,

x =
∞∑
n=1

〈x, ψ̃n〉ψn.

So just as in finite dimensions, we can think of the {ψn} as providing
a transform: we calculate the transform coefficients using αn =
〈x, ψ̃n〉, and can invert the transform (re-synthesize the signal) using
x =

∑
n αnψn.

Linear approximation

Similarly, if {ψn} is a Riesz basis for an infinite dimensional subspace

T of S , then there exists a dual basis with ψ̃n ∈ T such that

x̂ =
∞∑
n=1

〈x, ψ̃n〉ψn,

is the best approximation to x in T . That is, x̂ above is the solution
to

min
v∈T
‖x− v‖

Stable reconstruction

Suppose that we compute the basis expansion coefficients for a signal
x:

αn = 〈x, ψ̃n〉,
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and then perturb them:

α̂n = αn + εn.

What effect does this have on the reconstructed signal? Set

x̂ =
∞∑

n=−∞
α̂nψn,

then

x− x̂ =
∞∑

n=−∞
εnψn,

and so if {ψn} is a Riesz basis with constants A,B,

A‖ε‖22 ≤ ‖x− x̂‖2 ≤ B‖ε‖22.

That is, the squared-error in signal space is no greater than B times
the squared-error in coefficient space (and no less than A times the
coefficient squared-error.)

Computing the dual basis

We have not said anything yet about how to compute the dual basis
in infinite dimensions. This is because it is much less straightforward
than in the finite dimensional case — instead matrix equations, we
have to manipulate linear operators that act on sequences of numbers
of infinite length.

But still, we can do this in certain cases, as we will see in the next
section. Let’s draw some parallels to the finite dimensional case to
see what needs to be done. For a finite N -dimensional space, we
form the N × N Gram matrix G by filling in the entries Gn,` =
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〈ψ`,ψn〉, invert it to get another N × N matrix H , and then set

ψ̃n =
∑N

`=1Hn,`ψ`.

We can follow the same procedure in infinite dimensions, but now
the Gram “matrix” has an infinite number of rows and columns.
The Grammian is a linear operator G : `2(Z) → `2(Z); it maps
infinite length sequences to infinite length sequences. Given an input
x ∈ `2(Z) to this operator, the output at the nth index is given by

[G (x)](n) =
∞∑

`=−∞

〈ψ`,ψn〉x[`].

It turns out that the conditions for being a Riesz basis ensure that
G is invertible, that is, that there is another linear operator H :
`2(Z)→ `2(Z) such that

H (G (x)) = x, for all x ∈ `2(Z).

In general, we need completely different methods to compute the
inverse H = G −1 than we do in the finite dimensional case. But
in the end, the action of H will be specified by a two-dimensional
array of numbers {Hn,`, n, ` ∈ Z}; for any v ∈ `2(Z),

[H (v)](n) =
∞∑

`=−∞

Hn,` v[`].
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